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The n- Ca complex mean field is derived from a dispersive optical-model analysis of the available
experimental cross sections. In this analysis the real part of the mean field contains dispersive con-
tributions which are derived from the imaginary part by means of a dispersion relation. These
dispersive contributions must be added to the Hartree-Fock potential which is assumed to have a
Woods-Saxon shape, with a depth VH(E) that depends exponentially upon energy. The input exper-
imental data are 14 differential cross sections in the energy domain (5.3, 40.0 MeV), five polarization
cross sections in the domain (9.9, 16.9 MeV), and the total cross section in the domain (2.5, 80
MeV). The resulting optical-model potential is an analytic function of energy. It can thus be extra-
polated towards negative energies, where it should be identified with the shell-model potential. This
extrapolation yields good agreement with the experimental single-particle energies in the two
valence shells of Ca. The model also predicts the radial shape and the occupation probabilities of
the single-particle orbits and the spectroscopic factors of the single-particle excitations. In order to
reproduce the experimental energies of the deeply bound 1p and 1s orbits, one must use a linear
rather than an exponential energy dependence of VH(E) at large negative E. It is shown that this is
precisely the behavior expected from the fact that the energy dependence of VH(E) actually
represents the nonlocality of the original microscopic Hartree-Fock field. The model also correctly
predicts the distribution of the single-particle strength of the 1d—', excitation in ' Ca. The calculated
distributions of the 1p strength in '9Ca and of the 1f~z strength in 4'Ca show that the available ex-

perimental information extends over less than half the expected peak, whose energy is thus poorly
known experimentally. In the energy domain (2.5, 9 MeV) the predicted total cross section deviates
from the experimental data; this reflects the fact that at low energy the calculated cross section is
very sensitive to small modifications of the mean field.

I. INTRODUCTION

The "dispersive optical model"' explicitly incorporates
the dispersion relation which connects the real to the
imaginary part of the mean field. Its interest is manifold,
in particular: It reduces the number of adjustable param-
eters in the optical-model analysis, since the real and
imaginary parts of the optical model are inter-related; it
provides an analytic way of extrapolating the real part of
the mean field from positive towards negative energies,
i.e., of calculating the shell-model potential from the
optical-model potential; it includes effects associated with
the coupling of the single-particie degree of freedom to
collective excitations. This couplings gives rise to a
characteristic energy dependence of the potential radius
near the Fermi energy. It yields the occupation probabil-
ities and spectroscopic factors of single-particle excita-
tions and thus provides valuable information on the limi-
tation of the independence particle model.

The dispersive optical-model analysis has been
developed and applies to the n- Pb system in Ref. 1.
The present paper is devoted to the n- Ca system. Our
main motivation is fourfold. (i) In order to demonstrate
the practicability of the dispersive optical-model analysis,
it is necessary to investigate several systems. (ii) The

comparison between the results obtained for Ca and
Pb yields information on the dependence of the mean

field upon mass number and upon neutron excess. (iii)
In Ca, experimental information is available on deeply
bound single-particle states; this provides a test for the
extrapolation of the mean field towards large negative en-
ergies. (iv) We show how spectral functions can be calcu-
lated from the dispersive optical model and compare
them with those derived from analysis of pickup and
knockout reactions.

Our presentation is the following. In Sec. II we briefly
recall the basic ingredients of the dispersive optical-
model analysis. In Sec. III we specify the experimental
cross sections which will be used as input. Section IV is
devoted to the volume (Woods-Saxon shaped) contribu-
tions to the nuclear mean field; in particular we derive
the parametrization of the Hartree-Fock component of
the mean field. The surface-peaked contributions to the
mean field are investigated in Sec. V. The energy depen-
dence of the radius of the real part of the mean field is in-
vestigated in Sec. VI and that of the Hartree-Fock ap-
proximation to the symmetry potential in Sec. VII. In
Sec. VIII we compare the predictions of our dispersive
optical-model potential with the experimental
differential, polarization, and total cross sections. The
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calculated binding energies of the valence single-particle
states are compared with the experimental values in Sec.
IX. Section X is devoted to the extrapolation of our re-
sults towards large negative energies; this will lead us to
study the energy dependence of the depth of the local po-
tential that is equivalent to a nonlocal Percy-Buck mean
field. Section XI contains the calculation of the effective
masses at the Fermi energy of the spectroscopic factors of
single-particle excitations in Ca and 'Ca and of the oc-
cupation probabilities of the single-particle orbits. In
Sec. XII we show how spectral functions can be estimat-
ed from the dispersive optical model, and we compare
our results with the energy distribution of the single-
particle strength obtained from neutron stripping, pickup
and knockout experiments. A possible refinement of the
parametrization of the real and imaginary parts of the
mean field at low energy is discussed in Sec. XIII. Final-
ly, Sec. XIV contains a summary and discussion.

II. DISPERSIVE OPTICAL-MODEL ANALYSIS

Inasmuch as possible we adopt the same notation as in
Ref. 1. The central part of the complex nuclear mean
field is denoted by

Af(r;E)=V(r;E)+i'N(r;E) .

Its real part can be written in the form

V(r;E) =V&(r;E)+AV(r;E),

(2.1)

(2.2)

where Vz(r;E} is the Hartree-Fock and b,V the disper-
sive contributions. The latter is connected to the imagi-
nary potential by the dispersion relation

(2.3)

Here, P denotes a principal value integral. The interest
of the decomposition (2.2) is that EV(r;E) is determined
by the imaginary potential. The remaining Hartree-Fock
component is unknown but is expected to have an
energy-independent Woods-Saxon shape:

V&(r;E}=V&(E)f(Xrr ),
f(X~)=[1+exp(X~)]

X~ ——(r —R~)/a~,

Rz ——r~ A 1/3

(2.4)

(2.5a)

(2.5b)

(2.5c)

Throughout most of the present paper we assume that
the energy dependence of the Hartree-Fock depth is ex-
ponential,

V&(E)= V&(Ez)exp[ —a(E EF)/Vrr(Er)]; —(2.6)

EF is the Fermi energy that will be specified below.
In this dispersive optical model, the real part of the

mean field, therefore, involves only four parameters,
namely V&(EF ), a, r&, and a~. We emphasize that these
four parameters should be sufficient to determine the en-
ergy dependence of V(r;E) in a wide energy domain. In
the present paper we consider neutron energies which

W(r;E')
F (E EF)—(E' —Ep)—

(2.7)

Note that this dispersive contribution is skew symmetric
about the Fermi energy where it vanishes,

V(r;EF)=V~(r;EF) . (2.8)

Ther&fore, one should require that the Hartree-Fock po-
tential reproduces the experimental value of the Fermi
energy, i.e., yields bound ld —', and lf ', single-—particle
states whose energies are symmetric about the Fermi en-
ergy, that we take equal to

E~= —12 MeV . (2.9)

In practice, this requirement determines the potential
depth V~(EF) at the Fermi energy once rz and arr have
been fixed. This reduces to three the number of parame-
ters which appear in the real part of the mean field,
namely rz, a&, and a.

The problem then amounts to simultaneously adjust
these three parameters and the imaginary part 'N(r;E) in
such a way that the experimental differential, polariza-
tion, and total cross sections are fitted by the dispersive
optical-model potential defined by Eqs. (2.1)—(2.6). These
experimental cross sections are specified in the next sec-
tion. The reliability of the dispersive optical-model
analysis is measured by the goodness of the fits to the
cross sections and by its predictions concerning the weak-
ly and deeply bound single-particle states.

III. EXPERIMENTAL CROSS SECTIONS

The open and solid dots in Fig. 1 represent the
differential cross sections that will be considered in our
analysis. At 5.3, 5.9, 6.5, and 7.9 MeV, these dots give
the n-Ca shape elastic cross section: the compound elas-
tic contribution as calculated by Fu ' has been subtract-
ed from the experimental cross sections measured at the
University of Kentucky. Note that the target was natu-
ral Ca (97% Ca). The displayed uncertainties have been
estimated by combining in quadrature the experimental
error with the estimated +20% uncertainty associated
with the evaluation of the compound elastic correction.
Reference 5 also contains cross sections at 2.1 and 3.3
MeV; we do not include them in our input set because at
these energies the compound elastic correction is quite
larger and, moreover, the energy spread of the neutron
beam was too small for averaging over resonances as
would be necessary to apply the optical model.

For energies larger than 9 MeV the compound elastic

range from —80 to +80 MeV.
One practical difficulty in using the dispersion relation

(2.3) is that it involves %'(r;E) at negative energies, for
which little empirical information is available. As in Ref.
1 we make the plausible assumption that "lV(r;E) is sym-
metric about the Fermi energy EF which lies half-way be-
tween the two valence shells. The dispersion relation can
then be written in the following form:

b, V(r; E )= (EF—E)I—'2
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FIG. 2. Analyzing power for n- Ca scattering. The dots
represent experimental values (Sec. III). The solid curves are
least-squares phenomenological optical-model fits, performed
independently at each energy. The dashed lines show the results
of the dispersive optical-model analysis (Sec. VIII). In each case
the spin-orbit coupling is given by Eqs. (3.1a) and (3.lb).
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11.0, 13.9, and 16.9 MeV) and 6 (at 9.9 and 11.9 MeV).
Figure 3 shows the neutron total cross section of natu-

ral calcium, as measured at Oak Ridge National Labora-
tory. "' Experimental values are available at more ener-
gies than shown, but we performed averages over ap-

FIG. 1. Shape elastic part of the n- Ca differential cross sec-
tion at 5.3, 5.9, 6.5, 7.9, 9.9, 11.0, 11.9, 13.9, 16.9, 19.0, 21.7,
25.5, 30.3, and 40.0 MeV. The dots and open circles are experi-
mental values taken from references specified in Sec. III. The
solid curves are phenomenological optical-model least-squares
fits, performed at each energy independently. The dashed lines
are calculated from the dispersive optical model (Sec. VIII). In
each cases, the spin-orbit coupling is given by Eqs. (3.la) and
(3.1b).

