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The importance and usefulness of crossing is emphasized for both kaon scattering and kaon pro-
duction reactions. It is argued, and numerically demonstrated for a chiral Lagrangian, that crossing
provides powerful, comprehensive constraints which are often neglected in the evaluation of dynam-
ical models. Cross section calculations are presented for two distinct sets of crossing related reac-
tions: (1) K p—K p,K*p—K*pand pp—>K K*;(2) K p—yA and yp—>K*A. The crossing
relations require that the same hadronic Lagrangian, including coupling constants, govern all of
these reactions, and results show that different reactions exhibit different sensitivity to coupling con-
stant uncertainty. Because crossed reactions always entail different kinematic regions of the S ma-
trix, it is expected that such sensitivity is not just representative of the current model but rather a
general feature that should be exploited when investigating all relativistic theories.

I. INTRODUCTION

Crossing, first recognized in 1956' by Gell-Mann and
Goldberger and developed by Gunson® and Olive,’ is a
fundamental principle based on CPT and the analyticity
of the S matrix. Even though no general proof exists
(crossing has been rigorously demonstrated for ‘“‘space”
Lagrangian field theory), crossing has been elevated to
the same status as the spin statistics and CPT theorems.
Because of the connection to antiparticles crossing has
been predominantly utilized in the field of particle phys-
ics,*> most notably in earlier and kaon scattering studies
using dispersion relations (for typical pion and kaon ap-
plications see Refs. 6 and 7, respectively, and references
therein). Now, in conjunction with the clear trend for
new projects and accelerators dedicated to nuclear phys-
ics at higher energies, this principle should also be rou-
tinely incorporated in analyses conducted by the nuclear
community.

The purpose of this paper is to stress the importance
and usefulness of crossing in assessing dynamical models
and in phenomenological studies. In particular, we find
that channel crossing can reveal observable differences
among model parameters which provide almost identical
results in a certain channel. Thus our message is not only
to simply avoid violating crossing, achieved by carefully
and consistently using the same model (especially the
same model parameters such as coupling constants) when
describing crossed reactions, but also to advocate that
crossing should be aggressively exploited by applying the
model comprehensively to all crossed reactions that are
observable. This will stringently test the model and pro-
vide full sensitivity to uncertainties in model parameters
that might not be present in the analysis of a single isolat-
ed reaction. Even if the model uses running coupling
constants, this statement should be correct when the
magnitude of momentum transfer involved in crossed re-
actions is the same. As an example, the same form of
quantum chromodynamic coupling constant a,(|g2|) can
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be used both in timelike and spacelike regions of g2. This
crossing constraint has not been widely appreciated in
hyperon reactions.

This paper is organized into four sections. In Sec. II
crossing relations and crossing symmetry are reviewed.
These exact results, which are valid for any reaction, are
applied to hyperon reactions since kaon scattering and
production experiments are of current interest. Applica-
tions using a simple chiral quantum hydrodynamic La-
grangian are presented in Sec. III for the purely hadronic
crossing related processes K ~p elastic, K *p elastic and
pp—K K*. The electromagnetic crossed processes
yp—K A and K “p—yA are treated in Sec. IV using a
more realistic Lagrangian which provides a reasonable
description of the limited data. To our knowledge this is
the first published cross section calculation for
K " p—vA, for which data is lacking, and we look for-
ward to future experimental tests of our predictions. For
each of the five reactions, cross sections, using different
sets of coupling constants, are compared to reflect sensi-
tivity to parameter uncertainty. In general, the degree of
sensitivity to the same coupling constant uncertainty is
different for different crossed channels. Finally, Sec. V
summarizes and emphasizes the important issues and re-
sults.

