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A transport theory is developed for description of capture processes in low-energy nuclear col-
lisions. It is based on the picture that a dinuclear molecular complex formed during early stages of
the collision acts as a doorway configuration toward formation of a fully equilibrated compound nu-

cleus, and this complex can decay into open binary channels while it evolves toward a compound
nucleus. The evolution of the dinuclear molecular complex and its decay into binary fragmentation
channels are determined by two coupled transport equations. The formalism, in a local equilibrium

limit, is successfully applied to analyze complex fragment emission and fusion-evaporation data
from collisions of Si+C, Si+N, and Mg+ C.

I. INTRODUCTION

Heavy ion collisions at bombarding energies above
Coulomb barriers exhibit relaxation processes. These re-
laxation processes extend continuously from deep inelas-
tic collision (DIC) all the way to compound nucleus for-
mation (CN). DIC occur in collisions for a wide range of
initial orbital angular momenta, occupying an angular
momentum window between grazing collisions and cap-
ture processes (Fig. I). In collisions with small angular
momenta, the projectile and target interpenetrate
sufficiently to result in a fully equilibrated CN. The tran-
sition between DIC and CN formation takes place
smoothly as a function of the orbital angular momentum.
For a band of angular momenta in the vicinity of l„(crit-
ical angular momentum for capture), collisions lead to
processes which are intermediate between CN formation
and DIC. These intermediate processes are characterized
by complete energy damping and a broad fragment mass
distribution. Measurements of the angular distributions
and the kinetic energies of the fragments indicate that the
colliding nuclei are captured into a dinuclear molecular
complex (DMC) and the observed fragments are emitted
from this intermediate stage before going through CN
formation. ' The long interaction times associated with
the intermediate processes usually lead to the relaxation
of the mass-asymmetry mode all the way to symmetric
fragmentation. In heavier systems, the intermediate pro-
cesses are well established and referred to as fast fission
or quasifission. ' Similar studies are available for a few
light systems (Si+C, Mg+ C, Si+N) and these have been
referred to as orbiting processes. '

Statistical descriptions of nuclear collisions, in the
framework of transport theories, have been quite success-

ful in understanding the reaction mechanism of DIC.
However, these existing transport theories are tailored to
study mostly the scattering processes (noncapture pro-
cesses) and they do not provide a consistent description
for the intermediate processes and CN formation
The intermediate processes involve the formation and
evolution of a DMC and its subsequent decay partially by
fragmentation and partially by CN formation. Hence,
these processes require a consistent description for the
evolution of the DMC and its coupling to the compound
nuclear states as well as the channel states.
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FIG. 1. Typical trajectories of various processes (QE, quasi-
elastic; DIC, deep inelastic; and DMC, dinuclear molecular
complex) in low-energy nuclear collisions for different relative
angular momenta, l.
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In the present work, we develop a transport formalism
for nuclear collisions, based on the picture that a DMC is
formed during the early stages of the collision. ' ' It is
assumed that as a result of the dissipative forces acting
on the relative motion, the colliding ions are trapped into
the pocket of the entrance channel nucleus-nucleus po-
tential and a DMC is formed. This DMC acts as a door-
way configuration towards formation of a fully equilibrat-
ed CN, and it evolves throughout the exchange of nu-
cleons to different dinuclear configurations. At each
stage of its evolution, there is a finite probability for
direct fragmentation into outgoing channels by dynami-
cal and thermal penetration over the interaction barrier.
The doorway states that do not fragment eventually relax
into a CN configuration. The evolution of the DMC to-
wards a fully equilibrated CN and its fragmentation into
binary exit channels are described by two coupled trans-
port equations for the relevant macroscopic and collec-
tive variables of the DMC. The present formalism pro-
vides a consistent statistical description for the intermedi-
ate processes and CN formation. It allows us to calculate
the fragmentation cross section (orbiting yield) and the
fusion cross section taking the effects of the entrance
channel limitations into account.