3
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contribution can be neglected, and the symbols in Fig. 1

then represent the experimental cross sections. The data
at 9.9 and 11.9 MeV (Ref. 6) and at 13.9 and 16.9 MeV
(Ref. 7) have been measured at Duke University, those at
11.0 MeV (Ref. 8) and 19.0, 21.7, and 25.5 MeV (Ref. 9)
at Ohio University and those at 30.3 and 40.0 MeV (Ref.
10) at Michigan State University.

Figure 2 gathers the neutron analyzing powers ob-
tained at Duke University and reported in Refs. 7 (at

0 &0 20 30 40 50 60 70 80
E (MeV)

FIG. 3. Total n-Ca cross section. The dots are experimental
values (Sec. III). The solid curve has been calculated from the
dispersive optical-model analysis of Secs. IV—VIII and the
dashed curve from the refined model of Sec. XIII~
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propriate energy intervals in order to draw separate dots.
These experimental data are in very good agreement with
Fu's evaluation of earlier measurements which extend up
to 20 MeV, as well as with recent precision measure-
ments' at 35, 40, 50 MeV.

In Sec. VI we shall compare these experimental data
with the predictions of our dispersive optical-model
analysis. In order to evaluate the quality of the agree-
ment that will be reached, we now perform standard phe-
nomenological optical-model fits at each energy indepen-
dently. The spin-orbit coupling is taken equal to

The six remaining parameters ( V„W„r„r,a„a,} were
determined by least-squares fits of the experimental cross
sections associated with neutron energies larger than 8
MeV. For the smaller energies E=5.3, 5.9, 6.5, and 7.9
MeV the number of data points is too small to enable a
reliable determination of these six parameters, and we set
a priori a„=0.70 fm. In the least-squares searches we as-
signed an artificially small +0.3% uncertainty to the to-
tal cross section to make it play a non-negligible role in
the fitting procedure. We also doubled the experimental
uncertainties attached to the analyzing powers, except at
16.9 MeV, since otherwise the differential cross sections
would only have played a minor role in the least-squares
fits.

The results of these phenomenological optical-model
fits are represented by the solid curves in Figs. 1 and 2. It
is noticeable that despite the large number of adjustable
parameters at each energy, the fits are not very good for
scattering angles larger than 100'. This reflects the limi-
tation of the standard optical model for light or medium-
light nuclei. This limitation has also been exhibited by
detailed analysis' ' of the scattering of protons by Ca
for which very accurate and numerous experimental
cross sections are available. A fortiori one should not ex-
pect the dispersive optical model to yield very good fits to
the experimental n- Ca cross sections. Indeed this
dispersive model involves only a few parameters and aims
at reproducing the cross sections at many energies, in ad-
dition to bound-state properties.

V (r;E)=(tr l)(film c) V„f—(X ),r dr
(3.1a)

V„=5.40 MeV, r~ =1.02 fm,

a,o=0.50 fm .
(3.1b)

This coupling is practically identical to that determined
in Ref. 7. It will be adopted throughout the present pa-
per, and we therefore no longer explicitly refer to it.

As usual, the real part of the phenomenological
optical-model potential is assumed to have a Woods-
Saxon shape:

(3.2)V(r;E)=V, (E)f(X„) .

We write the imaginary part as the sum of a volume and
a surface component:

'N(r;E) ='lV„(r;E)+%',(r;E),
%„(r;E) = W„(E)f(X„),
%,(r;E)= W, (E)g(X, ),
g(X, )= —4a, f(X, ) .d

(3.3)

(3.5) A. Fixed-geometry model

Except in Sec. XIII we henceforth use a simple "fixed-
geometry model" in which we assume that the shape pa-
rameters of the Hartree-Fock and of the imaginary com-
ponent of the mean field are independent of energy.
More specifically, we write the imaginary part in the
form (3.3), where the surface absorption is given by Eq.
(3.5) while the volume absorption is now assumed to have
the same Woods-Saxon shape as the Hartree-Fock contri-
bution:

(3.6)

Note that here the radial shape of %V„(r;E) is assumed to
be the same as that of V(r;E). This still leaves seven ad-
justable parameters at each energy, namely the strengths
V„, 8'„, 8', and the shape parameters r„, a„, r„and a, .
As recognized by previous authors, see, e.g. , Ref. 9, the
experimental data are not suScient to accurately deter-
mine all these parameters. In particular, the multiparam-
eter least-squares searches yield volume-absorptive
strengths 8'„which vary from one energy to another in a
somewhat erratic way about zero (positive values of W„
are frequently obtained}. We therefore constrained W„ to
be such that the volume integral per nucleon of SV„(r;E),
i.e. (A =40),

(4.1)'lV„(r;E)= W, (E)f(XH) .

Equations (2.3), (3.3), (3.5), and (4.1) show that in this
fixed geometry model the dispersive contribution has the
following form

(4.2)KV(r;E)=bV„(r;E)+bV, (r;E),
bV„(r;E)=b, V, (E)f(XH ),
bV, (r;E)=EV, (E)g(X, ) .

(4.3)(3.7)

(4.4)is a smooth function of energy, namely

(3 4} IV. VOLUME CONTRIBUTIONS TO THE MEAN FIELD

(E EF)—J~ (E}= B„—
(E EF}+e„— (3.8}

Our motivation for adopting the same radial shape for
'N„as for VH is that the full volume component of
V(r;E) then also has the same radial shape:

8„=130 MeV fm, e„=130 MeV . (3.9)

The convenience of this parametric form has been point-
ed out by Brown and Rho. ' We choose the following pa-
rameter values (see Secs. IV and V):

V, (r;E)=VH(r; E)+b V, (r;E),
V„(r;E)= V„(E)f(XH ),
V, (E)= VH(E}+b V„(E) .

(4.5)

(4.6)

(4.7)
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rH ——1.18 fm, aH ——0.70 fm, (4.8)

The trends emerging from the standard optical-model
fits carried out in Sec. III lead us to adopt the following
numerical values:

F 0 ~ I I ~ T I I-6

Ol

4
c3

r, =1.26 fm, a, =0.60 fm . (4.9) C
O

EF

B. Hartree-Fock parameters

The purpose of the present section is to determine the
depth VH(E) of the Hartree-Fock component, i.e., the
two parameters VH(0) and a, see Eq. (2.6).

We perform least-squares fits to the experimental cross
sections with an optical-model potential whose imaginary
part is given by Eqs. (3.3), (3.5), and (4.1), while the real
part has the same form as in Eqs. (4.4}—(4.7):

0 A

-60

0

)-50

V(r;E) = V„(E)f(XH )+6 V, (E)g(X, ) . (4.10)

p „W„(E')
6 V„(E)=—f, dE',

—~ E' —E (4.11)

since V„(r;E}and 'N, (r;E) have been assumed to have
the same radial shape.

The empirical values of the depth of the Hartree-Fock
potential are then obtained from the difference

VH
——V, —b V, , (4.12)

where V„ is represented by the full dots in Fig. 4(b), while
b V„(E) is calculated from the dispersion relation (4.11)
and is represented by the dashed curve in Fig. 4(a). These
empirical values of VH are represented by the open sym-
bols in Fig. 4(b); the dashed curve in fig. 4(b} is a visual fit
to these open symbols with the exponential law (2.6),

Note that the real part now explicitly includes a surface-
peaked component. In these preliminary least-squares
fits we adjust the parameters V„, EV„R'„, and W, at
each energy separately. We thus require neither that
they be smooth functions of energy nor, relatedly, that
the dispersion relation be satisfied. We set a priori 8'„=0
for all energies smaller than 19 MeV, since the four pa-
rameter searches did not yield reliable values of 8'„ for
these energies. Moreover, the least-squares fits yielded
slightly positive values of W„at E=21.7 MeV
(W„=0.42 MeV) and at E =30.3 MeV ( W„=O.25 MeV),
in which cases we set 8'„=0. The least-squares adjusted
values are represented by the solid dots in Fig. 4.

When the radial shape of lV„(r;E) is fixed according
to Eqs. (4.1}and (4.8}, the parametrization (3.8) and (3.9)
determines a strength W„(E). This function is represent-
ed by the solid curve in Fig. 4(a). It is seen to yield a fair
representation of the trend of the empirical values. This
is one of our reasons for the choice of the parametriza-
tion (3.8) and (3.9) for the volume integral of %V„, the oth-
er reason being related to the requirement that the total
cross section be fitted up to 80 MeV.

Once W„(E) is fixed, the dispersion relation (2.3) deter-
mines the strength b, V, (E) of the dispersive contribution
to the volume component of the real potential. Indeed,
one has

z
-40

-30
-20 -10 0 10 20 30 40

E (Mev)

50

FIG. 4. The solid dots represent the values of the depth of
the imaginary (top) and real (bottom) volume components of the
optical-model potential obtained from the least-squares fits de-
scribed in Sec. IV B. The solid curve (a) shows the Brown-Rho
parametrization of W„(E) specified by Eqs. (3.8), (3.9), (4.1), and
(4.8); the dashed curve (a) gives the corresponding strength
hV, (E) of the volume-dispersive contribution. The open sym-
bols give the empirical value of the depth VH(E) of the
Hartree-Fock potential. The dashed curve (b) is the exponential
parametrization, Eqs. (2.6) and (4.13). The solid curve (b) is ob-
tained by adding AV„(E) to VH(E). The cross indicates the
value of VH(EF ).

where

VH(EF ) = —58.8 MeV, a = —0.55 . (4.13)

The depth at the Fermi energy has been determined by
the requirement that the Hartree-Fock potential should
yield ld —,

' and 1f—,'single-particle energies which are near-
ly symmetric about EF———12 MeV. It is seen that the
exponential law (2.6) and (4.13) gives a fair representation
of the average energy dependence of the empirical
Hartree-Fock depth, except for the four lowest experi-
mental energies, on which we shall return in Sec. XIII.