II. CROSSING RELATIONS
AND CROSSING SYMMETRY

Consider the general two-body ab —cd having scatter-
ing amplitude (S-matrix element) S(p,,p,,pP.,Ps) Where
p; represents the four-momentum for particle i and the
order of variables, as it is throughout this paper, is im-
portant. Now consider the wunphysical process
¢*b—a*d, where the only change has been the crossing
of particles a and ¢ [change initial- (final-) state particle a
(c) to final- (initial-) state antiparticle @ (¢) having oppo-
site four-momentum —p, (—p,) and sign-reversed addi-
tive quantum numbers, including spin magnetic substate].
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The usual antiparticle notation is represented by the bar
and the asterisk indicates unphysical four-momentum as
now particles @* and ¢* both have negative total energy.
The crossing hypothesis (more precisely CPT crossing
component) asserts that this unphysical process is also
mathematically described by the same amplitude
S (pgsPpsPesPa) (€., the same complex number or the
same complex function for variable four-momenta). Al-
though interesting this result is not very useful. Now
define a different S-matrix element S’(p_,p,,p,,p,) to be
the scattering amplitude for the physically allowed pro-
cess ¢b —ad which only differs from the unphysical reac-
tion above by the four-momentum of @ and  [p, and p,
are arbitrary but the energy of @ and ¢ are positive; all
remaining reaction degrees of freedom, such as spin,
remains the same so that again the additive quantum
numbers have signs opposite to the original initial- (final-)
state particle a(c)]. Crossing also requires that S’ de-
scribe the unphysical crossed process a*b—c*d where
now a* and c¢* have unphysical four-momentum —p_
and —p_. The crucial crossing assumption (distinct from
CPT) is that the scattering amplitude is analytic so that
complex continuation is possible in the momentum vari-
ables between the physical and unphysical regions. Then
the original amplitude S, which describes the physical
process ab —cd, can be analytically continued to also de-
scribe the physical process ¢b —ad. This result leads to
the crossing relation

S’(PE:Pb’Pa’Pd)z‘S( "'Paan,—PE,Pd) s (1)

which profoundly asserts that one and only one ampli-
tude, in different regions of the complex plane, describes
both of the above physical processes.

To further appreciate these points and to provide the
conceptual framework for applications in the next two
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sections it is useful to consider other crossings of the re-
action ab—cd. Including the original reaction there are
a total of six different physical two-body reactions each
having an amplitude that is related by crossing to the
original amplitude S(p,,p;,p.,p;). In Table I the six re-
actions are enumerated along with the corresponding la-
beled Mandelstam variables and physical amplitudes.
Again an asterisk on a variable indicates evaluation in an
unphysical kinematic region. There are no asterisks for
reactions 1 and 6 because the former is an identity (no
crossing) while the latter is equivalent to applying only
CPT to reaction 1 and therefore does not require analytic
continuation. Note also that because of CPT the crossing
relations for reactions 2 and 5 are identical and similarly
for reactions 3 and 4. Consequently, there are only two
nontrivial crossing relations which can conveniently and
uniquely be identified by the total energy variable in that
channel. These are the z-channel crossing relation (reac-
tions 3 and 4) involving S(s*,t*,u) and the u-channel
crossing relation (reactions 2 and 5) involving
S(s*,t,u*). Itis also informative to mention the concept
of crossing symmetry which is the mathematical symme-
try of a specific amplitude under permutation of the Man-
delstam variables. Crossing symmetry can be realized by
specializing to reactions for which ¢=a or d =a. The
first yields the u-channel symmetry relation

S(s*, t,u*)=S(u,t,s) , (2)

representing symmetry under interchange of s and u (re-
taining the * serves only to remind that all crossing and
symmetry relations equate one physical and one unphysi-
cal amplitude). The second special reaction, d =a, gen-
erates the t-channel symmetry relation

S(s*,t*u)=S(t,s,u), (3)

TABLE 1. Mandelstam variables and crossing relations for the reaction ab—cd. An asterisk indi-

cates an unphysical kinematic value.

Reaction Mandelstam variables Crossing relation
1. ab—cd s, =(p, +p,)=s S (sy,t,u)=S(s,t,u)
s channel t,=(p.—p, )=t =S(sy,t;,u;)
uI:(pd_pa)ZEu
2. ch—ad s;=(p,+p,)*=u S5(s5,t5,u,)=S(s*,t,u*)
u channel t,=(p,—p. )=t =S(u,,t,,s,)
U =(pg—p;)'=s
3. db—ca s3=(pz;+p,)*=1t* S3(s5,t5,u3)=S(s*,t*,u)
t channel ty=(p.—pz)*=s =S(t3,53,u3)
“3=(P5_P3)2=“
4, at—bd sa=(p,+p,)=t* Si(s4,ta,us)=S(s*,t*,u)
t channel ty=(p;—p,)=s* CPT equivalent to 3
uy=(py—p,)*=u
5. ad—ch ss=(p,+pz)=u* Ss(ss,ts,us)=S(s*t,u*)
u channel ts=(p,—p, )=t CPT equivalent to 2
us=(p;—p,)’*=s*
6. td—ab se=(p.+pz)*=s Se(Seste ) =S(s,t,u)
s channel te=(p,—p. )=t CPT equivalent to 1

u6=(p,;—p5)2=u
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which indicates symmetry under interchange of s and .