In Sec. II the derivation of the coupled transport equa-
tions for the evolution of the DMC is presented. In Sec.
III a simple model is developed which allows consistent
calculation of observables for both fusion and orbiting
processes. In Sec. IV the model is applied to the

Si+' C (Refs. 7, and 18—21), Si+' N (Ref. 8), and

Mg+
' C (Refs. 20, 22, and 23) systems. Finally, in Sec.

V, the summary and conclusions are given.

II. COUPLED TRANSPORT EQUATIONS

There exist a number of transport theories describing
the dissipative processes in DIC. ' However, these
theories do not provide a description for the intermediate
processes for which the incoming flux can evolve toward
a fully equilibrated CN or be emitted back into the binary
fragmentation channels. In our description of the cap-
ture processes, the existing transport theories are extend-
ed by including the coupling of the intermediate doorway
states to the compound nuclear states and at the same
time to the binary fragmentation channels.

In the early stages of the collision process, a DMC is
formed as a result of the trapping of the colliding nuclei
in the pocket of the entrance channel nucleus-nucleus po-
tential. It evolves toward a fully equilibrated CN
through formation of intermediate doorway states which
are metastable bound states of the total system embedded
in the continua of the open fragmentation channels.
Then, the time-dependent wave function of the system
can be expanded in terms of a complete set of intermedi-
ate doorway states if') and continuum states of channels
as

(2.1)

and assuming that the channel wave functions and the in-
termediate doorway states are properly orthogonalized,
we obtain a set of coupled equations for the occupation
amplitudes a&(t) and a (t) Th. e occupation amplitudes
for the intermediate doorway states are determined by

(2.3)

where ez is the energy of the state A. , V~„= (PziHig„) is
the coupling between different doorway states, and

V&i =(Pz HiXi ) represent the coupling between door-
way states and channel states. The equations for the oc-
cupation amplitudes of the channel states are given by

iA ai—= g(E;5i;+ Vi;)a;+ g Vj„a„,dt ' (2.4)

where e, and V,,
= (X, i Hi X, ) represent the energies and

the coupling matrix elements between channel states, re-
spectively.

The set of coupled equations (2.3) together with (2.4)
provides a basis for a microscopic treatment of the col-
lision dynamics. A microscopic treatment requires a de-
tailed description of the intermediate doorway states as
well as the coupling between doorway states. Here, we
are interested in a description of the gross properties of
the collision process. Therefore, we restrict ourselves to
a macroscopic treatment within a semiclassical approxi-
mation and discuss the statistical aspects of the collision,
alone. We assume that the intermediate doorway states
if') have a dinuclear structure and are characterized by
a small set of macroscopic variables such as mass and
charge asymmetry defined by the proton and neutron
numbers Z, X of one of the partners, distance between
two centers R, and neck variable cr. The intermediate
doorway states are coupled through a one-body nucleon
exchange mechanism. The DMC formed during the ear-
ly stages of the collision evolves in time populating
different dinuclear configurations by mutual exchange of
nucleons.

In order to derive transport equations for describing
the time evolution of the relevant macroscopic variables,
we follow the usual coarse-graining procedure. ' We
define averages over dinuclear states by dividing the total
space into subspaces. Each subspace contains all the
dinuclear states with the same values of some macroscop-
ic variables D, such as the charge and mass asymmetry
Z, N; the distance between two centers and the corre-
sponding momentum R, P; the excitation energy g; the Z
component of the intrinsic angular momentum M; etc.,
D =

t Z, N, R,P, g, M, . . . I. Accordingly, we define
coarse-grained occupation probabilities of the dinuclear
states,

Hamiltonian for the separated fragments. Inserting the
expansion (2.1) into the time-dependent Schrodinger
equation,

(2.2)

where iX ) represents the channel wave functions of the
binary fragments determined by the eigenfunctions of the

II(D, r) = g a~(r)a ~ (r)
A, ED

(2.5)
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by summing the microscopic probabilities over subspaces.
In a similar fashion, the course-grained fragmentation
probabilities for the channel space are defined as

P(C, t)= g a, (t)a,*(t),
jEc

(2.6)

where C =
t Z, N, R,P, g, M, . . . 'I is a set of macroscopic

variables (similar to that of the DMC) characterizing the
binary fragmentation channels. Using the projection for-
malism of statistical mechanics, the set of equations for

