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Data on the level spectra of A hypernuclei, obtained from (~+,K+ j and (K,m ) reaction studies,
are analyzed to obtain a density-dependent and nonlocal A-nucleus potential. %'e relate our results
to previous work vvhich bears on the origin of the density dependence and nonlocality of the A-

nucleus potential. We argue that the distinguishable A particle provides one of the best examples of
single-particle shell structure in nuclear physics.

I. INTRODUCTION

Recently, the energy levels of the strange A hyperon
bound in heavy nuclear systems have been measured' in
studies of the (m.+,E+) associated production reaction
with nuclear targets ranging from Be to Y. The excita-
tion spectra for the (m+, E+) process' consist of a series
of well-defined peaks which blend into a smoothly rising
background for high excitation energy. These peaks can
be identified with the various orbital angular momentum
states sA, pA, dA, fA, . . . of the hyperon. Since the spin-
dependent components of the A-nucleon (AN) effective
interaction are known to be small, the fine structure of
the peaks is not resolvable with the typical experimental
energy resolution of approximately 3 MeV. For the case
of ' C(m+, K+)AC, where the angular distribution
do ldQ was measured, the identification of observed
peaks with s„and pA single-particle strength was
verified.

Data from emulsion studies provide accurate values for
sA binding energies in light nuclei and upper limits on
8& for medium-mass nuclei. These data can be de-
scribed by a local Woods-Saxon potential well with a
depth of about 30 MeV. More recently, (E,m ) reac-
tions with low momentum transfer have yielded data on
substitutional orbits (l A same as that of a valence neutron
orbit) and in some cases on an adjacent orbit via b,L = I
transfer. For example, the (E,m ) reaction has been
studied for S and Ca targets and for ' C, Al, 'V,
and Bi targets. A Woods-Saxon well with a depth of
about 30 MeV again gives a reasonable account of these
data. ' The new (m+, K+) data' enable us to follow the
evolution of A binding energies over an appreciable range
of nuclear core mass number A and also, in a number of
cases, provide us with a complete set of bound and first
unbound energy levels for nodeless A orbitals at fixed A.

For many years, attention has been paid to the problem
of determining the well depth for a A particle in nuclear
matter. '" As indicated in the preceding paragraph, this
depth, determined from the asymptotic binding energy of
the lowest s orbit for large A, is in the vicinity of 30
MeV. With data available on the spacing of single-

particle levels in a given hypernucleus, one can determine
a radius parameter in addition to a depth. The next step
is to examine the systematics of these parameters as a
function of A. It turns out that a Woods-Saxon well,
say, of fixed depth with a radius parameter ro [R
=ro(A —l)' ] that decreases with A can fit the data on
single-particle binding energies. ' Then, one can try to
understand the origin of this potential in terms of a func-
tional dependence on the density of the nuclear core and
parameters characterizing the effective AN interaction.

In Sec. II we provide a description of the body of
binding-energy data in terms of A-nucleus potentials
motivated by the spherical Skyrme Hartree-Fock ap-
proach of Rayet. ' There is sufBcient flexibility in these
potentials through a basic term linear in the density, a
repulsive term depending on a higher power of the densi-
ty, and a nonlocality in the form of an effective mass to
describe the data. We compare these potentials with oth-
er phenomenological density-dependent potentials. Also,
we review progress on the derivation of density-
dependent 6 matrices from the free AN interaction and
the subsequent construction of a nonlocal and density-
dependent A-nucleus potential from first principles.

In Sec. III we make a comparison of the A-nucleus po-
tential with the corresponding nucleon-nucleus potential.
Also, we consider whether the quark substructure of the
A could manifest itself in an observable way in terms of
Fock-type exchange corrections to the A mean field due
to antisymmetrization of the nonstrange quarks in the A
with those in neighboring nucleons. A preliminary dis-
cussion of this issue, highlighting A-nucleus shell spac-
ings, has been given previously. ' In Sec. IV we summa-
rize our results, discuss recent attempts to construct A-
nucleus potentials from the free AN interaction, and
present our conclusions.