Finally, the Lorentz-invariant transition amplitude T
has the same crossing properties as S and is related to the
invariant S matrix by

S i =(papopepa)'’?8 ;i +i(2m)*8(p,—p) Ty . @)

Here 8, contains Dirac and Kronecker delta functions
representing the preservation of the initial state in the ab-
sence of scattering interactions with the coefficient deter-
mined by the covariant normalization choice for single-
particle state:

(pxlpi)=Q27)n E,8(p, —p,)=p,8(p, —p) , (5)

n,=—— fermions mass m, (6)
mX

=2 bosons or fermions mass O . (7)

The initial, final total four-momentum is represented by
Pi> Py and E, is the total energy of particle x. The invari-
ant cross section element, which is not directly con-
strained by crossing, is given by

(2m)*
nany, F

dp, d
| T, 1%8(p;—p;) pp‘ % , (8)

do=

where dp, is the three-momentum of particle x and F is
the invariant flux factor

F=[(p,py)*—p2pt]'"* 9

(if ¢ and d are identical particles the cross section must
also be divided by 2).

Summarizing this section, crossing is a profound result
which is postulated to be an absolute principle, indepen-
dent of physical dynamics, based on analyticity and the
equivalence between initial- (final-) state particle with
four-momentum p and final- (initial-) state antiparticle
with —p (CPT invariance). It is a property which all rel-
ativistic scattering amplitudes, derived from sophisticat-
ed or simple models, must reflect.

With these preliminaries we now apply our results to
hadronic and electromagnetic reactions involving hype-
rons. Our emphasis will not be on the physics but rather
the usefulness and significance of crossing in the investi-
gation of dynamic theories.

III. CROSSING FOR HYPERON
HADRONIC PROCESSES

For a clear example we now consider the specific case
where a =c =K~ and b =d =p. From the previous sec-
tion we expect that the u-channel crossing relation will
generate the K *p elastic scattering amplitude (this will
be reaction 2 in Table I) and that the t-channel crossing
relation will provide the pp —K ~K * amplitude (reaction
3). We therefore only need to focus on generating the s-
channel K 7 p elastic amplitude (reaction 1) which will re-
quire a dynamic model. Because our thrust concerns il-
lustrating the significance of crossing we adopt a simple
model—a chiral Lagrangian based on quantum hadro-
dynamics (quantum field theory involving mesons,
baryons but no explicit color degrees of freedom). We re-
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strict this application to low energies (i.e., 1 GeV or less)
and therefore only introduce free fields for the lightest
particles which are believed to be most important. These
are the isospin singlet A, doublets N, K and triplet =:

p K™
N=1 1 K=o |
F3,4i3,
z=(21)22’23)) zt:——T_) 20:23a

with corresponding antiparticle fields

N=(p,a), K=(K ,K°,

involving the usual adjoint notation for fermion fields
(e.g., p=p Ty,). The hermitian interaction Lagrangian
L is taken to be pseudoscalar coupling with two phe-
nomenological coupling constants g, and g5:

L, =ig\[NysAK+KAysN]
+igs[NysT-SK+KZ-7yN] . (10

Here ys and y, are the familiar Dirac matrices and 7
represents the isospin Pauli matrices. We refer to our ap-
proach as a chiral Lagrangian model because of the pres-
ence of the chiral operator y5 in Eq. (10) and note that
because of mass terms in the unperturbed Lagrangian
overall chiral symmetry is not preserved. Related, pseu-
dovector coupling, which is mandated for the pion to re-
tain consistency with low-energy theorems and partial
conservation of axial-vector current (PCAC), is not
necessarily required for the kaon system because of the
more severe chiral-symmetry breaking associated with
the kaon’s much heavier mass.