I

the amplitudes ai(t) and at(t) can be transformed into
two sets of coupled transport equations for the course-
grained distribution functions (2.5) and (2.6). The deriva-
tion of transport equations using the projection formal-
ism is given for DIC in Refs. 9 and 10. In the problem
considered here, the procedure is exactly the same, ex-
cept for the fact that, here, we have two sets of macro-
scopic variables, one for the channel space and one for
the DMC. We, therefore, obtain two coupled equations
for the distribution function II(D, t) of the DMC

—II(D, t)= f dr g K (t, r)[p(D)II(D', t r) —p(D—')II(D, t —r)]
0

—f dr +K (t, r)[p(C)II(D, t r) p—(D)P—(C, t —r}]
c

and for the fragmentation probability P ( C, t },

(2.7)

P(C, t) =—f dr g Kcc (t, r)[p(C)P(C', t r) —p—(C')P(C, t —r)]CC

+ dw K tw pCHDt —7 —pDP Ct —7
0

(2.8)

Here p(D) and p(C) are the density of states of the DMC
and the fragmentation channels with fixed values of mac-
roscopic variables D and C, respectively. The collision
kernels Ez&, Kcc, and I(zc describe the coupling be-
tween dinuclear states, the coupling between fragmenta-
tion channels and the coupling between dinuclear states
and channels, respectively. Since we are mainly interest-
ed in the evolution of mass and charge asymmetry, these
transport equations are reduced by integrating over the
collective variables R and P for simplicity. As a result,
the coupling matrix elements, Vi,„(t)=V&„(R),
V&J(t)= V&i(R), and V;(t)= V, (R), in the collision ker-
nels depend on time through the mean value of relative
distance R (t). In Eq. (2.7), the right-hand side consists
of gain terms which correspond to transitions from all
the dinuclear states with D&D' and from all the channel
states into the dinuclear states D (first and fourth terms);
and loss terms which describe transitions from the dinu-
clear states D into the other dinuclear states and the
channel states (second and third terms). The rate of
change of the distribution function II(D, t) is determined
by the balance between the gain terms and the loss terms.
In a similar way, the rate of change of the fragmentation
probability P(C, t) is determined by the balance between
the gain terms due to transitions from all the channels
with C&C' and from all the dinuclear states into the
channels C, and the loss terms due to transitions from the
channels C into the other channels and the dinuclear
states. Equations (2.7) and (2.8) carry memory effects due
to the fact that the collision terms are nonlocal in time.
The changes of the distribution functions P(C, t) and
II(D, t) at time t depend on the past history of the evolu-
tion.

The coupled equations (2.7) and (2.8) are in principle
exact, and they provide a basis for introducing further
approximations. The essential point in deriving a trans-
port equation is based on the assumption that the time

and

X exp[ i (ea ea —)r/fi]+ c.c. ,
—

Kcc(t, r)= (V;(t)V; (t —r))cc1

$2

X exp[ i (ec ec )r—/R]+—cc.
1

Kz)c(t, r)=
2 ( Vzi(t) V (t~—ir})~c

(2.9)

(2.10)

X exp[ i (ez —ec, )r/—fi]+c.c. , (2.11)

where ( ) denotes the averages over the subspaces. In
the weak-coupling limit, the decay times of the collision
kernels (memory time) are determined by the correlation
time v0 of the coupling matrix elements. It is defined by
the supposition that the autocorrelation of the matrix ele-
ments decays like a Gaussian

( V,„(t)V„,(t —r) ) = ( V,„(t)V„,(t) ) exp( —r'/2')
(2.12)

and assumed to be the same for all the matrix elements

I

scales associated with the macroscopic variables and the
collective variables are much longer than the time scale
associated with the intrinsic variables. As a result, the in-
trinsic variables equilibrate fast and remain close to a lo-
cal equilibrium and the reaction exhibits relaxation pro-
cesses. The collision terms in (2.7) and (2.8) can be evalu-
ated explicitly by introducing statistical approximations
for the coupling matrix elements V&„(t), V~;(t), and