II. RESULTS

A. Model for the potential

The observed A binding energies BA are shown as a
function of A in Fig. 1. As stated in the Introduc-
tion, we consider a description of these results in terms of
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A-nucleus potentials of increasing degrees of complexity
motivated by the spherical Skyrme Hartree-Fock ap-
proach of Rayet. ' Following Dover and van Giai, ' we
use an equivalent local potential VL(r, E) of the approxi-
mate form
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FIG. 1. The data on binding energies (8&) of A single-

particle states, derived from in-flight (m+, K+ ) and (K,m. ) re-

actions (Refs. 1, 4, 8, and 9) and emulsion data (Ref. 5), as a
function of A ' ', where A is the mass number of the core nu-

cleus. The (m+, K+) data for A =9, 12, and 16 give binding en-

ergies in agreement with those from other sources. (m+, K+)
data has also been taken for A =40 and 51. The curves corre-
spond to the solutions obtained for a Woods-Saxon well with a

depth of 28 MeV and a radius parameter ro = 1.128
+0.439A ' '. The arrows correspond to various values of the
target mass number.

sentation evolves. The standard Skyrme Hartree-Fock
parametrization' has been retained to facilitate the com-
parison of A-nucleus and nucleon-nucleus potentials.

The approach outlined above uses the basic elements of
the Skyrme Hartree-Fock formalism to obtain a physical-
ly motivated parametrization of the A binding energies in
terms of a potential. We identify the A binding energies
with the eigenenergies of the Schrodinger equation for
the potential VL ( r, E). Strictly, B„shoui 1be identified'
with the difference between the total Hartree-Fock ener-
gies of the core nucleus and the hypernucleus. Thus, we
ignore a rearrangement effect arising from the polariza-
tion (contraction or dilation) of the core by the presence
of the A. However, Rayet' has noted that the polariza-
tion of the core vanishes for t3-3000 MeV fm; the core
contracts for smaller t3 and dilates for larger t3 It so
happens that the values of t3 which are required to fit the
observed B„values are close to 3000 MeV fm, and the
neglect of polarization effects is justified. A term propor-
tional to the center-of-mass kinetic energy, which must
be subtracted from the Hartree-Fock energies, also con-
tributes' to the rearrangement energy. This correction
can be only approximately evaluated, and it is largest for
light nuclei where the Hartree-Fock calculation itself is
least reliable for the core radii and densities. We use
empirical charge densities and neglect all rearrangement
corrections in addition to the neglect of derivative terms
in the Hartree-Fock potential.

B. Woods-Saxon parametrization
of the data

m m

U(r)=top(r)+ —',t3p (r)+ —,'(t&+tz)T(r), (2)

The simplest description of the binding energies is in
terms of a local A-nucleus potential (t, +t2=0, m'I
m =1)which we write in the simple form

T(r)= —'( 'm ) p (—r)

$2 f2
+-,'(t, +t, )p(r) .

2m «(r) 2m

(3)

(4)

3A ~a
Po=

4~c c 2

—'(r') =c'+ 7n'a'
3 3

It can be seen from Eqs. (1)—(4) that there are three pa-
rameters in the model, to, t3, and t, +t2. For smooth
densities, such as the Fermi distribution, t, + t2 is
equivalent, through Eq. (4), to m'(0)/m. The origin of
the various terms is discussed in more detail as our pre-

Here m is the free space A tnass and m'(r) is the
effective A mass in the nuclear medium of density p(r).
We have set N =Z and neglected derivatives of the densi-
ty. We shall ultimately use densities which are propor-
tional to the empirically determined charge densities, '

but for illustrative purposes we will often characterize
p(r) by a Fermi distribution:

p(r) =par (r),

f (r) =(1+e(r c)/a) 1——

—V(r) = VIf (r) V2f (r), —

where c =ro(A)A '~, and V&, V2, and the diffusivity a
are independent of A. The choice V, =30.7 MeV,
V2=0, ro=1. 1 fm, a =0.6 fm was used' to predict the
A dependence of A binding energies (see also Refs. 7 and
10). This model is in substantial agreement with the data.
However, the availability of data on the spacing of levels
for a given A enables one to fit ro( A ) and V& for the sim-
ple Woods-Saxon potential with fixed diffusivity (to
which there is only a limited sensitivity). One then finds
that ro(A) should decrease slowly with increasing A.
For example, in a preliminary fit to the B~ values from
(m.+,E+) data, it was found' that the choice V, =29.34
MeV, ro( A ) = ( 1.080+0.395 A ) fm provides a better
description of both light and heavy hypernuclei. In fact,
a slightly shallower potential (VI =28.0 MeV) with a
larger radius, ro( A )=(1.128+0.439 A ~