The invariant scattering amplitude, introduced in Sec.
I1, can be expressed in most general form in terms of two
elementary amplitudes 4 and B which are Lorentz sca-
lar:

T3y (q,p,q',p" )= (p',\) | A, + B, |u(p,)),

4+4’
2

(1D

where 4 is the Feynmann slash, 4 =y -q, and u(p,A) is the
standard Dirac spinor with four-momentum p, helicity A
and normalization specified by

a(p, N u(p,A)=38;, . (12)

For notational simplicity we have represented the proton
and kaon four-momentum by p and g, respectively
(primes indicate final-state quantities). Using diagram-
matic techniques we have computed the elementary am-
plitudes to second order in the coupling constants yield-
ing
2
A= 2 & 2 (my—
Y=A,30 5 My

m,), (13)
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2
B=—- 3 —_. (14)

2
y=A,30 § My

Note that A and B only depend on s=(q +p)* and not
t=(q'—q)* or u=(p’'—q)% Utilizing Eq. (8) and averag-
ing over the proton helicities, the center-of-momentum
unpolarized cross section is given by

2
do® 1

a2

m,
aTW

2
5 .TSM,\ , (15)
v

where W =V's is the total center-of-momentum (c.m.)
energy. Performing the spin summations produces the
final result

do’

a0 =f%+f%+2f1f20059, (16)
with
mp+Ep
fi=—g [4:+(W—m,)B], (17)
m,—E,
f2=—W[AS—(W+mP)BS]. (18)

We have investigated the sensitivity of the K ™ p elastic
cross section to the uncertainty in the A and 2 coupling
constants. In Fig. 1 we summarize our results by present-
ing three curves corresponding to three different coupling
constant sets listed in Table II. These sets, labeled A
(Ref. 8), B (Ref. 8), and C (Ref. 9), were obtained from
kaon photoproduction phenomenological analyses and
will also be used in the next section that addresses cross-

ing for electromagnetic hyperon processes. Only the first
J

. o d,+4>
T}L;‘r(qz,pz,QZ,pz)_U(sz}\' ) Au(Sth2’u2)+ 2

3.0 T T T T T
L Kp—-Kp -
25¢F c.m. cross section 7
i cos 0., =-0.95
2.0+ 1
do L 4
st 1
(mb/sr) [ ° i
1.0t °. o T
LA~ o o J
ost BT TNl
c— T T ]

0.0 . ! : ! .

0.4 0.6 0.8 1.0
lab momentum
(GeV/c)

FIG. 1. Theoretical and experimental (Ref. 10) (circles, error
bars are omitted) K ~p elastic scattering cross sections. The
different theoretical curves correspond to the three sets of cou-
pling constants A (short dashed), B (long dashed), and C (solid)
listed in Table II. Only the first two columns of Table II are
used for the calculations displayed in Figs. 1-3.
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two columns are relevant to the hadronic calculations re-
ported in this section. Because of the simplicity of our
model it is not surprising that none of the theoretical
curves quantitatively describes the data'® also shown in
Fig. 1. The K " p system, even at threshold, has several
effects such as coupling to other open channels (A7 and
3m) and excited hyperon states (A* and =*), especially
A(1405) and A(1520) which are known to be important.
These have not been included because, as emphasized
earlier, our thrust here is to document the utility of cross-
ing in constraining dynamic model analysis. The key is-
sue is that different channels (s, ¢, or u) may reveal
different and useful sensitivity to the same underlying
model parameters. The simple Coulomb amplitude has
also been omitted. We have therefore focused on back
angles, where this amplitude is unimportant, for s- and
u-channel elastic scattering. With this in mind we now
address the wu-channel K Tp elastic and t-channel
Ppp—K “K ™ processes to determine their sensitivity to
the same three sets of coupling constants.

The K "p cross section has the same phase space as
K “p so Eq. (15) represents the differential cross section
provided the K *p u-channel amplitude, T, is used. This
amplitude can be evaluated from first principles (which
we have also done to explicitly confirm crossing) or by
simply applying crossing. Crossing, actually substitution
in this case, specifies that the K *p amplitude,
T%(q,,P2,95,p5) (2 indicates u-channel variables), is sim-
ply given by the K ~ p amplitude evaluated in the unphys-
ical region

T3(q2,02,93:02)= T3 (—q3,02,—q3,p2) »  (19)

or since s, =u, t, =t, and u, =s and by definition

B, (s, b5 uy) |u(py)) (20)

we immediately have the crossing relations for the ele-
mentary amplitudes which complete the K "p calcula-
tion:

A, (sy,t5,uy)= A (u,y,t,,s;)

gy

=2 3

(my—m,), (21)
y U7 my

TABLE II. Different sets of coupling constants. The first
two columns are used in Sec. II for the purely hadronic calcula-
tions, while all four columns are used in Sec. IV for the elec-
tromagnetic applications. Note that the 2 coupling constant,
gs, was determined from Gs =krgs where Gy is given in Refs.
8 and 9 and k= —2.24 is the dimensionless A-X transition mo-
ment factor.