V&~(t) Here, .we consider them in a weak-coupling ap-
proximation. In this limit, the collision kernels are given
b ll 12

1
K&& (t) r) =

2 ( Vpp(t) Vq&(t r))~a. —
$2
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P(C, t) Q—I c n(t) .
D

(2.14}

Here the average transition probability between dinuclear
states is given by

&2n.
Wnp'=

2 ( I Vg&(r)l )n~ ro

X exp[ (en —en.—)'ro/2''] (2.15)

and I z c(t), I c n(t) denote the average decay rates
for going from a dinuclear state D to a fragmentation
channel C, and for the inverse process. The decay rates
are given by an average transition probability between
dinuclear states and channel states multiplied by the den-
sity of the final states,

I & c(t)= W c(t)p(C), I c &(t)= W&c(t}p(D},
(2.16)

where the average transition probability is given by

WDc(r)=, & l
I p., (r)l &Dcro

&2m

Xexp[ (sp Ec) ro/2f—i ] . (2.17)

In general, there are additional gain and loss terms in Eq.
(2.14) resulting from channel-channel coupling and these
contributions are neglected here by assuming that the
direct contributions to the binary decays are small.

The coupled transport equations (2.13) and (2.14) pro-
vide a unified description for a wide range of relaxation
processes observed in nuclear collisions. The underlying
reaction mechanism is rather similar to that of preequili-
brium particle emission, as illustrated in Fig. 2. As can
be seen from this figure, the DMC formed during the ear-
ly stages of the collision acts as a doorway state for an
evolution toward formation of a fully equilibrated CN.
The initial DMC evolves in time by exchange of nucleons
and by other excitation mechanisms, and different dinu-

and independent of the macroscopic variables. For the
weak-coupling limit to be valid, the correlation time ~o

should be the smallest of all the characteristic times of
the process. In particular, the correlation time should be
much smaller than the relaxation times r(D), r(C) of the
macroscopic variables, ro « r(D), r( C). Furthermore, in

the weak-coupling limit the memory effects can be
neglected (Markov approximation). "' The time in-

tegrations in Eqs. (2.7) and (2.8) can be done by neglect-
ing the ~ dependencies in the distribution functions and
we obtain two coupled ordinary transport equations for
II(D, t) and P ( C, t),

—H(D, t)= g W, (t)[p(D)H(D', t) —p(D')H(D, t)]d

g) I

+ g [P(C,t)r (t)—H(D, t)r (t)]
C

(2.13)

and

d„P(C,t—)= g H(D, t)I (t)

r
PIE/ii YEIX/ii FIX/z~

FIG. 2. I11ustration of capture processes and compound nu-

cleus formation.

—„H(CN, r)= —H(CN, r) y r,
dt

(2.18)

P( C, I)= H(CN, —E)I
dt

(2.19)

The solution of these equations is trivial, and the decay
probability of the CN into the channel C is given by

peq(C) rcN c g rcN c
C

which is identical to the Hauser-Feshbach formula.

(2.20)

clear configurations are populated as the reaction
proceeds. The transport equation (2.13) describes this
evolution as a relaxation process in the mass-asymmetry
variable and in other macroscopic variables of the DMC.
At every stage of the evolution, the DMC can decay into
open binary channels by dynamical coupling and at later
stages by thermal penetration over the interaction bar-
rier. The decay of the DMC into binary fragments is de-
scribed by the second transport equation (2.14). The frac-
tion of the incoming flux which results in a fully equili-
brated CN (versus the fraction that is emitted back into
binary channels) is determined mainly by the angular
momentum brought into the system. In collisions with
the orbital angular momenta 1„(critical angular momen-
tum for capture), the nucleus-nucleus potential does not
exhibit a pocket. Hence, the DMC cannot populate the
CN and collisions lead to predominantly DIC processes.
On the other hand, in collisions with orbital angular mo-
menta I ~ 1„,the fraction of the incoming flux results in a
CN increases while the fraction emitted back into binary
channels decreases with decreasing I due to the fact that
the pocket in the nucleus-nucleus potential becomes more
and more pronounced. The relative contributions to the
CN formation and the binary fragmentation are deter-
mined by solving the coupled transport equations (2.13)
and (2.14) for each orbital angular momentum. The fully
equilibrated CN can decay by particle emission or by
fission. The decay of the CN is contained as a special
limit of the coupled transport equations (2.13) and (2.14).
At the equilibrium limit, the DMC approaches the CN,
H(D, t)~H(CN, t), then the first term in Eq. (2.13) iden-
tically vanishes. Furthermore, the decay rate I c z also
vanishes, because channels cannot repopulate the CN.
As a result, the coupled transport equations become
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III. ORBITING AND FUSION