The solid curve in Fig. 4(b) represents the depth V„(E)
obtained by summing the quantities VH(E) and hV„(E)
which are represented by the dashed curves in Fig. 4.

We henceforth set the central depths V„(E) and W„(E)
of the real and imaginary components equal to the values
represented by the solid curves in Fig. 4. Equations (4.1),
(4.8), and (4.6) then fully determine the volume com-
ponents V„(r;E) and 'N„(r;E) of the real and imaginary
parts of the mean field. We still have to determine the
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strengths b, V, (E) and W, (E) of the surface-peaked com-
ponents. This is performed in the next section.

V. SURFACE-PEAKED CONTRIBUTIONS TO
THE MEAN FIELD

In order to determine the strengths hV, and W, of the
surface contributions, we perform least-squares fits of the
experimental cross sections by adjusting these two pa-
rameters at each energy independently; all the other pa-
rameters are fixed as described in Sec. IV. The resulting
values of W, and 5V, are represented by the solid dots in
Fig. 5; there, the curves are obtained from the following
procedure.

We parametrize the volume integral per nucleon of the
full imaginary part 'N =%V„+"lV, by the expression

(E EF)—
J~(E)= 8—

(E EF) +—e

where

(5.1)

B=130MeVfm, @=15 MeV . (5.2)

-6)
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l f ~ ~
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~ ~ ~ I
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/
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(b)

This parametrization is suggested by the results of the
standard optical-model fits performed in Sec. III and by
the fit of the total cross section up to 80 MeV, see below.
Equations (3.8), (3.9), (5.1), and (5.2) then determine the
volume integral of the surface-peaked absorptive poten-
tial. These integrals of the imaginary components of the
potential are plotted in part of Fig. 6(a); 6(b) gives the
volume integrals of the corresponding dispersive correc-
tions.

Since the geometrical shape of SV, (r;E) is fixed ac-

50 % t ~ 0 0 ~ I I ~ I T

-100
E)

-So

-50

50

50 100 150
E- EF (MeV)

FIG. 6. (a) The energy dependence of the volume integrals
per nucleon of the full ('N, solid curve), volume ('N„short-
dashed line), and surface-peaked 'N„ long-dashed line) com-
ponents of the absorptive potential, as determined by Eqs. (3.8),
{3.9), (5.1), and (5.2). (b) The volume integrals per nucleon of
the corresponding full, volume, and surface-peaked dispersive
corrections, as calculated from the dispersion relation (2.7).

cording to Eqs. (4.4) and (4.9), there exists a one-to-one
correspondence between the value of the volume integral
J~ and that of the strength W, (E), and correspondingly

S

for Ja& (E) and hV, (E}. The curves in Fig. 5 represent
S

the quantities W, (E) and hV, (E) associated with the
volume integrals shown in Fig. 6. It is seen that these
curves fairly well reproduce the overall trend of the
empirical dots. The agreement between the solid curve
and the empirical values of W, mainly reflects the fact
that the parametrization (3.8},(3.9), (5.1), and (5.2) yield a
good representation of the energy dependence of the
imaginary part of the optical-model potential.

The agreement between the predicted solid curve for
EV, (E) and the empirical solid dots is only qualitative.
Several comments are in order. (i} The agreement be-
tween the predicted solid curve for b V, (E) and the
empirical values becomes much more striking when this
comparison is extended to negative energies, as we now
describe. The open symbols in Fig. 5 are located at the
experimental single-particle energies E„IJ (these will be
specified in Sec. IX) and have been obtained in the follow-
ing way. We consider the potential

-30 -20 -10 0 )0 20 30 40 50
E (Mev) V(r;E„I )=V„(E„tj)f(XH.)+b V, (E„t )g(X, ), (5.3)

FIG. 5. The solid dots represent the empirical values of W;
(top) and 6 V, (bottom) obtained from the two-parameter least-
squares fits described in Sec. V. The solid curves correspond to
the volume integrals shown in Fig. 6. The open symbols give
the value of the strength 5 V, (E„» ) of the surface-peaked poten-
tial which is required to reproduce the experimental value E„»
of the single-particle energy, for the ld —,', 2s —,', ld2, lf 2, 2pz,
1f , and 2p —' levels. —

in which V, (E„I )is determined by t. he solid curve in Fig.
4(b), while the shape parameters are given by Eqs. (4.8)
and (4.9}. The open symbols in Fig. 5 represent the
strength EV, (E„tj.) for which the single-particle energy
calculated from V(r;E„& ) coincides with the experimen-
tal value E„& . It is seen that the curve for b V, (E) repro-
duces the trend of the empirical open and solid dots. (ii)
The solid dots located at the lowest scattering energies
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(5.3, 5.9, 6.5, and 7.9 MeV) deviate from the solid curve
for b, V, (E). We recall that the empirical potential cen-
tral depths associated with these energies already had a
peculiar behavior in Fig. 4(b); we return to this low-
energy domain in Sec. XIII. (iii) The calculated b, V, (E)
changes sign at 32 MeV. In that vicinity the radius pa-
rameter of the calculated full potential V(r;E) therefore
becomes equal to that of its Hartree-Fock component,
namely rH ——1.18 fm. Actually this property is at the ori-
gin of our choice of this numerical value for rH. Indeed,
the energy domain in which hV, (E) changes sign is not
very sensitive to the specific parametrization of W, (E);
the phenomenological optical-model fits (performed in
Sec. III or in Ref. 9) to the experimental cross sections in-
dicate that rv is close to 1.18-1.20 fm for E close to 30
MeV.

VI. ENERGY DEPENDENCE OF THE REAL
POTENTIAL

0 -2

a (o)
0 IVleV

Equation (4.2) expresses the dispersive contribution
b,V as the sum of a Woods-Saxon shape component hV„
and a surface-peaked component b, V, . These three
quantities are represented in Fig. 7. The behavior of
b, V„(r;E) and of bV, (r;E) can be understood from
their volume integral shown in Fig. 6(b). As the neutron
energy increases from zero to 100 MeV the depth of the

volume contribution increases; the surface-peaked contri-
bution is attractive for E & 32 MeV and then becomes
repulsive.

Since the radial shape of the dispersive contribution
depends upon energy, the radial shape of the full poten-
tial V(r;E) is also energy dependent, although that of its
Hartree-Fock component VH(r;E) is constant. In order
to evaluate the energy dependence of the potential radius
we proceed as follows. We first calculate the volume in-
tegral per nucleon J~(E) of V(r;E); this quantity is
represented by the solid curve in Fig. 8. We then assume
that V(r;E) has a Woods-Saxon shape, Eq. (3.2), with a
depth V„(E) given by the solid curve in Fig. 4(b) and with
a diffuseness equal to

a„=aH ——0.70 fm . (6.1)

We checked that these assumptions are quite accurate.
From the values of Jz(E), V„(E), and a„, one can then
calculate the energy dependence of the radius parameter
r„. The result is represented by the solid curve in Fig. 9,
in which the crosses and dots are empirical values. The
crosses are obtained from least-squares fits which involve
five adjustable parameters, namely V„, r„, 8'„r„and a,
[see Eqs. (3.2)-(3.9)], while the dots result from searches
which only involve the same two adjustable parameters as
the solid dots in Fig. 5(b), namely 8', and 6 V, . Note that
at the four lowest scattering energies (5.3, 5.9, 6.5, 7.9
MeV) the solid dots in Fig. 9 fall considerably below the
crosses. This mainly refiects the fact that at low energy
the shape parameters r„a, of the surface-peaked absorp-
tion display some energy dependence: The phenomeno-
logical fits performed in Sec. III indeed indicate that at
low energy these parameters average about r, =1.37 fm,
a, =0.30 fm in contrast to the approximation made in
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FIG. 7. (a), (b), and (c) the radial dependence of the disper-
sive contribution for neutron energies equal to 0, 20, and 40
MeV, respectively. In each case, the long-dashed line represents
the Woods-Saxon shape component AV„ the short-dashed line
the surface-peaked component EV„and the solid curve their
sum hV.

FIG. 8. Energy dependence of the volume integral per nu-
cleon of the real potential (solid curve) and of its Hartree-Fock
component (dashed line). The dots represent empirical values
obtained by summing the volume and surface terms which cor-
respond, respectively, to the solid curve in Fig. 4(b) and to the
dots in Fig. 5(b).
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could possibly be estimated in the framework of nuclear-
matter calculations.

%'e first notice that the radius parameter of the neu-
tron Hartree-Fock potential is smaller in Ca (r& ——1. 18
fm) than in Pb (re ——l.24 fm, see Ref. 1). This
difference mainly reffects the dependence of the density
radius upon mass number. Indeed, for A ~ 40 the density
distribution p(r) approximately has a Woods-Saxon shape
with the following radius parameter

f.35 ~ ~ r ~ I e I ~ F
'
~ I I I ~ I ~

1.30

1.25

L

1.20

r =0.97+0.0206A ' fm .f.t5 (7.1)

This yields r =1.05 fm for Ca and r =1.10 fm for
A =208. Hence the radius parameter associated with the
nuclear density increases by approximately 0.05 fm when
A increases from 40 to 208. This is in keeping with the
0.06-fm increase of rz found in our analysis.