Set gA gz &l_ ﬁ
Var Var 4 4
A (Ref. 8) 2.57 —0.679 0.105 0.064
B (Ref. 8) 2.49 —0.518 0.226 —0.062
C (Ref. 9) 2.04 0.554 0.247 —0.189
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2
8y
B, (sy,t3,u3)= —B(uy,15,5,)=3 '
y U= my

(22)

Equations (16)—(18) again specify the cross section with
W=1s,.

Figure 2 summarizes our sensitivity study for K "p
elastic scattering. Again the same three sets of coupling
constants are used. Notice that the sensitivity is some-
what different than that reflected by K ~p scattering in
Fig. 1. Also notice that this simple theoretical approach
provides a more quantitative description of the data.!!
This is predominantly because there are no known
strangeness + 1 baryons. Hence strangeness conservation
restricts KN scattering to elastic and simple charge ex-
change (effective single-channel phenomena). Further,
strangeness —1 baryons only contribute in the s (s,)
channel for KN and the u (u,) channel for KN. Since
s;>0 and u, <0, Egs. (13), (14), (21), and (22) indicate
the KN cross section will have significantly more varia-
tion with energy (i.e., the well-known result that the cross
section is dominated by s-channel poles).

Our final purely hadronic application is to #-channel
crossing to describe the reaction jp—K ~“K . The phys-
ical kinematics are now ps for p, p; for p, g3 for K *, and
g3 for K. Then, under crossing,

T 5(p3.P3,95,95)=0(p5,A) | A (t3,85,u3)+

2

where now s;=t, t;=s, and ¥;=u. The elementary am-
plitudes are still given by Egs. (13) and (14). We have
also evaluated this process from first principles to verify
Eq. (24) and confirm the elementary amplitude crossing
relations

A, (s3,t3,u3)= A (13,53,u;3)

gy
=y ——(my—m,), (25)
Y ty—m3 ?
2
8y
B,(S3,t3,u3)=-‘Bs(t3,S3,u3)=E_—2 (26)
y ty—my

Because the phase space is different Eq. (15) no longer ap-
plies. Using Eq. (8) directly yields for the spin-averaged
c.m. cross section

2 2
S3'—4mK

172
> ] SITi;12, @D
P A

2
mp

do' _ 1 |m,
47

dQ s,

s3—4m

with

1
3 |TislP= o (s[4 42+ (s~ 4m})B]]
AL P

—[(4m, A, +(t;—u3)B,]*} . (28)

—45+4;

6.0 T r r T T T T
L K'p=~K'p -
50+ c.m. cross section -
3 <cos 0, ,> =-0.951
40+ 1
do oA i
o N ]

. B————— ——— — .

(mb/sr) i 7
2.0F 1
o 4
10+ 000 °600 ° ° ° 4

0.0 1 1 1 1 1 1 1

0.0 0.2 04 0.6 0.8
lab momentum

(GeV/c)

FIG. 2. Same as Fig. 1 for K *p elastic scattering. Data from
Ref. 11.

T:5:(P3:P3,95.95)=T5_5(—45%.p3,95,—p3) , (23)

where, as mentioned previously, the order of the argu-
ments is important. Using Eq. (11) we can easily evaluate
this result, provided we replace @(—p,—A) by 7(p,A)
(which follows by definition):

B(t3,55,u3) {u(p;,A), (24)

Figure 3 displays our sensitivity study for pp >K "K*
for the same three sets of coupling constants. Comparing
Figs. 1, 2, and 3 further supports our claim that the sensi-
tivity to model parameters is different for different chan-
nels. Our calculated cross sections are larger than experi-
ment!? by an order of magnitude at forward angles and
roughly 2 orders of magnitude at backward angles (not

0.5 T T T T r
L A, PP - K K" |
0.4+ \ c.m. cross section |
L B \\ c0s 6,,=095 |

\
do 03¢ W J
dQ L \‘\\ |
\ \

(mb/sr)0.2 | C O i
0.1r 4

0.0 L0 g®omegocang gooo,

0.0 1.0 2.0 3.0
lab momentum
(GeV/c)

FIG. 3. Same as Fig. 1 for pp—K ~“K *. Data from Ref. 12.
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shown) which represents the clear inadequacy of the sim-
ple Born terms. Because the Born amplitudes are real
they violate unitarity, a constraint which is very impor-
tant for inelastic processes. Reference 13 discusses this
point further and presents a more accurate description of
pp—K K™