In this section, we consider orbiting processes and dis-
cuss the applications of the coupled transport equations
derived in the previous section, to calculate the orbiting
yield and the fusion cross section. As the DMC relaxes
towards to a fully equilibrated CN, it can emit binary
fragments. The fragmentation probability into a specific
channel can be calculated using the solution of the cou-
pled transport equations (2.13) and (2.14),

P(C)= f '"dt y 11(D,t)r, ,(t)
0

X exp —f 'dt' g I'c D(t')
t D

+P,q(C) . (3.1)

p[E —Ui '"(N, Z;R, o )]
II,',(D)=

g p[E —
Ut '"(N, Z;R, o )]

N, Z

(3.2)

Here p is the density of states of the DMC and is calcu-
lated at the minimum of the entrance channel potential
energy, in the sticking limit. The potential energy sur-
face of the DMC (in the sticking limit), as a function of
mass and charge asymmetry (N, Z) and collective vari-
ables (R,o ) (R =distance between centers, cr =neck-
deformation variable) is given by the sum of nuclear,
Coulomb, and rotational energies as

Ut(N, Z;R, o )= V„(N,Z;R, cr)+ Vc(N, Z;R, o )

A' 1 (I +1)+ +Q(N, Z), (3.3)
2r... N, Z;R, o

Here, the first term describes the nonequilibrium frag-
mentation probability from an initial time until a final
time t,„at which the DMC becomes a fully equilibrated
CN. The second term describes the fragmentation proba-
bility from an equilibrated CN and it is given by (2.20).

Depending on the particular processes under con-
sideration, it is useful to incorporate further approxima-
tions in the evaluation of (3.1). Here we consider
specifically the orbiting processes in light systems. Stud-
ies of orbiting processes, for example, Si+C and Si+N
collisions, ' show that the total final kinetic energies of
the emitted fragments are fully relaxed and determined
by the potential and the rotational energies stored in the
DMC. Furthermore, all the fragments have the same
1/sin8 angular distributions (isotropic emission). These
observations indicate that the lifetime of the orbiting
complex is suSciently long and during its lifetime the en-
ergy, the angular momentum, and the mass asymmetry of
the DMC have reached the equilibrium values. In this
case, calculation of the fragmentation probability using
(3.1) can be simplified to a large extent. Assuming that
the fragments are emitted from a long-lived, equilibrated
DMC, the distribution function II(D, t) for each orbital
angular momentum I in Eq. (3.1) can be approximated by
a constrained equilibrium distribution determined by the
potential energy surface of the DMC as

where the rotational energy is evaluated with the total
moment of inertia I„, of the DMC, and Q(N, Z) is the
ground-state Q value of the entrance channel with respect
to the fragmentation (N, Z). Furthermore, we approxi-
mate the decay rates in (3.1) by their values I'D c and
I c D corresponding to the equilibrium shapes of the
DMC with fixed (N, Z) Pe. rforming the time integration,
the binary fragmentation probability for a given orbital
angular momentum I can be expressed as

P, (C)= y II,',(D)r,', y I, ,
D D

(3.4)