We now turn to the difference between the depths of
the Hartree-Pock potentials for neutrons in Ca and

Pb. The main origin of this difference is twofold,
namely (i) the symmetry potential causes the absolute
value of the depth to decrease with increasing neutron ex-
cess; (ii) the central density po tends to decrease with in-
creasing A. Because of the density dependence of the
nucleon-nucleon effective interaction this may lead to a
decrease of the potential depth with increasing mass
number. Since on the average neutron excess increases
with mass number the effects (i} and (ii) both tend to de-
crease the depth when A increases. Here we shall neglect
effect (ii) because it is expected to be small for mass num-
bers A & 40. However, one should keep in mind that this
neglect implies that the depth of the Hartree-Pock sym-
metry potential that we shall calculate is likely to be
overestimated.

We denote by g the asymmetry coefficient in Pb:

I0 ~ ~ ~ ~ I ~ ~ ~ ~ I 4 i s ~ I ~ 4 ~ ~ I I 4 s i I i ~ ~ ~ I ~ 4

-20 -10 0 10 20 30 40 50
E (MeV)

FIG. 9. Energy dependence of the radius parameter of the
real potential well. The dashed horizontal line corresponds to
the radius parameter rz ——1.18 fm of the Hartree-Pock poten-
tial. The solid curve and the dots represent the predicted and
empirical radius parameter of a Wood-Saxon potential with a
diffuseness a„=0.70 fm, a depth given by the solid curve in Fig.
4(b), and a volume integral represented by, respectively, the
solid curve and the dots in Fig. 8. The crosses are empirical
values obtained from phenomenological optical-model analyses
similar to those described in Sec. III, except that the diffuseness

a„of the real and imaginary Woods-Saxon shaped contributions
was set equal to 0.70 fm.

=0.21 .X —Z
A

I

(7.2)

In the local-momentum approximation, the depth of the
symmetry potential is given by the following expression:

gVi (E)= Vn [E+ ,'gVi (E)] Vii—'[E——,'i}V—, (E)] .

(7.3)
VII. COMPARISON BETAKEN THE n- Cs AND

THK n zosPb MEAN FIELDS The energy shifts which appear on the right-hand side of
Eq. (7.3) essentially take into account the difference be-
tween the Fermi energies in Ca and in Pb, respective-
ly. Accordingly, it is convenient to measure the energies
from the Fermi energy ' and to replace Eqs. (7.3) by the
following prescription:

The main purpose of the present section is to compare
the present n- Ca mean field, Vc,(r;E), with the n- Pb
mean field, Vpb(r;E), which has been constructed in Ref.
1.

il U i (E EF )= U~ (E E—F ) U~'(E E—F}, —(7.4)—The dispersive contribution to the mean field is due to
the coupling of the neutron to the excited states of the
core. This coupling is expected to vary from one nucleus
to the other in a way which is inffuenced by nuclear dy-
namics and cannot be expressed as a simple function of
mass number or neutron excess. This is why here we
shall only consider the Hartree-Fock component of the
mean field. We recall that by definition this component is
not much inffuenced by the coupling of the neutron to
low-lying core excitations. Accordingly, it is expected to
vary smoothly with mass number and neutron excess and

where

U~ (E EF)= Vga (E EF ), — —

Ue (E EF)= Va~(E —EF ) . —
(7.5a)

(7.5b)

Equations (2.6) and (4.13) yield (all energies in MeV}

U~'(E EF ) = —58.8 exp[ ——0.55(E EF )/58. 8], —

(7.6a}

Eq. (4.9). We return to this point in Sec. XIII.
In conclusion the radius parameter r„obtained from

the five-parameter phenomenological optical-model fits
suggest that the potential radius decreases with increas-
ing energy in the domain E & 5 MeV. A similar decrease
had been pointed out in the case of the scattering of neu-
trons by Pb. ' ' In that as well as in the present case
this decrease is in keeping with the energy dependence of
the surface-peaked dispersive contribution. Physically,
it arises from the decreasing importance of the coupling
of the incoming nucleon-to-surface excitations of the tar-
get.
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Figure 10(a) shows the Hartree-Fock approximation to
the depth of the symmetry potential as obtained from
Eqs. (7.4) —(7.6b). These values are in semiquantitative
agreement with those recently derived from a compar-
ison between the Hartree-Fock contributions to the n-

Pb and p- Pb mean fields; a comparison with phe-
nomenological values can be found in Ref. 20. We recall
that the result shown in Fig. 10(a) is likely to be an
overestimate because the central density is probably
somewhat larger in Ca than in Pb. Furthermore our
estimate is somewhat sensitive to the shape parameters of
the Hartree-Fock potential. For instance, if the adopted
value of aH in Pb is increased from 0.68 to 0.70 fm, the
radius parameter rH decreases from 1.24 to 1.225 fm and
the calculated U, decreases by about 10%.

In view of this sensitivity of the calculated symmetry
potential depth upon the geometrical shape parameters
one might consider the volume integral per nucleon of
the symmetry potential as approximated by [see Eq. (7.4)]

J) (E Er)=JH—(E Er) JH—'(E —Ep) . —(7.7)

This quantity is plotted in Fig. 10(b). It is also probably
an overestimate. The amount of overestimate is likely to
be larger than in the case of the depth of the symmetry
potential because, even in the absence of any isovector
component in the mean field, its volume integral per nu-
cleon decreases with increasing mass number A since the
radius parameter decreases with A.

The depth show in Fig. 10(a} is thus likely to be more
meaningful than the volume integral per nucleon plotted
in Fig. 10(b). In both cases, however, the results should
be considered as crude estimates. We emphasize that the
diSculties alluded to above also mar any phenomenologi-
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FIG. 10. Central depth (top) and volume integral per nucleon
(bottom) of the symmetry potential in the Hartree-Fock approx-
imation, as calculated from Eqs. (4.8), (7.4), (7.6a), and ('7.6b).

while Eq. (3.5a) of Ref. 1 gives

UH (E E—~)= —46.4exp[ —0.31(E E—~)I46.4] .

(7.6b)

cal use of the symmetry potential to evaluate the varia-
tion of the mean field with mass number and neutron ex-
cess. In turn these difticulties are also present when one
tries to define theoretically a symmetry potential by con-
sidering the modification of the microscopic mean field
with the number of neutrons and protons in the target.

VIII. COMPARISON WITH THE EXPERIMENTAL
CROSS SECTIONS

In the present section we compare the cross sections
predicted by our dispersive optical-model potential with
the experimental cross sections. The imaginary part of
the potentials is specified by the shape parameters of Eqs.
(4.8) and (4.9) and by the strengths represented by the
solid curves in Figs. 4(a) and 5(a). The real part of the
potential is given by the shape parameters of Eqs. (4.8)
and (4.9} and by the strengths shown by the solid curves
in Figs. 4(b) and 5(b).

The predicted shape elastic differential cross sections
are represented by the dashed curves in Fig. 1. The
overall agreement between the calculated and experimen-
tal differential cross sections is similar to that obtained
from phenomenological optical-model potentials which
depend smoothly upon energy. ' However, this agree-
ment is more meaningful in the present case, for the fol-
lowing two main reasons. (i) Our analysis involves fewer
parameters than the phenomenological ones. Indeed, the
dispersive contribution to the real part of the potential is
entirely determined by the imaginary part. The adjust-
able parameters in the real part of the potential are essen-
tially VH(Er), rH, and a (Sec. IV). Among these, rH is
determined by the radius of the phenomenological real
potential near 30 MeV (Sec. V). The depth VH(Ez) is
determined by the requirement that the Fermi energy be
reproduced, and a by the depth of the phenomenological
real part near 30 MeV. Therefore very little flexibility ex-
ists for the real potential once the imaginary potential is
fixed. (ii) One essential diff'erence between the present
dispersive optical-model analysis and phenomenological
optical-model fits is that here the real part is required to
reproduce the Fermi energy when extrapolated towards
negative energies. This requirement renders the extract-
ed potential much more meaningful from the physical
point of view; it also drastically reduces the freedom
when searching for optimal fits to the experimental cross
sections. For instance, the Hartree-Fock potential of
Ref. 25 was adjusted to the scattering cross sections only
and yields —7.3 MeV for the Fermi energy instead of
—12 MeV which is the experimental value.

The predicted analyzing powers are represented by the
dashed curves in Fig. 2. Their agreement with the experi-
mental values is quite good at all energies. This is partic-
ularly remarkable. Indeed, phenomenological fits with a
smoothly energy-dependent optical-model potential do
not yield good fits to the analyzing powers unless one "in-
cludes some physically unrealistic parameters for the
spin-orbit potential. '* More specifically, good phenome-
nological fits require the introduction of an imaginary
part in the spin-orbit potential, and the sign of this imagi-
nary part is at variance with theoretical expectations as
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well as with empirical evidence from p- Ca analyzing
powers at higher energies. Here we have obtained good
fits to the analyzing powers with a purely real spin-orbit
coupling, Eqs. (3.1a) and (3.1b). This success is due to the
existence of a surface-peaked component in the dispersive
contribution to the real potential.