) fm, does
even better for the data in Fig. 1. The curves in Fig. 1

are calculated for the latter potential.
As will become clear in the next subsection, a potential

of the form of Eq. (9), with V2=0 and a constant V„can-
not be related directly to the simplest form of U(r) in Eq.
(2) with only the top(r) term. Within the approach out-
lined in Sec. II A, some density dependence or nonlocali-
ty is necessary to fit the data.
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C. Geometrical considerations

We might expect the term in the potential which is
linear in the density to result from the folding of the
density-independent part of the AN effective interaction
with the point nucleon density. The resultant potential
well, with (r ) = ( r ) + ( r )~z, is a distribution with
increased diffusivity and a slightly smaller half-density ra-
dius' (see Ref. 20 for examples where the results of fold-
ing have been refitted with Fermi functions). Since the
longest-range component in the AN interaction has a
range comparable to the nucleon size, we can take the
linear term in Eq. (9) to be proportional to the empirical
charge density. ' Myers' has emphasized that the fun-
damental quantity of geometric importance in describing
nuclear densities is the equivalent sharp radius R which
scales as A ' . Then it follows that

b
R =R 1 — +1/2 R

(10)

and
1/2

(r) = — R 1+— +.2 1/2 3 5 b

5 2 R

where Rt&2 is the half-density radius, (r )' is the rms
radius, and b parametrizes the surface thickness. Note
that for the Fermi distribution of Eq. (6), we have
R, zz =c and b =~a W 3. Experimental values' of
(r )'~ for the important sequence of target nuclei for
(m. + g+) reactions (' 0 2sSi, 'V Y, ' Ba 2ospb), with
last-filled high-spin neutron orbits, ' are listed in Table I,
together with values obtained from an empirical expres-
sion, of the form in Eq. (11), fitted to medium and heavy
nuclei. ' Also given are values of ro, obtained in several
ways, for Fermi distributions which reproduce the charge
radii under the assumption that a =0.54 fm. It can be
seen that these radius parameters behave differently as a
function of A and are smaller than those for the potential
wells which roughly reproduce the measured A binding
energies. In fact, the difference between the half-depth
radii of the potentials and the charge densities is of the
order of 0.5 fm (last row of Table I).
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FIG. 2. Comparison of the shape (Fermi function) of p(r) for
A =89 with the form —V(r) =56.67f (r) —30.21f (r) in MeV
obtained from the p potential of Table II assuming pa= —' fm

The important feature is the difference in the half-value radius
of the two functions (cf. Ref. 19).

R&&2=c+a ln[y+(1+y )'~ ], (12)

so the increase in radius is, to a good approximation,
linear in V2 [R,zz=c+ay+O(y )]. Clearly, a fixed in-

crease in the radius increases the effective radius parame-
ter ro, defining R&/2, for light nuclei relative to ro for
heavy nuclei, and as V2 increases for fixed V&

—
V2 there

will be a value beyond which the effective radius parame-
ter of the potential decreases with increasing A. In
essence, this rnechanisrn explains the difference in radii

The p term in Eq. (2) may arise from the density
dependence of the AN interaction, as would be the case
for Skyrme models, ' or from certain forms of ANN
three-body interactions, or perhaps quark rearrange-
ment effects. This term need not be quadratic in form.
The essential point is that a repulsive p~ term, with y ) 1,
leads to a potential with depth V&

—
V2 and an increased

central radius, ' a surface effect which is independent of
A. This point is illustrated in Fig. 2. In fact, if
y = V2/( V, —V2) and y=2, we have for the half-depth
radius of the potential,

TABLE I. Parametrizations of charge radii (in fm).

A 16 28 51 89 138 208

r,h(expt)'
r,„(fit)b
ro(p)'
p'p(p)

ro( V)'
AR 1/2

2.73
2.74
0.946
0.943
1.200
0.63

3 ~ 10
3.13
1.004
1.006
1.177
0.51

3.62
3.66
1.049
1.051
1.160
0.40

4.24
4.28
1.080
1.080
1.150
0.31

4.84
4.87
1.099
1.096
1.144
0.25

5.50
5.51
1.116
1.108
1.140
0.19

'r, h
= ( r ) ' is the experimental rms charge radius (Ref. 15).

r, h =0.891A ' (1+1.565A ' —1.043A ') from a fit to experimental charge radii (Ref. 21). Note
that 0.891= 1.15''3 /5 [cf. Eq. (11)].
Derived from r,h{expt) assuming a Fermi distribution with a =0.54 fm for p(r).
ro = 1.144—1.276A, a parametrization of the fit to r,h(expt).