A dinuclear state with a mass and charge asymmetry
(N, Z) decays predominantly into channels which have a
similar value of (N, Z) due to a larger overlap between
dinuclear states and channel states. Therefore, the larg-
est contribution to the fragmentation in (3.4) comes from
the decay of DMC with C =D. Retaining only the diago-
nal term in (3.4) and using the fact that the decay rates
are proportional to the final density of states, we obtain
for the fragmentation probability into a channel
C =(N, Z) with angular momentum l, a simple result,

p E —Ut" (N, Z;R, cr)
Pi(N, Z) = II,'q(N, Z)

p[E —Ul '"(N, Z;R, CT )]

maxI

o(N, Z)= g (21+1)P((N,Z),k' i=o
(3.6)

where I,„ is the maximum entrance channel angular
momentum which leads to a trapping of the colliding nu-
clei into a DMC. It is determined from the requirements
that the trajectory of the relative motion must surmount
the entrance channel nucleus-nucleus potential, and
furthermore, the potential energy surface must exhibit a
pocket. Otherwise, the system cannot be trapped long
enough into a DMC and the collision proceeds as a deep
inelastic process. The final total kinetic energy T&(N, Z)
of the emitted fragments for each partial wave I is deter-
mined by the sum of the potential and the rotational en-
ergies at the conditional saddle point,

In obtaining this result, the density of the channel states
is approximated by the density of dinuclear states at the
saddle point (conditional saddle) and the density of dinu-
clear states is calculated at the minimum of the potential
energy surface with fixed (N, Z). The formula (3.5) has a
simple interpretation. It contains two factors: the first
factor II,' (N, Z) gives the probability of finding the DMC
with mass and charge asymmetry (N, Z) and it is calcu-
lated by (3.2). The second factor gives the escape proba-
bility into the fragmentation channel (N, Z) and it is
determined by the ratio of the density of states of the
DMC at the conditional saddle point and at the
minimum of the potential energy surface with fixed
(N, Z).

The observable quantities can be calculated using the
result (3.5) for the fragmentation probability. The total
fragmentation cross section into an exit channel with a
product (N, Z) (orbiting yield) is obtained by summing
over all the partial waves up to an I,„,
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Ti(N, Z)= Uo(N, Z;R„o, )+ fi fl(f1+1)
2I„) N, Z;R„o, (3.7)

Imax

o f =
q g (21 + 1)( 1 P—

( ) .
k I 0

(3.10)

1

T(N, Z)= g (21+ 1 )TI(N, Z)/a(N, Z) .
k I 0

(3.8)

The dinuclear states, which are not fragmented, must
eventually relax into a compound nuclear configuration.
In order to calculate the fusion cross section, detailed in-
formation about the relaxation of the DMC into a CN is
not required. The knowledge of the fragmentation proba-
bility (3.5) allows us to calculate the fusion cross section,
also. What is not fragmented must end up relaxing into a
CN. For each partial wave, the probability for fusion is
determined by 1 —

P&, where PI is the total fragmentation
probability obtained by summing over all possible frag-
mentations,

PI = g PI(N, Z) .
N, Z

(3.9)

Then, the fusion cross section is given as

where I„,~(N, Z;R„cr, ) is the relative moment of inertia
at the saddle point (R„o,) and sticking is assumed, i.e.,
f =I„,(N, Z; R„u, ) /I, „(N,Z;R„o, ).'The potential
energy Uo(N, Z;R, o ) is given by (3.3) with 1=0. The
average kinetic energy of the exit channel can be calculat-
ed as

This result together with (3.6) and (3.8) provide a unified
and consistent description for the fusion and orbiting
processes observed in heavy ion collisions.

IV. APPLICATIONS

We apply the model developed above to describe the
fusion and orbiting data measured for the light systems
28Si+12C 7, 18—21 24Mg+12C 20, 22 —23 and 28Si+ N 8 For
these light systems, we expect that the deformation of the
DMC will not have an important effect. Therefore,
neglecting the neck formation, we represent the equilibri-
um shape of the DMC for fixed (N, Z) by two rigidly ro-
tating spherical nuclei, with a distance R between their
centers. Within this approximation, the fragmentation
probability (3.5) takes the form

p[E —Ui(N, Z;Rs )]

g p[E —UI(N, Z;RM )]
N, Z

(4.1)