The predicted total cross section is represented by the
solid curve in Fig. 3. Its agreement with the experimen-
tal values is very good in the energy domain 10 &E & 80
MeV. However, the model overestimates by about 5%%uo

the total cross section in the domain 2 &E & 9 MeV. This
disagreement is not unexpected. Indeed it should be kept
in mind that at low energy the total cross section is dom-
inated by very few partial waves, in the present case by
the orbital angular momenta I = 1 and 2; this is exhibited
in Fig. 11. In our dispersive optical-model analysis it is
assumed that the imaginary part of the mean field is in-
dependent of the orbital angular momentum. This is an
approximation. Our parametrization of "Wr;E) might
be good on the average but sotnewhat inaccurate for I =1
or I =2. Hence, it is not surprising that the total cross
section at low energy is not accurately predicted by our
analysis because the latter implicitly involves an average
over partial waves. This average description may be
somewhat inaccurate for observables that are particularly
sensitive to very few partial waves. Another possible in-
terpretation of the deviation of the predicted from the ex-
perimental total cross section below 9 MeV is that the
shape parameters (4.9) of the surface-peaked absorption
'N, (r;E) may become inappropriate at low energy; this
will be considered in Sec. XIII.
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ergies. In other words it provides a way of constructing
the shell-model potential from the analytic continuation
of the optical-model potential. The present section is de-
voted to the comparison between the predicted and ex-
perimental energies of the valence single-particle states,
i.e., of the levels which belong to the (2s-Id) and (2p-If )

valence shells.
The lf—'„2p—,', 2p —,', and lf—,

' single-particle energies

E„I & EF have been measured by means of the
Ca(d, p) 'Ca stripping reaction. The ld —'„2s—,', and

1d—', single-particle energies E„» & EF have been obtained
from the Ca(d, t ) Ca pickup reaction. These experi-
mental values are plotted in the column labeled Expt. in
Fig. 12, in which the other columns contain energies cal-
culated in, respectively, the Hartree-Fock potential
VH(r;E), the full real potential VH(r;E)+bV(r;E),
and the energy-independent potential VH(r;EF). The
hatched areas indicate that the 11—,

' and lf—,
' single-

particle strengths are spread; this spreading will be dis-
cussed in Sec. XII.

IX. ENERGIES OF THE VALENCE
SINGLE-PARTICLE STATES

One of the main interests of the dispersive optical-
model analysis is to enable the extrapolation of the real
part of the mean field from positive towards negative en-
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FIG. 11. Contribution to the total cross section of the partial
waves with orbital angular momentum 1=0 to 8. The solid
curves are associated with even and the dashed lines with odd
values of 1. Each curve represents the sum of the contributions
associated with the total angular momenta j = I + ~

and
1

2

FIG. 12. Energies of the valence neutron single-particle
states in Ca. The column labeled Expt. contains experimental
values taken from Ref. 26 in the case of particle states and from
Ref. 27 in. the case of hole states. The diagrams labeled VH and
VH+hV give the energies calculated from the Hartree-Fock
potential and from the real part of the full mean 6eld, respec-
tively. The column labeled V(EF) contains the energies com-
puted from the energy-independent potential VH(r;EF). The
dashed horizontal lines represent the centroid energies of the
particle and hole shells, Eqs. (9.1a) and (9.1b). The hatchings in
the central two diagrams represent the domains over which the
Id& and lf 2

single-particle strengths are spread (Sec. XII); in

the case of the lf ~ strength in the Expt column, th. e hatching
has been terminated at —1.6 MeV to indicate the upper bound-
ary of the experimental measurements (Ref. 26). The spin-orbit
coupling is given by Eqs. (3.1a) and (3.1b).
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(Eh &= g(2j+1)E„ijlg(2j+1), (9.1b)

where uno and occ respectively refer to the subshells of
the normally unoccupied (E„i & EF ) and occupied

(E„ij &EF) valence shells. These centroid energies are
represented by dashed horizontal lines in Fig. 12. The
particle-hole gap is measured by the difference

(9.2)

In the Hartree-Fock approximation the particle-hole gap
is too large; within a given shell, the subshell energies are
furthermore spread out too much relative to the experi-
mental spectrum. As a matter of fact no lf—,

' level is

bound in the Hartree-Fock approximation for which
(E~ & is thus ill defined and is not shown in the left-hand
column of Fig. 12. In contrast, the valence single-particle
energies calculated from the full potential are in quite
good agreement with the measured spectrum. We insist
that this is achieved without adjusting any parameter. In
our construction of the mean field the sole step at which a
negative energy appeared was when we chose VH(E~) in
such a way that in the Hartree-Fock approximation the
energies E»7/2 and E,d3/2 are approximately symmetric
about the experimental Fermi energy EF———12 MeV.

Near the Fermi energy, the addition of b,V(r;E) to
VH(r;E) has the following two main effects. (i) It de-
creases the energy dependence of the depth of the poten-
tial, see Fig. 4(b). (ii) It increases the potential radius for
particle states (E„i & EF ) and decreases it for hole states
(E„, &EF), see Fig. 9. Both effects contribute to make
the full potential more attractive than the Hartree-Fock
contribution for particle states and less attractive for hole
states. The two effects thus both tend to decrease the
particle-hole energy gap. The quantitative nature of the
agreement between the calculated and the measured
single-particle spectrum indicates that the predicted
dispersive contribution has a realistic radial and energy
dependence.

The two columns on the right-hand side of Fig. 12
show that a passable agreement exists between the experi-
mental valence single-particle spectrum and that calculat-
ed from the static potential VH(r;E~). Here, the word
"static" refers to the fact that the potential depth and
shape are independent of energy, as is the case for poten-
tials used in many spectroscopic calculations. We note,
however, that the agreement between the two columns on
the right-hand side of Fig. 12 is fortuitous. Indeed, the
compression of the spectrum of VH(r;Ez) relative to
that of VH(r;E) is entirely due to the suppression of the
energy dependence of the Hartree-Fock potential depth.
In reality, most of the compression of the Hartree-Fock
spectrum arises from the energy dependence of the poten-
tial radius near the Fermi energy. Consequently, one
should not expect a static potential to correctly repro-
duce the radial shape of valence single-particle orbits.

The location of a shell is conveniently characterized by
its centroid energy, namely

(9.1a)

X. DEEPLY BOUND SINGLE-PARTICLE STATES

In the present section we extrapolate the dispersive
mean field down to large negative energies ( —80&E
& —20 MeV) where deeply bound ls and lp single-
particle orbits are expected. At these large negative ener-
gies the exponential parametrization (2.6) of VH(E) be-
comes unreliable; we discuss what type of energy depen-
dence emerges from the fact that the energy dependence
of our Hartree-Fock potential VH(r;E) originates from
the nonlocality of the microscopic Hartree-Fock mean
field.

Little experimental information is available on the
deeply bound neutron single-particle states in Ca. In
the Ca(p, pn) Ca neutron knockout reaction a long tail
in the neutron spectrum has been observed from —43 to
about —30 MeV and has been ascribed to the 1p shell.
No peak appears in this broad distribution of 1p strength.
We argue below that this should be ascribed to the fact
that the peak is located near the lower end of the experi-
mental range.

In the valence shells of Ca the neutron and proton
single energies are shifted with respect to one another by
the same amount, which can be identified with the aver-
age Coulomb energy. More generally, the excitation en-
ergies are practically equal in Ca as in K. Therefore,
it is quite reasonable to assume that the distributions of
the 1p and 1s strengths are approximately the same in

Ca as in K. In the latter case these strengths have
been extracted from analyses of the Ca(p, 2p) and

Ca(e, e'p ) reactions; a survey is given in Table X of Ref.
29. Here we adopt the proton separation energies ob-
tained by Nakamura et al. from the Ca(e, e'p) reac-
tion. We combine them with the difference between the
proton and neutron separation energies in Ca to obtain
the following estimates for the energies of the 1p and 1s
neutron shells in Ca, i.e., for the energies at which the
corresponding distributions of single-particle strengths
are expected to be maximum:

E& ———42. 3 MeV, E„=—66.3 MeV . (10.1)

The uncertainties on these numbers may be as large as 5
to 10 MeV. It should also be kept in mind that the 1s
and 1p single-particle strengths are spread over a wide
energy domain. This spreading will be discussed in Sec.
XII.

We now compare the observed energies (10.1) with the
predictions of our model. The 1p—', and 1p—,

' levels in our
extrapolated potential V(r;E) lie at —49. 8 and —43.2
MeV, respectively. Their centroid is thus equal to
(E, & = —47.6 MeV. The fact that this predicted bind-
ing is larger than the empirical one suggests that the ex-
trapolated potential is too attractive at large negative en-
ergies. This is quite apparent for the deeper 1s single-
particle state, whose predicted energy turns out to be
about —250 MeV. This very large overbinding is related
to the fact that the exponential parametrization of Eqs.
(2.6) and (4.13) leads to an exponential divergence of the
Hartree-Fock depth VH(E) when E tends towards minus
infinity. The exponential parametrization (2.6) is thus un-
realistic at large negative energies. Below we argue that a
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linear energy dependence is more appropriate for energies
smaller than the Fermi energy.

We first use the following approach to search a more
realistic extrapolation of the Hartree-Fock depth towards
large negative energies. We retain the same dispersive
correction b,V(r;E) and the same radial shape for the
Hartree-Fock potential as in the previous sections. We
then adjust the depth of the Hartree-Fock potential in
such a way that the full potential V(r;E„IJ ) has a bound
state at the experimental single-particle energy E„&~. We
turn off the spin-orbit coupling in the case of the lp shell
since the experimental results combine the 1p—,

' and 1p—,
'

single-particle strengths. Our results are represented by
the solid dots in Fig. 13. In the case of the 1s and 1p
shells, the calculated Hartree-Fock depths are equal to
—88.8 and —75.5 MeV, respectively. They lie below the
long-dashed curve which represents the exponential pa-
rametrization of Eqs. (2.6) and (4.13). As a matter of
fact, they are extremely close to the linear extrapolation

VH(E) = —58.8+0.55(E Ep)— (10.2)

Vpa(r r') =Vox P exp( —
~

r —r'
~

/P ) (10.3)

P is the range of nonlocality. The index PB refers to the
fact that, in nuclei, this type of nonlocality has been con-
sidered by Percy and Buck. One can use the following
procedure for constructing a local energy-dependent po-
tential which it approximately equivalent to the nonlocal
operator (10.3) in the sense that it approximately predicts
the same scattering phase shifts and bound single-
particle energies. We henceforth only consider the nu-
clear center (r =0). The Fourier transform of the func-
tion (10.3) over the nonlocality variable

~

r —r'
~

is given
by

which is represented by the short-dashed curve in Fig. 13.
Note that at the Fermi energy the linear function (10.2)
has the same value and slope as the exponential parame-
trization, (2.6) and (4.13).