'ro= 1.128+0.439( A —1) ' ' for a Woods-Saxon potential which fits A binding energies for A ~ 89.
Difference in half-value radius of the potential and the charge density.
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TABLE II. Local, density-dependent potentials.

—V(r)

505.2p —605.Sp
387.0p —738.8p
340.0p —1087.Sp
292.2p —5300.Op

B&(expt)'

Bh(h'. O)'

13.113
13.131
13.127
13.106
13.0

2.497
2.500
2.498
2.500
2.5

22.935
21.906
21.445
20.158
22.5

B( Y)

17.376
16.693
16.420
15.674
16.0

10.909
10.5D4

10.367
9.988
9.5

3.864
3.636
3.579
3.415
2.5

'3pF density (Ref. 15).
2pF density; r0=1.08 fm, a =0.54 fm.

'Errors are +1 MeV for A Y and +0.5 MeV for ~ 0; all entries in Table II are in MeV.

between the potential and the underlying density.
For the case y =2, the potential parameters in Table II

imply y =1.12 or a change in R»2 of about 0.5 fm. We
contrast this with the very strong p term in the A poten-
tial suggested by Bychkov. In this case, "surface hy-
peron states" would exist, localized in the pocket of at-
traction produced at the nuclear surface. His choices of
V& and V2 correspond to y =3.2-4.9, implying a change
in R»2 of 1.0—1.25 fm. This is a much larger effect than
we find; the potentials of Bychkov are inconsistent with
the level spacing in heavy hypernuclei (e.g. , A Y).

Giving the potential in terms of Fermi (Woods-Saxon)
functions [Eq. (9)] is very useful for gaining analytic in-
sights into the properties of the potential. However, to
apply Eqs. (1)—(4), we use the empirical charge densities.
This is a more satisfactory procedure, particularly for
light nuclei where Fermi functions do not provide a good
description of the charge densities and the charge radii
show considerable deviation from a smooth behavior.
For example, even though ' 0 appears to fit well with the
systematics exhibited for heavier nuclei in Table I, the
use of a diffuseness a =0.54 fm leads to too high a central
density po compared with the empirical value. Actually,
it is the value of the density just inside the nuclear sur-
face, before it begins to drop off rapidly, that is remark-
ably constant for all nuclei, while the central density may
go up or down depending on orbit occupancies.

D. Fits to B„with local potentials

As the size of a potential well is increased, the single-
particle spectrum becomes more compressed. From the
preceding subsection, we see that the size of the well can
be controlled by the strength of the density-dependent
terms. In order to study single-particle spectra as a func-
tion of A, it is sufficient to consider the binding energies
of pairs of orbits in A 0 and A Y. For example, we choose
the sA and p~ orbits in ~O and the p~ and fA orbits in

z Y [the (m+, K+ ) data show a much more clearly defined
peak corresponding to the p~ orbit than it does for the sA
ground state]. We take the experimental binding energies
to be 13.0 and 2.5 MeV in AO and 16.0 and 2.5 MeV in

~ Y. If these energies are fitted by a prescribed density

dependence, the systematic behavior of the binding ener-
gies shown in Fig. 1 ensures a reasonable fit to all mea-
sured binding energies.