IV. CROSSING FOR HYPERON
ELECTROMAGNETIC PROCESSES

We now apply our results to electromagnetic reactions
and document the sensitivity of calculations for kaon
photoproduction, yp —K " A, and kaon radiative cap-
ture, K “p—yA, to the full set of coupling constants list-
ed in Table II. Because new, improved measurements are
planned for these processes [at Continuous Electron
Beam Accelerator Facility (CEBAF), Japan’s National
Laboratory for High Energy Physics (KEK), and pro-
posed North American “kaon factories”] and because
these reactions entail electromagnetic coupling
(e?/4m~ ), which is more amenable to our perturba-
tive treatment we have been motivated to include addi-
tional refinements. As demonstrated in Refs. 8 and 14 a
more realistic theoretical treatment can be obtained by
extending the model to accommodate vector meson K *
exchange.

The purely hadronic interaction Lagrangian is now
generalized to describe K * exchange by adding

LK =V (T, (29)

where L) and LT are the vector and tensor interactions
involving respective coupling constants g/« and g [+

Li=—ig/+(Ny*AK% +KAy"N) , (30)
LT= gy No" AV K*—V.K*)
1~ mp+m'/\[ g u™y VK[.I.

+(V,K:—VK:)Ko*N]. (31

Here K, represents the vector kaon field which is an iso-
spin doublet (we use the same isospin notation as for K
defined previously), V,, is the standard four-gradient and
o is defined by

o= é(y“y"—y”y“) . (32)

We now introduce the photon field 4, with field strength
tensor F,,,

F,,=V,4,~V,4,. (33)

The presence of this field leads to the following elec-
tromagnetic interaction Lagrangian £§" which must be
added to the Lagrangians specified by Eqgs. (10) and (29):

=—e(JE+JIE) A,
—(u,po*'p +usAo**A+purAa*"3O)F,,

8ix+
— e KV KT K TV KE IV, Ay

(34)
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where m is a mass, arbitrarily taken to be 1 GeV, intro-
duced to make the K *-K electromagnetic coupling con-
stant, g! «, dimensionless. The current J* and anoma-

lous magnetic moments p are given by

J)=py*p (proton current) , (35)
J}é=i(K”V“K+—K+V“K*) (kaon current) , (36)
e ) (37)
= t t),
Hp 2m, proton momen
(A ) (38)
PpA= moment) ,
A 2m,
Kre 0 "
pp=—""— (2Z”—A transition moment) . (39)
my, +m>:°

From experiment, k, =1.79, k,= —0.73, and k= —2.24
(magnitude determined from the 5.8 X 10~ % s lifetime for
3% Ay; sign is inferred from the quark model).

We now apply these results beginning with K+ pho-
toproduction, yp—K *A, which we take to be the s
channel. For clarity, in this section we denote the v, p,
K%, and A four-momenta by g, p, k, and [ and the 7, p,
and A helicities by A, A, and A', respectively. Because the
photon has unit spin, described by the polarization four-
vector e#(q,h) the invariant transition matrix element

T now contains four elementary amplitudes, 4;:

Tiw(gp,k,)=u(l,A")yse,(q,h)NF Aju(p,]) , (40)
with bilinear four-vectors N¥ given by
Ni=—vyt4 , (41)
N =2p#tq-1—1"q-p), (42)
N5=y¥q-p—p“q , (43)
NY=ytq-l—1t4 . (44)

As reported in a previous study'* we have calculated the
elementary amplitudes by evaluating the S matrix to
second order for the above Lagrangian. These ampli-
tudes, which are summarized in the Appendix, are func-
tions of s=(q +p)?, t=(k —q)%, u=(l—q)? and the
coupling constants which conveniently group into the
effective parameters

Gs=Kr8s » (45)
Gyzg;,(*g,?t , (46)
Gr=g}K:g,§- , 47)

which, along with g,, have been phenomenologically an-
alyzed previously®® and are listed in Table II. From Egq.
(8) the spin-averaged c.m. cross section is

do® _ 1 mymy |k N
= =S T2, 48)
dQ 4 (47w)? |q| ,,%' |

where k, q are the kaon, photon c.m. momentum. Using
trace techniques and computer algebra, Eq. (48) has been
reduced and is specified in the Appendix.
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0.5 —

L Yyp— KA §
0.4 Y c.m. Cross section |
\’E lab momentum = 1.2 GeV/c
do 03
dQ
(ub/sr) 0.2
0.1
0.0 L 1 1 1 1 L L
1.0 0.5 0.0 -0.5 -1.0

cos 0,

FIG. 4. Same as Fig. 1 for yp—K*A. All four columns of
coupling constants in Table II are used for the calculations
displayed in Figs. 4 and 5. Data from Ref. 15.