From a phenomenological point of view, it therefore
appears preferable to approximate the energy dependence
of the Hartree-Fock depth by a linear function in the
domain E &Ez and by an exponential function in the
domain E&Ez. The difference between these two pa-
rametrizations is negligible in the domain of the valence
single-particle energies, namely

~

E Ep
~

& 10 M—ev. We
now show that these phenomenological features are in
keeping with the fact that the energy dependence of our
local Hartree-Fock potential actually derives from the
nonlocality of the original microscopic Hartree-Fock
mean field.

In the dispersive optical model, the Hartree-Fock
mean field is a nonlocal energy-independent operator. '

Nuclear-matter calculations indicate that in a uniform
medium the nonlocality form factor approximately has a
Gaussian shape, see, e.g., Fig. 32 of Ref. 32:
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by the following energy-momentum relation:

E=fi k /2m+Vpn(k ) .

This defines a function k (E). The quantity

(10.5)

Vpa(E) =Vpa[k (E)]

=Voexp — [E—
Vpa (E)]

mph

22 (10.6)

is the depth of the energy-dependent local potential
which is approximately equivalent to the nonlocal opera-
tor (10.3).

The quantity Vpa(E) involves two parameters, namely
a strength Vo and a nonlocality range p. Here we take

Vo= —130 MeV, P=1.19 fm . (10.7a)

These values are chosen in such a way that Vpn(E) is
close to the exponential parametrization of Eqs. (2.6) and
(4.13) in the energy domain Ep & E & 40 MeV. Equations
(10.6) and (10.7a) yield

Vpa( Ep ) = —58.8 MeV,
(10.7b)

FIG. 13. Energy dependence of the depth of the Hartree-
Fock potential. The open symbols are the same as in Fig. 4(b).
The solid dots are located at the experimental single-particle en-

ergies; they represent Hartree-Fock depths adjusted in such a
way that the full potential has a bound state at the observed
single-particle energy, retaining the same dispersive correction
as in Secs. IV and V (the spin-orbit coupling has been turned off
in the case of the 1p shell). The long-dashed curve is the same
as in Fig. 4(b): It represents the exponential parametrization of
Eqs. (2.6), (2.9), and (4.13). The short-dashed straight line has
the same value and slope as the long-dashed curve at the Fermi
energy EF ———12 MeU. The solid curve represents the depth of
a local potential equivalent to a nonlocal field with a Perey-
Buck-type nonlocality specified by Eqs. (10.6), (10.7a), and
(10.7b).

Vpa(k )=Voexp( ——,'P k ) . (10.4) d
VpB(E) =0.50,

The quantity haik can be identified with the nucleon
momentum at the nuclear center. In the local momen-
tum approximation it is related to the nucleon energy E

E =EF

which should be compared with Eqs. (4.13). The corre-
sponding Percy-Buck-type depth is represented by the
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solid curve in Fig. 13. It is practically equal to the linear
parametrization of Eq. (10.2) for E &Er and to the ex-
ponential parametrization of Eqs. (2.6) and (4.13) for
E )E~. It very closely follows the empirical solid and
open symbols. We note that the nonlocality range ob-
tained here is similar to the value (0.85 fm) adopted by
Percy and Buck in their original study.

In conclusion, our previous phenornenological findings
for the energy dependence of the depth of the Hartree-
Fock potential are in agreement with the nonlocality of
the original microscopic Hartree-Fock mean field. The
Percy-Buck type of nonlocality provides a realistic
description of this energy dependence.
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XI. EFFECTIVE MASSES, OCCUPANCIES,
AND SPECTROSCOPIC FACTORS

A. EfFective masses

The effective mass m "(r;E) is defined as follows:

m'(r;E)lm =1— V(r;E) .
d

It describes the energy dependence of the real part of the
mean field. In the Hartree-Fock approximation it be-
comes equal to

mH(r;E)Im =1— VH(r;E) .
d (11.2)

The difference between m' and mH is due to the energy
dependence of the dispersive correction, which is charac-
terized by the E mass m:

m(r;E)/m =1— EV(r;E) . (11.3)

The long-dashed curve in Fig. 14 represents the
Hartree-Fock effective mass at the Fermi energy. Note
that the quantity [1—mH(r;E)/m] has a Woods-Saxon
shape at all energies since [Eq. (2.4)]

1 mH(r;E)l—m =f(XH) Vz(E) . (11.4)

At the Fermi energy and at the nuclear center the param-
eter a of Eq. (4.13) yields

mH(0;Ez)/m =0.45 . (11.5)

This is close to the effective mass associated with the
Skyrme-IV effective nucleon-nucleon interaction (0.47,
see Ref. 34) but is sizeably smaller than the effective mass
of the Skyrme-M interaction (0.79, see Ref. 35). The
latter is usually considered as more realistic because it
yields better agreement with a number of empirical nu-
clear properties. One must, however, keep in mind that
the Hartree-Fock potential determined in the present
work should not be expected to yield good agreement
with most of these properties. Indeed, it has to be supple-
mented by dispersive corrections. In contrast, usual
Hartree-Fock fields are derived from phenomenological
nucleon-nucleon interactions whose parameters are ad-
justed to yield good agreement with several nuclear prop-
erties in the Hartree-Fock approximation, i.e., without

FIG. 14. Radial dependence of the quantities m *(r;E+)Im
(short-dashed line), mH (r;E+)Im (long-dashed curve) and
m(r;E+)Im (solid curve).

taking into account dispersive corrections (or equivalent-
ly without taking into account higher-order corrections
in an expansion in powers of the strength of the effective
nucleon-nucleon interaction).

The solid curve in Fig. 14 represents the radial depen-
dence of the E mass at the Fermi energy. It presents a
peak at the nuclear surface. This peak corresponds to the
fact that the energy dependence of b, V, (r;E) is particu-
larly large for r=R, and E close to E~ [Fig. 5(b}]. It
rejects the coupling of the single-particle state to the
low-lying surface excitations of the Ca core.

The short-dashed curve in Fig. 14 gives the radial
dependence of the full effective mass at the Fermi energy.
At the nuclear center one has

m'(0;E~)/m =0.56 . (11.6)

B. Single-particle wave functions

We call u„ij.(r}=u„ij(r;E„lj) the radial part of the nor-
malized bound eigenstates of V(r;E). In order to ap-
proximately take into account the fact that the original
microscopic mean field is nonlocal, one should multiply
these wave functions by the "Percy damping factor, " '

namely by

+ (r iEgiJ ) = [mH(r iE„IJ)/m] (11.7a)

In the remainder of the present section we use the linear
approximation (10.2), which is quite accurate for negative
energies. The Percy damping factor is then independent

The difference between this value and its Hartree-Fock
approximation [0.45, Eq. (11.5)] reminds one that the
latter should be supplemented by dispersive corrections
before being compared with empirical quantities. More-
over, the radial shape of m '(r;Er ) presents a peak near
the nuclear surface, in contrast to the effective mass asso-
ciated with phenomenological mean-field approxima-
tions. The peaking of m (r;EF) for r=R, sizeably
enhances the calculated value of the nuclear density pa-
rameter and brings it in good agreement with the empiri-
cal value.
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TABLE I. Calculated energy, root-mean-square radius, occu-
pation probability, and spectroscopic strength of the neutron
single-particle orbits in Ca.

nlj

)f 5

2p 2

2p—3

]f7

1d—

2$
~

1d—,
'

lp1

1p 3

1$—1
2

E„(i (MeV)

—1.50
—4.19

—5.59

—8.54

—15.79

—17.53

—22.48

—39.12

—43.8

—66.12

g rms

4.69

5.08

4.81

4.04

3.51

3.64

3.38

2.81

2.84

2.24

N„(,

0.07

0.07

0.08

0.12

0.89

0.91

0.93

0.96

0.96

0.97

0.92

0.89

0.85

0.75

0.78

0.81

0.90

0.97

0.97

0.96

of energy:

P(r) =[1—0.55f (XH )]' . (11.7b)

We shall thus use the following function

u„i (r)=C« P(r)u«(r. ), (11.8)

where the factor C«j is introduced for normalizing
u„ii(r) This q.uantity u„i (r) is the radial part of the
overlap orbitals which play a major role in the analysis of
one-nucleon transfer reactions. ' The calculated root-
rnean-square radii

' 1/2g' '= u (r)r drnlj nlj (11.9)

of these single-particle orbits are given in Table I. It will
be of interest to compare our prediction for the root-
mean-square radius of the 1f—', orbit with the experimen-
tal value obtained from the analysis of the magnetic form
factor M7 of 'Ca which has just been measured.