We consider local potentials of the form

—V(r) = A p(r) Bp"(r)— (13)

with y=~4, —', , 2, and 3. As a function of p, V(r) turns
over at a density given by p =(A/By)' 'r ". Note
that as the repulsive term increases in strength p moves
to smaller densities, and the potential can develop a pock-
et at the surface if p &po because V(p) will increase
from r =0 until the density drops below p . For the
values of A and B which fit the two binding energies for
AO, p is close to the central density po of nuclei. In
fact, for y=2, p =po. This behavior, which is shown in
Fig. 3, means that the interior potential depth is extreme-
ly stable from nucleus to nucleus. The interior density,
itself, is rather constant, but small variations will be
smoothed out in the potential. Table II gives the parame-
ters which, for each type of density dependence, fit the
binding energies in „'O. Also given are the binding ener-
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FIG. 3. Curves showing the "saturation" behavior of V(p)
and the position of p (arrows) relative to the interior density of
nuclei {p-0.16—0. 175 fm ) for several of the potentials in
Table II.
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TABLE III. Parameters for nonlocal A-nucleus potentials. '

Density dependence
pX

tp

(MeV fm )

E3

(MeV fm'~)
t]+t2

(MeVfm ) m '/mb (MeV)

p

5/3

4/3

—402.6
—404.0
—456.0
—659.0

3394.6
3300.0
2306.0
2200.0

103.44
120.0
103.44
130.0

0.80
0.775
0.80
0.76

27.5
27.9
27.7
28.1

'Parametrization of Eqs. (1)-(4).
Evaluated at center of A Y for 2pF density with pp=0. 1685 fm (rp =1.08 fm, a =0.54 fm), using Eq.

(4).
'DA = —U(0), Eq. (2), p~pp=0. 157 for rp( A = ~ ) = 1.15 fm.

E. Fits to B+ with nonlocal potentials

If we take the model prescribed by Eqs. (1)—(4) serious-

ly, we have one more significant parameter left to vary,
namely, the effective mass m *(r). Since the energy levels
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FIG. 4. The data on binding energies of A single-particle
states (see caption to Fig. 1) compared to the binding energies
obtained for the first of the density-dependent, nonlocal poten-
tials in Table III with p density dependence. For A & 16, the
density is obtained from a Fermi function with rp=1. 144
—1.276A fm and a =0.54 fm (cf. the fourth row of Table
I). For A &16, empirical charge densities from Ref. 15 are
used. The use of empirical charge densities leads to the kinks
seen in the binding-energy curves for small A.

gies for A Y obtained with each of the potentials. The
overbinding of the f orbit is a consistent feature of the
potentials fitted to &O. Corresponding discrepancies
occur for the AO spectrum if the z Y spectrum is fitted.
The fact that A 0 and ~ Y cannot be fitted simultaneously
with a local potential based on the empirical charge den-
sities is related to the fact that the b,R, &2 values, listed in

the last row of Table I, are not constant as a function of
A, in contrast to the behavior suggested by Eq. (12).
Nevertheless, a local density-dependent interaction al-
most succeeds in reproducing the data. Ahmad, Mian,
and Rahman Kahn have obtained a potential with y =

3

by fitting to ground-state binding energies of light hyper-
nuclei which is almost identical to the corresponding po-
tential listed in Table II. Their set B solution has
—V(r) =384.0p 714.2psl .—

20

15

10

a

CQ
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A-2/3

0.15 020 025

FIG. 5. Same as Fig. 4 but for the potential in Table III with

p density dependence.

in a nonlocal potential are spread out by the energy-
dependent term in the equivalent local potential of Eq.
(1), it is easy to see that a simultaneous description of the
binding energies in A 0 and z Y is likely to be achievable.
The density dependence (t3) can be used to adjust the ra-
dius of the well to fit AO while the effective mass can be
used to counteract the compression of the A Y spectrum
evident in Table II. A series of potentials, which all give
excellent fits to the data in Fig. 1, are listed in Table III.
The values of t, +t2 correspond to m '/m =0.8 in the in-

terior of the hypernucleus. It is important that realistic
densities be used since the connection between m'/m
and po in Eq. (4) strongly affects the local well depth in

Eq. (1). For different empirical charge densities fitted to
electron scattering data, the differences in A binding en-
ergies are minimal ( (200 keV). For each type of density
dependence (y= —'„—'„or 2) an essentially identical fit,
with roughly the same m ' im and D„, can be obtained.
The interplay between the p and p~ terms simply gives
potential wells of the correct depth and size to fit the
data. The binding energies are relatively insensitive to
the finer details of the radial shape. This can be seen
from Figs. 4 and 5, where the binding energies for poten-
tials with p and p

~ density dependence, respectively,
are compared with the data. In summary, the well depth,
the well radius, and m '/m are rather tightly constrained
by data.