In Fig. 4 we display the photoproduction cross sections
corresponding to the three sets of coupling constants in
Table II. All curves provide a reasonable description of
the data.’> This is expected since each set was phenome-
nologically determined using this reaction. Again, our
major thrust in this paper is not the physics of this reac-
tion but to demonstrate that crossing can provide a
powerful criterion for determining model completeness as
parameters appropriately describing one channel may or
may not provide a consistent description of crossed chan-
nels.

We now address the u-channel process K p—vA.
Crossing the photon and kaon in the s channel gives the,
by now ubiquitous, relations for the physical u channel
having kaon momentum k, photon momentum g, photon
helicity :

TEM'(E’P"Y’I)=TS—EM'(_‘7»P’_k,l) ; (49)
TL  (k,p,g,)=a(L,A)yse,(q,h)

XNFAX s, ty,u)ulp,A), (50)

where the N} are again functionally specified by Egs.
(41)-(44). Equating Egs. (49) and (50) gives the crossing
relations for the elementary amplitudes

Aiu(SZ,tz,u2)=—Ais(uZ,tz,sZ), i=1,2,3,4 ’ (51)

with change sign under s, —u, and u,—s, because the
four-vectors N{* also change for ¢—>—g. We have
confirmed these results through detailed diagrammatic
calculations. Accordingly, Eq. (51), when combined with
the Appendix, completely determines the amplitudes.
From Eq. (8) the spin-averaged c.m. cross section is

dauzl m,m |—|
dQ 2 (4xW)? |k|

> T4, 17, (52)
AN

where W is the K “p c.m. total energy and k,q are the
kaon, photon c.m. three-momenta, respectively. The
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FIG. 5. Same as Fig. 4, without data, for K "p—yA.

spin-averaged transition probability is specified in the
Appendix.

In Fig. 5 we present our final sensitivity comparison.
The significant result is that within the framework of a
more sophisticated model, channel crossing again reveals
informative differences among coupling constant sets
which provide almost identical s-channel results. Unfor-
tunately, there is very limited data for this reaction, as it
would be interesting to see which phenomenological set,
if any, would be favored. This represents a promising ex-
periment for KEK and other proposed ‘“’kaon factories.”

While cross section angular distributions are not avail-
able the branching ratio for K “p —yA has been mea-
sured'® to be within the range (2.8+0.8)X1073. We
have calculated this observable for each coupling con-
stant set and obtained the values: set A, 1.82X1073; set
B, 1.68X 1073 set C, 9.83X 107 % Notice that again
crossing reveals parameter sensitivity and that the value
provided by set A4 is near the lower experimental range.
A more detailed theoretical treatment for this branching
ratio has recently been published.!” This work reports
K p—yA calculations for a K p atomic initial
configuration and also presents resulting from including
additional diagrams corresponding to various N* and Y*
exchanges. Although Ref. 17 computed branching ratios
within the experimental range, their coupling constants
were determined by kaon-induced hadronic processes
which, as we have explicitly confirmed, do not reproduce
kaon photoproduction data. This shortcoming, the ina-
bility to simultaneously describe both hadronic and elec-
tromagnetic processes involving kaons, has been noted
earlier'® and is most likely due to the model simplicity.
As stated earlier in this paper, a perturbative, phenome-
nological Lagrangian approach that explicitly includes
only a few mesons and baryons is incomplete and for
purely hadronic processes is probably incapable of pro-
viding a detailed description. Even for K *p scattering,
which is significantly constrained and simplified by
strangeness conservation, there are several meson ex-
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change contributions which, as examined in Ref. 19, are
important and should be consistently included. Again,
our thrust in this paper is not to advocate or critique a
particular dynamic approach but rather to demonstrate
the utility of crossing for the development of improved,
realistic models, a topic we are currently investigating.

Recently other, more detailed phenomenological stud-
ies (see models in Refs. 9 and 16) have been reported for
yp—K*A involving the additional exchanges from
several N* resonances. Their extracted coupling con-
stants differ markedly from Table II. We have performed
yp—K*A and K p—yA calculations for these cou-
pling constant sets (actually just a four-parameter subset
corresponding to our model) but do not show results be-
cause such calculations inconsistently use parameters ap-
propriate to a more extended model. However, we again
find significant differences in sensitivity for different
channels.