C. Occupation probabilities

Because of the residual nucleon-nucleon interaction the
single-particle orbits which lie in the Fermi sea are not
fully occupied and those which lie above the Fermi sea
are not entirely empty. The occupation probability N„l.
can be estimated from the dispersive mean field. ' In the
case of a hole state (E„i, & EF ) it is approximately equal
to

N«i ——I u «, (r)
0

X I+m ' J '
2

dE' dr, (11.10a)
~F (E' E„ii)—

while in the case of a particle state (E„ii)EF ) one has

The calculated occupation probabilities are listed in
Table I. These quantities are rather sensitive to the be-
havior assumed for 'W r;E) at large

i
E

i
. They are also

quite difficult to measure experimentally. In the case of
protons, they can in principle be obtained by integrating
the single-particle strength extracted from (e,e'p) reac-
tions. The uncertainty of the extracted values is very
large. Indeed, the occupation probability obtained by the
Tokyo group for the proton shells in Ca are 1.85
(ls—,'), l.7 (combined Ip —,

' and Ip —,'), 0.78 (ld —', ), 1.05
(ld —,'), and 1.0 (2s—,'). Note that most of these numbers
are larger than unity, which exhibits their unreliability.
The measurements and analyses of the Saclay group
yield the following results, as quoted in Ref. 29: 0.75
(ls —,

' ), 0.95 (combined lp —,
' and 1p—,

' },0.77 (combined ld —,
'

and ld —', ), and 0.65 (2s—,
' }. The disparity between the two

sets of empirical values rejects the difficulty of these
analyses. In particular, the results are strongly affected
by the tails of the distributions of the single-particle
strengths, where severe background problems are en-
countered.

D. Spectroscopic factors

The strength of a quasiparticle excitation is given by
the following expression: '

4'„ii ——f u „i (r)[m lm(r;E«i) jdr, (11.11)
0

where m(r;E) is the E mass defined by Eqs. (11.3). The
calculated eV«i are listed in Table I. The physical mean-

ing of these quantities is as follows.
When E„l is very close to the Fermi energy, most of

the strength of the corresponding single-particle state is
contained in one, sometimes a few levels of Ca or 'Ca.
Then the quasiparticle strength 4«, can be identified with
the spectroscopic factor of that level, or with the sum of
the spectroscopic factors of the few levels which carry a
sizeable strength. The spectroscopic factors extracted
from analyses of one-nucleon transfer reactions are very
sensitive to the radial shape of the single-particle orbits.
In the case of proton orbits, the radial shape can poten-
tially be accurately determined from (e, e'p) reactions.
This opens the possibility of measuring "absolute" spec-
troscopic factors.

When E„l lies farther than a few MeV away from the
Fermi energy the single-particle strength is distributed
over many levels in Ca or 'Ca. Then the quantity S'„l-
should be interpreted as the strength contained within a
Lorentzian fitted to the peak of the distribution of single-
particle strength. This distribution is discussed in the
next section.

XII. SPECTRAL FUNCTIONS

0

%'(r;E')
(E E„ii)—

(11.10b)

Before discussing the spreading of single-particle
strength it is useful to consider the case of nuclear
matter. Then, the single-particle states are plane waves
which are fully characterized by their wave number k (we
disregard spin for simplicity). A one-hole configuration
(k) ' is obtained by destroying a nucleon with momen-
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turn k from the ground state
~

0) and a one-particle
configuration (k)+' by creating a nucleon with momen-
turn k on top of the ground state:

[k ')=a„/0), [k+')=a„+ (0) . (12.1)

In the limit of a free Fermi gas, these one-hole or one-
particle states would be stationary, i.e., would be eigen-
states of the Hamiltonian and would have a well-defined
energy. Actually, residual nucleon-nucleon interactions
exist, and

~

k ') or
~

k+') therefore do not have a
well-defined energy. The probability density of finding
that these systems have an excitation energy

~

E EF
~

—is
measured by the "spectral function" S(k;E) The. latter
is given by

particle strength, and also because the sum rule (12.7) is
only an approximation.

The spectral function S,d5/2 predicted by Eq. (12.5) is
represented by the solid curve in Fig. 15. We now com-
pare it with the available empirical information. Doll
et al. measured the Ca(d, t) Ca pickup cross section.
They analyzed these data in the framework of the
distorted-wave Born approximation. In the domain lo-
cated between 4.3 and 9.5 MeV in Ca, 20 levels with ex-
citation energy e'5q/'2 were fed by the transfer of a neutron
with orbital angular momentum 1=2. They were as-
sumed to be —,

'+ levels. The corresponding spectroscopic
factors 1'ds'/2 are listed in Table II of Ref. 27. The cen-
troid energy of the observed distribution of (d —,') ' neu-

tron hole strength is given by

[E Rk —/2m —V(k;E)] +[%V(k;E)]2

(12.2)

where V(k;E)+i%V(k;E) is the mass operator (or self-
energy). This distribution of single-particle strength
presents a peak near the following "quasiparticle energy"

here

22

Id 5/2 2 d)/2 d)/2
() ()

q=1

xi (q) z (q)~ 5/2 E113/2 ~5/2

(12.8a)

(12.8b)

Ek ——R k /2m +V(k;Ek) . (12.3)

where n (k) is the occupation probability of the single-
particle state

~

k ).
In a nucleus the single-particle states are specified by

quantum numbers (n, l,j). Then, the spectral function
can be approximated by the following expression:

%'„I/(E)
S„0(E}= —m.

(E E„IJ) +[ "lv„—lf(E))
(12.5)

where E„I is the single-particle energy of Table I, while

m (r;E)/m
(12.6)

This relation reduces to Eq. (10.5) in the Hartree-Fock
approximation, in which case V(k;E) is independent of
E and %V(k; E)=0. The following sum rule holds:

f S(k;E)dE =n (k), (12.4)

is the binding energy associated with the level q. This
empirical centroid energy is represented by a horizontal
segment in the column labeled Expt. in Fig. 12. It is
equal to —22.4 MeV, which is practically equal to the en-
ergy of the maximum of the calculated spectral function
( —22.5 MeV}.

In order to compare the shapes of the theoretical and
empirical distributions, we construct an empirical histo-
gram by dividing the spectroscopic factor Sd)'/2 by the en-

ergy increment between the midpoint energies relative to
the levels right above and below the level q. For the lim-
iting upper and lower energy levels we use an energy in-

I
I I f

5(2

is the expectation value of the imaginary part of the mean
field and m'(r;E) is the effective mass defined by Eq.
(11.1). The origin of Eq. (12.6) has been discussed in con-
nection with Eq. (4.5) of Ref. l.

The expression (12.5) rests on a number of approxima-
tions, in particular on the assumption that the spectral
function is diagonal in the single-particle basis I n, Ij ]. It
presents the drawback that it does not automatically
fulfill the approximate sum rule

f S„I (E)dE =N„i. (12.7)

lg
Cl

C,
V)

+
N 2

0
—30 -25 -20

where N„lj is the occupation probability of the single-
particle orbit (n, I,j ) This could. easily be cured by intro-
ducing a normalization constant on the right-hand side of
Eq. (12.5). We do not introduce it here mainly because
the difference of this normalization factor from unity is
much smaller than the uncertainties that affect the nor-
malization of the experimental distribution of single-

E (MeV)

FIG. 15. Distribution of the (2j+1)-weighted neutron dz
single-particle strength in Ca. The solid curve has been calcu-
lated from Eq. {12.5). The histogram has been constructed from
the experimental data reported in Ref. 27, as described in the
text.
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= —23.0 MeV, (12.9b)

which is close to the empirical value ( —22.4 MeU).
We now turn to the distribution of the single-particle

strength associated with the deeply bound 1p—,', 1p—,', and
1s—,

' orbits. The solid curve in Fig. 16 represents the
quantity

Ss(E)= g (2j+1)S„IJ(E),
n, lj

(12.10)

where the sum extends over the 1d—,', 1p—,', 1p—'„and 1s—,
'

hole states. Each spectral function has been calculated
from Eq. (12.5). The peaks of the calculated lp and ls
spectral functions are located at —42 and —66 MeV, re-
spectively. They practically coincide with the empirical
estimates of Eqs. (10.1). More than half of the lp
strength lies deeper than —42 MeV. Therefore, it is rath-
er natural that the Ca(p, pn) Ca experiment of Ref. 28
did not exhibit a peak in the measured distribution, since

crement equal to the last observed spacing. Figure 15
shows that the resulting histogram is in good agreement
with the calculated spectral function. As we noted in
Sec. XI, the measured spectroscopic factor should be as-
cribed a relative rather than an absolute meaning. To
some extent this restriction also applies to the theoretical
approximation (12.5). The following values are neverthe-
less of interest:

S1dsy2 E E =0.95—30 (12.9a)f S~ds y2 (E)dE =0.65
—26

where the integration limits are in units MeV. These
numbers indicate that about 65% of the pickup strength
should be expected to lie in the energy domain covered by
the experimental data of Ref. 27, the rest being located at
higher excitation energies. The centroid energy calculat-
ed over the experimental energy domain is found equal to

—19 —19f ES1d5/2 ( E)« f S Id 5 l2 (E)dE
—26 —26

~ ~ ~ ~ I ~ ~ ~ ~ I
I

the data only cover energies E & —42 MeV.
We now turn to the lf—,

' orbit. The corresponding
spectral function as predicted by Eq. (12.5) is represented
by the solid curve in Fig. 17. We compare this prediction
with the available empirical information. Belote et al.
measured the Ca(d, p) 'Ca stripping cross section and
analyzed it in the framework of the distorted-wave Born
approximation. Their data extend up to 6.84 MeV exci-
tation energy in 'Ca, i.e., cover the binding-energy
domain —8.36 & E ~ —1.52 Mt;V. Three of the observed
levels were ascribed a significant lf—', single-particle
strength. The separation energies and quoted spectro-
scopic factors are, respectively, equal to —3.47 MeV
(S =0.12), —2.70 MeU (S =0.25), and —2.55 MeU
(S=0.11). The corresponding centroid energy, evalu-
ated as in Eq. (12.8a), is equal to —2.86 MeU. This value
is represented by a horizontal segment in the column la-
beled Expt. in Fig. 12. It is more negative than the
single-particle energy predicted by our dispersive mean
field (see Table I and column VH+b, V in Fig. 12). How-
ever, this apparent discrepancy is deceptive. Indeed, the
calculated spectral function indicates that the energy
domain covered by the experimental data contains only a
fraction (609o) of the single-particle strength of the calcu-
lated strength shown in Fig. 17 lies outside the domain
E & —1.5 MeV. This is in keeping with the fact that the
sum of the three spectroscopic factors quoted in Ref. 26
is equal to 0.47 (it reduces to 0.38 if one adopts the values
cited in Ref. 45). We conclude that the energy of the 1f—',
quasiparticle state is likely to be larger than the usually
adopted value —2.86 MeV. Correspondingly, the agree-
ment between the predicted and experimental single-
particle energy of the lf—,

' level is better than Figs. 5, 8,
12, and 13 suggest.