It can be seen from Fig. 1 that an excellent fit to the
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binding energies can be obtained with a simple Woods-
Saxon potential with a depth of 28 MeV and a radius pa-
rameter ro=1. 128+0.4393 which decreases slowly
with increasing A. From a practical point of view, this
potential is as good as any for predicting A binding ener-
gies.

U;(r)=U, (r) —U, (r),

Xo
U, (r)= to 1+ p(r)+ —,'t3 1+ ' p2(r)

+ ,'(t',—+t',)T(r),

F ~iN
U; (r)= '

[ to (1+2xo )p(r)+ —'t3 p (r)

III. COMPARISON %'ITH NUCLEON-NUCLEUS
POTENTIALS

As we have, in fact, assumed, a useful representation of
the NN or AN effective interaction v', ff, with i =A or N,
in the nucleus is provided by the Skyrme ansatz U', ff

V2 +U3 with

Uz(r —r')= to(1+xI]P )5(r—r')

+-,'(t", t~)—T(r)],
where U; is the Hartree term, U; is the Fock exchange
term, which is absent for the A [cf. Eq. (2)], and T(r) is
given by Eq. (3) in the Thomas-Fermi approximation.
The energy eigenvalues and wave functions can be ob-
tained' from the solution of an ordinary Schrodinger
equation with an equivalent local potential given by Eq.
(1), plus some small corrections involving derivatives of
m (r)/m, where [cf. Eq. (4)]

+ ,'t', [k' 5(r ——r')+5(r—r')k ]

+t~k' 5(r —r')k,
(14)

f2 fi + —,'(t', +t2)p(r)+ —,', 5, ]v(t2 —t] )p(r) .
2m (r) 2m;

V3(I] Ip 13) t35(r, —r2)5(r2 —r3)

where k=(V, 7;)/—2i and P =
—,'(1+o, o2). The pa-

rameters to and t', correspond to the interaction in two-
body s states, while the t2 term operates in relative p
states. The interaction U3 need not be considered as a
genuine three-body force, but rather as a means of simu-
lating the density dependence of the effective interaction.
The Skyrme model has been extensively applied to nu-
cleon bound-state spectra by the Orsay group' ' and to
A hypernuclei by Rayet. ' ' Negele and Vautherin
have attempted to calculate the parameters t, from real-
istic NN potentials, with some success.

For an interaction of the form in Eq. (14), the self-
consistent potential U, (r), i =A or N, can be written in
the approximate form [assuming p„=p, and omitting
spin-orbit terms, Coulomb terms, and terms involving
derivatives ofp(r)]

The nonlocality of the Skyrme interaction, i.e., the terms
involving t, and t2, has been eliminated in favor of an
energy-dependent potential V;(r, E). The parameters for
a representative selection of NN and AN models, taken
from the work of Beiner et al. , Rayet, ' and this work,
are given in Table IV.

Now consider some qualitative features of Skyrme
models for nucleon orbits. First of all, a substantial con-
tribution from the t3 p (r) ter]n in Utt(r) is required to
account for the observed level density in nuclei. If t 3 =0,
the nucleon orbits are far too spread out in energy. A
variety of models are discussed by Beiner et al. For in-
stance, their model SVI has a large tz, which serves to
compress the levels near the Fermi surface, in agreement
with the data. This model has m'/m =0.94 in the nu-
clear interior, i.e., only a modest degree of nonlocality.
Model SVI, however, produces too little binding for
deeply bound levels. For example, in ' 0, one finds 27

TABLE IV. Parameters' of Skyrme models for NN and A¹interactions.

Model

SVIb
SXIb
11'
2c

d

tp

(MeV fm')

—1423
—1369
—303
—568
—340
—403

(MeV fm')

272
587

0
162

0
103

t2
(MeVfm )

—138
—27

0
—39

0
0

t3
(MeVfm )

17000
9331
2000
6074
2900
3395

m */m

0.94
0.55
1.0
0.77
1.0
0.80

'Note that tp =tp(1+xp/2) SVI and SII refer to the NN case, the other rows to AN. Effective masses
are evaluated from Eq. (16) with pp=0. 1685 fm ' (cf. Table III).
Reference 28.