Because the prospects for t-channel measurements are
not good (secondary beams could permit study of
Ap—yK™) we do not present crossing relation results
for this channel. These can be easily generated from the
above equations.

V. CONCLUSION

In this paper we have presented a pedagogical discus-
sion of crossing, demonstrated the practicality of crossing
for generating amplitudes in the ¢ and u channels without
recourse to dynamic calculations, calculated the first
crossing consistent prediction for K~ p—yA, and, most
significantly, shown the utility of crossing for revealing
different model sensitivity in different crossed channels.
Our major contribution has been to further demonstrate
that this sensitivity is not related to a particular class of
reactions nor to the level of sophistication of dynamic
models. We submit this is a general result which will be
present, to a greater or lesser extent, in any analysis.

Because this paper focused on crossing applications in-
volving simple algebraic forms for the transition ampli-
tude, crossed channel amplitudes were particularly easy
to generate (just substitution). It is important to stress
that crossing can also be practically applied to more com-
plicated analyses involving numerical representation for
the amplitudes and may provide a more convenient,
refined alternative.?’ For example, provided analyticity is
maintained, coupled-channel calculations for Ap —Ap
scattering®! could, in principle, be used for pp —AA with
no need for introducing complex phenomenological po-
tentials (other than a complex propagator arising from
the decay width of an exchange particle having finite life-
time) describing annihilation. By using interactions de-
rived from field theory which describe multiple 7, p, and
 exchange, one could gain significant insight into the pp
annihilation mechanism (roughly 20% of the low-energy
pp total annihilation cross section is due to the
pp—mta n 7 7° channel which is known to couple
strongly to the pp —p°w process’’). Even though one
complete Lagrangian governs both Ap scattering and pp
reactions, as indicated in this paper these two processes
may indeed reveal entirely different sensitivity to various
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Lagrangian components and higher-order diagram sub-
sets. In this case a realistic Ap model calculation may,
when crossed, predict unsatisfactory pp results. This
would still provide important insight and help identify
the dynamic aspects which should be further investigat-
ed. In turn, coupled-channel pp calculations, which have
recently been reported,?® should also be crossed for Ap
predictions. Ultimately, with the aid of crossing, one
self-consistent reaction model (or two mutually consistent
models if the reactions are almost dynamically indepen-
dent) would evolve for comprehensively describing both
Ap and pp processes. A major difficulty, however, is that
nonrelativistic potential scattering theory generates S-
matrix amplitudes with analyticity domains restricted to
the physical region (i.e., total particle energy, including
rest mass, is positive-definite). Crossing relations only ex-
ist for theories which can properly incorporate particles
having both positive and negative total energy. Accord-
ingly and at a minimum, a relativistic coupled-channel
formalism is necessary. We have initiated such studies
and will report results in a future communication.

In summary, crossing is an exact, powerful property of
the S matrix that provides useful theoretical constraints.
Violations of this principle, which can occur in uncareful
analyses that incorrectly regard the s, ¢, and u channels as
independent, should always be avoided. Further, theoret-
ical studies should strive for consistency and complete-
ness by comprehensively treating all crossing-related re-
action channels. This will ensure generating optimum
dynamic information and physical insight.
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APPENDIX

The four Lorentz- and gauge-invariant amplitudes in-
troduced in Sec. IV are given in terms of the coupling
constants and Mandelstam variables s, ¢, and u, by

_egpalltk,)  egrky n eGy
! s—m; u—mi u—mi
alm,+m_ )+t
+——2 , (A1)
t—mK.
2eg
Ay=—5h B_ (A2)
(t—mg)s—my) t—mg.
eg kK a—pB(my—m,)
=l A b, (A3)
(s =my)m, [ (P
4= eg Ak 2eGy
Y lu—mim,  (u—mi)myt+ms)
at+p(m,—m,)
- (A4)
t—mK*
with
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GV GT
a=—, =

m mim,+m,)

Using these amplitudes the spin-averaged transition prob-
ability appearing in Eq. (48) of Sec. IV is

dm,my 3 | T P=f(a?43+b%45)+kA; 4,
hAN

—(cAy+abA)F—dA}
—44,(a®my A;+b%m, 4,), (AS)
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where

2
p

F=4A,—m,A3—m,A,;), a=s—m
b=u—m3, c=asz\+b2mp2+ab(m§+mf\—t) R

d=2c[(mp—mA)2—t] ,

f=(m,+myP?—t, k=2amy—bm,).
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