where the density of states of the DMC p are evaluated at
the top of the barrier with R =Rz and at the minimum
with R =RM, at the entrance channel potential energy.
The entrance channel potential energy is given by (3.3),
without any neck formation or deformation,
UI(N, Z;R)= UI(N, Z;R, cr =0). For the density of
states, we employ the Fermi gas level density expression,

exp(2Ia [E—UI(N, Z;R) —E (N, Z)]j'~2)
p E —U((N Z;R) =Ci

[E—UI(N, Z;R ) Ep(N, Z)]— (4.2)

where a is the standard global level density parameter
taken as A/8 with A as the total mass number of the
DMC, Ez(N, Z) is a pairing correction, and C& is a con-
stant. In the calculation of the potential energy (3.3), we
chose for the nuclear potential the empirical proximity
potential of Bass. The Q values are obtained from the
mass tables and the moments of inertia are approximated
by their rigid body values. The Coulomb energies are
evaluated as in Ref. 26. The proton and neutron pairing
energies for a nucleus of mass number A are given by
b,„=b, = 12&A MeV. The pairing corrections
E (N, Z) in (4.2) are chosen to be equal to the mass
weighted mean of the pairing energies of the two nuclei
forming the DMC. The density of states for excitation
energies below the pairing correction E (N, Z) are ob-
tained using a quadratic extrapolation. The empirical
Bass potential contains four parameters, (A, B;d„d2),
describing the strengths and ranges of a short-range and
a long-range proximity potential, respectively. These pa-
rameters are determined by a fit to a large amount of
fusion data. Their global values are given by A =0.033,
B =0.0061 in terms of MeV ' fm and d1 =3.3 fm,
d2 =0.65 fm. However, the strength parameters A and B
exhibit large fluctuations up to 50%%uo for different collid-
ing systems. Therefore, we consider A and B as free pa-

I

rameters and adjust them by fitting the kinetic energies of
emitted fragments.

As a first application of the model, we consider the col-
lision of Si+C. Figures 3—5 show the data together with
the results of calculations. The data are shown as solid
triangles, squares, and circles, and the lines are results of
calculations. The maximum angular momentum 1,„(E)
restricting the summation over partial waves in Eqs. (3.6),
(3.8), and (3.10) depends on the bombarding energy and it
increases by one unit as the bombarding energy exceeds
the corresponding barrier height in the effective poten-
tial. As a result, the calculated quantities exhibit discon-
tinuous jumps as a function of bombarding energy. In
Fig. 3, the final kinetic energies of the three strongest
channels C+ Si, N+Al, and 0+Mg in a collision of the
Si+C system are plotted as a function of center of mass
bombarding energy and compared with the measurement.
A good description of the kinetic energy spectra is ob-
tained by taking the strength parameter 3 in the range
between 0.045 and 0.050 and the global values obtained
by Bass for the other parameters. The results of calcu-
lations with A =0.046 (set I) and with A =0.048 (set II)
are shown in part (a) and part (b) of Fig. 3, respectively.
Calculation with either set of parameters provides a good
description for the final kinetic energies for all the chan-
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nels over a broad range of bombarding energies. In Fig.
4, the orbiting cross section for the channels C+Si,
N+Al, and 0+Mg are plotted as a function of bombard-
ing energy and compared with data. Parts (a) and (b) of
the figure show the results of calculations done by set I
and set II, respectively. Calculations reproduce the orbit-
ing cross section for the two strongest channels surpris-
ingly well, but the yield for the N channel is under-
predicted. The available excitation energy in the N chan-
nel is much smaller than the stronger channels. At low
excitation energies Fermi gas expression with global level
density parameters does not work very well and produces
low yield for the N channel. In order to improve the cal-
culations at low energies, a more accurate description of
level densities is required. In Fig. 5, the fusion cross sec-
tion is plotted as a function of bombarding energy and
compared with data. Both calculations done with set I in
part (aj and with set II in part (b) describe the trend seen
in data over a large range of bombarding energy, satura-
tion, and decrease in fusion cross section are correctly
reproduced. However, the parameter set I provides a
better overall description than set II.