'Reference 13.
This work; p potential of Table II.
This work, first potential in Table III. Only the sum t, + t2 enters; it is given in the column for t 1 ~
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MeV for the Os proton binding energy, as compared to
the experimental value of 44+7 MeV from the (e, e'p)
reaction. Model SII, on the other hand, which has
m */m =0.55, gives much better results for the deep lev-
els (the Os in ' 0 is now bound by 38 MeV), but too low a
level density near the Fermi surface. Within the Skyrme
model, it is not possible to simultaneously describe the
nucleon level density at the Fermi surface (which requires
m*/m =1) and the deeply bound levels (which need
m'/m =—,'). In contrast, for the more weakly interact-

ing, distinguishable A, an excellent description of the
binding energies, from the most deeply bound to unbound
resonances, is possible with a single value of m '/m.

For a Gaussian two-body interaction with no space-
exchange (Pz ) component and range 1/p, we expect

tp

1 ti+t2=0,
p

(17)

where ta=ta(1+x0/2). For the SII parameters of Table
IV, we find (t~ t& )/t—0= —0.45 or @=295 MeV, larger,
though not overwhelmingly so, than the pion mass. (We
note that the pion contributes substantially to the Fock
potential due to exchange even in spin-isospin saturated
nuclei. ) The equality t, = tz is—strongly violated, indi-

cating the presence of strong Pz forces for the NN case,
as expected theoretically. For the AN case, we antici-
pate a smaller range I/p, since one-pion exchange does
not contribute to the AN~AN potential. Some degree
of Px dependence is expected from E and K' ex-
changes, ' but less than for NN. Thus, we expect both
(t, t2 )/tz and—t ", + t 2 to be smaller than their counter-
parts for the N case. As a consequence, we expect that
m '/m will not differ greatly from unity.

What about the choices of t p and t&? Calculations
based on one-boson exchange models provide an estimate
for t p, i.e., the term in the potential which is linear in the
density. One finds ' well depths of 56 MeV for
Nijmegen model D and 50 MeV for model F, to be
identified with ppt p, where pp- —,

' fm . This gives the
estimate t p

——300 to —330 MeV, consistent with mod-
el 11 of Rayet' and our own local model. By itself, the
term t Dp(r) leads to the well-known "overbinding" prob-
lern. The necessary additional repulsion is provided by
the term t3 p (r). As explained in Sec. II B, this term in-
creases the effective radius of the potential well, giving a
compression of the single-particle spectrum. For both
nuclei and hypernuclei, a substantial p term is required.

It is also interesting to compare our results with an in-
terpretation of the binding energies of A hypernuclei in
terms of phenomenological AN and ANN forces. A satis-
factory description of the binding energies of the s-shell
hypernuclei, &Be, ~ C, and the A well depth is obtained
by Bodmer and Usmani using AN interactions which fit

Ap scattering data and strongly repulsive ANN interac-
tions which contribute —25 to —30 MeV to DA. These
repulsive ANN contributions are of the same size as the
contributions from the p terms of the phenomenological
single-particle potentials listed in Tables II and III.

The discussion thus far has not made reference to the
role of quarks. The differences between the A and N

spectra hinge on several factors.
(1) The nonlocality of the self-consistent field (i.e., the

choice of t, and t2). The differences between A and N
largely reflect the range of the effective interaction, which
is larger for NN than for AN because of the role of m ex-
change for the former. This is a nonperturbative long-
range effect having nothing to do with short-range quark
properties.

(2) The role of t3p (r) terms. These are a complicated
mixture of density-dependent modifications of the two-
body interaction and perhaps genuine three-body interac-
tions. It has been proposed that the "Pauli pressure" due
to quark antisymmetrization ' generates an effective
ANN force. Effects of partial deconfinement of strange
quarks in the nucleus, or the possibility of an increased
size for hyperons relative to nucleons (even in free
space) are intriguing, but the fact that the Bx data, when
fitted by a potential, are insensitive to the precise form of
the density dependence makes it impossible to relate be-
havior of the BA values to any specific source such as
quark degrees of freedom. The level spectra are con-
sistent with the picture of the A as a distinguishable
baryon.

(3) The role of Fock terms for the nucleon. These are
important in a quantitative study, but the main feature of
SII, which reproduces deeply bound N levels, is that
m '/m = —,

' in the nuclear interior, and this is true already

in the Hartree approximation, i.e.,

0.55 Hartree-Fock,
0.47 Hartree .

The Fock terms tend to reduce the size of the Percy
effect, i.e., the damping of the wave function in the nu-

clear interior. Thus, the principal differences between A
and N spectra are due to different ranges (t, , t2) and
three-body terms (t3 ), not to the presence of a Fock term
for the nucleon.

IV. DISCUSSION

The parameter sets in Table III represent the end prod-
uct of our fit to the A binding-energy data from in-flight
(m.+,E+) and (It. , m. ) reactions and emulsion experi-
ments. The fit is made with a density-dependent and non-
local A-nucleus potential of a form suggested by Rayet's
Skyrme Hartree-Fock calculations. ' Derivatives of the
density, which appear in the Skyrme Hartree-Fock for-
mulation to take into account some aspects of the finite
range of the AN interaction, have been omitted on the
grounds that finite-range effects are included in an ap-
proxirnate way by the use of empirical charge densities.
We have experimented with including the derivative
terms which appear in Rayet's formulation, but they give
rise to rather unphysical "glitches" in the surface region
of the A-nucleus potential, at least in our non-self-
consistent approach. Three parameters are needed to
give a good fit to the data. The interplay between terms
with different powers. of the density simply ensures that
wells have the correct depth (essentially constant) and
size as a function of mass number. The effective-mass
term spreads out the spectrum (for m */m ( 1) and pro-
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duces the correct level density for light and medium-

heavy nuclei. The exact form of the density dependence
is unimportant, but once chosen the parameters to t3,
and t, +t2 are rather tightly constrained by the data. As
a caveat, we note that the most recent (n+, E+) data' is
still under analysis and that our assignment of errors to
the A binding energies is somewhat arbitrary. However,
there is good agreement, not shown in Fig. 1, between the
A binding energies extracted from different sets of experi-
mental data. Consequently, we do not anticipate any
significant changes to the overall picture presented in Fig.
1.

Recently, a number of attempts have been made to cal-
culate A-nucleus potentials starting from a free AN in-
teraction (for earlier work see Ref. 31). A G matrix is cal-
culated for nuclear matter as a function of density and is
then parametrized for use in constructing a A-nucleus po-
tential, e.g., by folding. The G matrices of Yamamoto
and Bando are obtained using the Nijmegen interac-
tion. The A well depth that results is consistent with
the empirical value, and the efFective mass, which arises
from exchange forces and short-range correlations due to
hard cores, takes a value m'/m -0.78. Refinements in
the construction of A-nucleus potentials have subsequent-
ly been made by Yamamoto and by Kohno. These po-
tentials are quite successful in predicting A single-particle
binding energies. Direct comparisons with our empirical
potential are not easy to make because the density depen-
dence, which can take a variety of forms, differs from
case to case. However, Kohno does display equivalent
local potentials which could be compared with our re-
sults. Work has also been done by a Julich group, who
start with the generalized Bonn potential. They obtain
m'/m =0.87 and a well depth of 28.5 MeV. Thus, the
general features of the A-nucleus potential obtained from

the free AN interaction seem to be consistent with those
we have obtained from a rather precise fit to the binding
energies of A single-particle levels.

The A binding energies shown in Fig. 1 provide a
"textbook" example of single-particle structure in nuclear
physics. In ordinary nuclei, single-particle strength rap-
idly becomes fragmented with increasing excitation ener-

gy, and the deeply bound hole states become so broad as
to be essentially unobservable. Even in the region of the
Fermi surface, where excellent examples of the basic
single-particle structure abound, coupling to vibrational
states of the core is important and leads to an apparent
compression of the single-particle spectrum. In the hy-
pernuclear case, the fact that the A is a distinguishable
particle, which interacts rather weakly with the nuclear
core, leads to a clearly defined set of single-particle states.
These states can be thought of as doorway states which
acquire a spreading width by mixing with a dense back-
ground of hypernuclear levels. An estimation of these
widths, together with escape widths (e.g., for proton
emission) is necessary to understand the widths of the
peaks observed in the (n.+,E+) reaction on heavy tar-
gets. ' ' The observed peaks are certainly broader than
the experimental resolution. The widths of the peaks will
limit the largest mass number for which the A single-
particle structure can be investigated, at least with the
present resolution of about 3 MeV, since the intershell
spacing will eventually become comparable with the
width. However, it should be possible to investigate the
structure (h, , &2lA ) for a ' Ba target.
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