As a second application of the model, we consider the

collision of Mg+C nuclei. %'e employ the same parame-
ter sets in the calculations as for the Si+C system. Fig-
ures 6—8 show a comparison of the results of calculations
with the experimental data. Calculations with either set
of parameters provide a good description for the final ki-
netic energies of the orbiting products and for the orbit-
ing cross sections over a wide range of bombarding ener-
gies. The fits can be improved by adjusting the strengths
parameter A of the Bass potential, however this is not
done here. The measured cross sections for the 0 chan-
nel are larger than predicted by the calculation, because
of contributions from the a+0 decay of excited states in
Ne populated in the Ne+0 channel. As seen in Fig. 8,
the calculated fusion cross section deviates from data at
higher bombarding energies. Calculated cross section
saturates around E=30 MeV and decreases for increased
energies, whereas the data increase steadily. The data
measured at Saclay, though, show a tendency to de-
crease at higher energies. These measurements were
done with a Mg beam and provided a better separation of
fusion from other strongly damped processes.

As a third application, we consider the collision of the
Si+N system. For this system, in order to produce the
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FIG. 8. (a) Measured and calculated (set I) fusion cross sec-
tions in Mg+C collisions plotted as functions of bombarding
energy. (b) As in part (a), but with parameter set II.
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set III using pairing energy of heavier partner.

final kinetic energies of emitted fragments, the strength
parameter A is slightly adjusted and taken to be
A =0.040 (set III) and the other parameters remain fixed
to their original values. Figures 9—11 show the results of
calculations and comparison with the experimental data
except the fusion cross section for which experimental
data are not available. As seen from Figs. 9 and 10, the
calculations produce a reasonable description, as for the
previous cases, for the kinetical energies of the emitted
fragments and for the orbiting cross sections of C, N, and
0 channels over a wide range of bombarding energies.
Both experimental and calculated orbiting yields for N
and 0 channels are very close to each other, within a few
millibarns. Small fluctuations in the orbiting yield are
very sensitive to the parameters of the Fermi gas level
density and with global parameters it is very difficult to
reproduce the correct ordering of the orbiting yield in N
and 0 channels. In order to illustrate this point, we use
two different prescriptions to calculate pairing energies
of dinuclear couples: (i) pairing energy of DMC is ap-
proximated by the mass weighted mean pairing energy of
binary fragments and (ii) pairing energy of DMC is ap-
proximated by the pairing energy of the heavier partner.
Figure 10(a) shows the result of calculations with the
mean pairing energies. This prescription does not give
the correct ordering and produces slightly higher yield in
the N channel than the 0 channel. Figure 10(b) shows
the result of calculations with the pairing energies of
heavier partners, which produce the correct ordering for
the yields in N and 0 channels.

V. SUMMARY AND CONCLUSIONS

We develop a transport description for the capture
processes in low-energy nuclear collisions. As a result of
the action of dissipative forces on relative motion, it is as-
sumed that the colliding ions are trapped into the pocket
of entrance channel nucleus-nucleus potential, and a
dinuclear molecular complex is formed. It acts as a door-
way configuration toward formation of a fully equilibrat-
ed compound nuclei. At each stage of evolution, the
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DMC can decay into open binary channels by dynamical
and thermal penetration over the interaction barrier. As-
suming a random matrix model for the relevant coupling
matrix elements, the evolution of the DMC and the frag-
mentation into binary exit channels are described by two
coupled transport equations. The formalism provides a
consistent description for the intermediate processes (or-
biting and fast fission) and for the compound nucleus for-
mation, including the effects of the entrance channel limi-
tations.

The formalism is applied to analyze the orbiting and
fusion processes in the collision of light systems. A fur-
ther approximation is introduced by assuming that the
DMC remains close to a local equilibrium with respect to
the mass-asymmetry mode. As a result, the binary frag-
mentation probability is determined by the available
phase space of the DMC and it can be calculated in terms
of the density of states and the potential energy surface of
the system. In the calculations, we employ the Fermi gas

expression for the density of states and a potential energy
surface in which the nuclear part is determined by a one-
dimensional Bass proximity potential. The model pro-
vides a remarkably good description for the orbiting and
fusion processes observed in the collisions of Si+C,
Si+N, and Mg+C systems.
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