In summary, there exist a quite good agreement be-
tween the experimental and calculated distributions of

.2 I ~ ~ I I I I ~ ~ I
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FIG. 16. The solid curve represents the weighted sum of the
neutron-hole spectral functions, as defined by Eqs. (12.5) and
(11.10). The long-dashed curve shows the contribution of the
ld

2 spectral function, and the short-dashed line gives the tail of
the sum of the 1d ~, 1p ~, and 1p ~

contributions.

FIG. 17. Distribution of the 1f— neutron single-particle

strength. The solid curve has been calculated from Eq. (12.5).
The histogram represents the empirical results reported in Refs.
26 and 45: They are normalized according to the spectroscopic
factors of the three observed levels as quoted in Ref. 4S. The
dashed vertical line represents the upper end of the energy
domain covered by the experimental data.
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the single-particle strength. The expression (12.5) for the
spectral function presents the interest that it vanishes for
E =Ez. This property is not fulfilled by the usual quasi-
particle approximation, in which the Green s function is
approximated by the contribution of the quasiparticle
pole [see e.g. (34.18) of Ref. 43]. The vanishing of S„I (E).
for E =E„gives rise to an asymmetry of the quasiparti-
cle peak whenever the difference

~ E„&~ EF—
~

is compara-
ble to the spreading width, i.e., to

(12.11)

This asymmetry is visible in Figs. 15 and 17. Caution
must be exercised in the physical interpretation of
S„&J(E), in particular when E approaches EF, i.e., when
the excitation energy in Ca or 'Ca approaches zero.
Indeed, the concept of a density of single-particle
strength has a meaning only when one can perform an
average over levels. This is not possible for E close to Ez.
For instance, no —,

'+ level has been identified below 4.3
MeV excitation energy in Ca, i.e., for separation ener-
gies located between —20 and —15.64 MeV. In that en-
ergy domain the solid curve in Fig. 15 should not be as-
cribed any detailed physical meaning, except that its
smallness reflects the property that little single-particle
strength is expected to be located there. Note, moreover,
that by using one average value for the Fermi energy [Eq.
(2.9)] we have not taken into account the difference be-
tween the separation energy (EF '= —15.64 MeV) of

Ca and that (EF+'= —8.36 MeV) of 'Ca. This is
tolerable to the extent that %V(r;E) is quite small be-
tween EF+' and EF '. These restrictions reflect the in-
trinsic limitation of the concept of a complex mean field
to describe the nuclear dynamics. This mean field cannot
aim at describing the full excitation spectrum of Ca and
'Ca. It can, however, describe average properties. For

instance, we have seen in Sec. IX that it satisfactorily ac-
counts, on the average, for the energy shift of that
valence single-particle states close to the Fermi surface
undergo because of their coupling to core excited states.
It also yields estimates of the radial shapes of these
valence orbits on their occupation probabilities and of
their spectroscopic factors. Finally, we have shown in
the present section that the dispersive mean field satisfac-
torily describes, on the average, the distribution of the
single-particle strength of quasiparticle states which lie
farther away from EF.
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calculated and experimental total cross sections is ob-
tained if one introduces an energy dependence in the
diffuseness a, and radius parameter r, that determine the
radial shape of the surface-peaked absorption, Eqs. (3.5)
and (3.6). This study is similar to the one that had been
carried out in Sec. VI of Ref. 1 in the case of the n- Pb
system. Other types of refinements could be proposed,
for instance, one in which the absorption would depend
upon angular momentum as was proposed in Sec. VII of
Ref. 1 in the case n- Pb, see also Ref. 48. However, no
convincing evidence for a systematic angular momentum
dependence of the absorption would emerge in the
present case since so few partial waves influence the
n- Ca total cross section at low energy.

Since the type of refinement considered below is possi-
bly not the most proper one, we will not search for an op-
timal parametrization of this "refined model. " Accord-
ingly, we retain the same volume components as in Sec.
IV. We write the surface-peaked absorptive part of the
potential as in Eqs. (3.5) and (3.6), but we now allow the
corresponding shape parameters a„r, to be energy
dependent. However, we make the simplifying approxi-
mation that the corresponding real dispersive correction
retains the same energy-independent radial shape as in
the preceding sections (derivative of a Woods-Saxon with
radius parameter 1.26 fm and diffuseness 0.60 fm).

In order to construct a parametrization adapted to this
refined model, we perform least-squares fits of the experi-
mental cross sections with the following four adjustable
parameters: the shape parameters r„a, of the surface-
peaked absorption, the strength 8', of this surface ab-

XIII. REFINED MODEL AT LOW ENERGY -30 -20 -10 0 10 20 30 40 50
E (MeV)

The solid curve in Fig. 3 shows that the total cross sec-
tion predicted by our fixed-geometry model deviates from
the experimental data for energies smaller than 9 MeV.
This disagreement is not unexpected because the disper-
sive mean field only describes an average over many par-
tial waves, while for E &9 MeV the total cross section is
dominated by the partial waves associated with the orbit-
al angular momenta / =1 and 2 (Fig. 11). The total cross
section at small energy is thus sensitive to small changes
in our model. This will be illustrated in the present sec-
tion. We shall show that a good agreement between the

FIG. 18. The upper drawing represents the energy depen-
dence of the volume integral per nucleon of the surface-peaked
component of the imaginary part of the mean field; the lower
drawing gives the strength of the real part of the surface-peaked
component. The solid curves are derived from the solid curves
in Fig. 5. The solid dots are obtained from four-parameter 6ts
to the experimental cross sections, as described in Sec. XIII.
The open symbols give the strength of surface component neces-
sary for reproducing the experimental single-particle energies
shown in the Expt. column of Fig. 12.
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sorption, and the strength 6 V, of the surface-peaked real
potential. These fits are performed at each scattering en-
ergy independently. The solid dots in Fig. 18 represent
the volume integral of the surface-peaked imaginary part
and the strength of the surface-peaked real part obtained
from these four-parameter fits to the experimental cross
sections. The open symbols in the lower part of Fig. 18
are located at the experimental single-particle energies;
they give the strength of the surface-peaked real potential
that is needed to reproduce these energies. The solid
curves are identical to those shown in Fig. 5 [after due
multiplication by the geometric factor 14.9 fm to derive
the volume integral per nucleon associated with the solid
curve in Fig. 5(a)]. Note that the curves in Fig. 18 are
connected by a dispersion relation, since they are derived
from Fig. 5. Figure 18 shows that the volume integrals
obtained from the present four-parameter searches close-
ly follow the volume integrals of the parametrization
which had been adopted in Sec. V. We, therefore, retain
the same parametrization of these volume integrals as in
Sec. V. This fully determines the parametrization of the
real strength b V, (E) since the radial shape of the real
surface-peaked component has been fixed.

In Fig. 19 the dots represent the least-squares adjusted
values of r, and a, obtained from the four-parameter
searches. Our "refined" model consists in taking into ac-
count the trend that below 10 MeV the diffuseness a, of
the surface-peaked imaginary part tends to be smaller
than 0.60 fm while its radius parameter r, tends to be
larger than 1.26 fm. For illustration we adopt the follow-
ing parametrization (lengths in fm, energies in MeV):

a, =0.20 fm for EF &E &3.35, (13.1a)

a, =0.20+0.060(E —3.35) for 3.35 &E & 10, (13.1b)

a, =0.60 for 10&E,

r, =1.40 for EF &E &3.35,

(13.1c)

(13.2a)

r, =1.40—0.021(E —3.35) for 3.35 &E & 10, (13.2b)

r, =1.26 for 10&E . (13.2c)

XIV. SUMMARY AND DISCUSSION

This parametrization is represented by the dashed lines in
Fig. 19, where the solid horizontals show the values
adopted in our previous fixed-geometry model. The ener-

gy 3.55 MeV below which r, and a, are set constant has
been somewhat arbitrarily chosen equal to the lowest
neutron inelastic threshold, in analogy with the n- Pb
case studied in Ref. 1. The energy 10 MeV above which
r, and a, are constant is based on the observation that for
E & 10 MeV, our fixed-geometry model yields good
agreement with the experimental total cross section.

The total cross section predicted by the present refined
model is represented by the dashed curve in Fig. 3. It is
seen to be in close agreement with the experimental data.
This fulfills our main purpose which was to illustrate that
a slight modification of our fixed-geometry model is able
to reproduce the measured total cross section at low ener-
gy. We note that the volume integrals per nucleon are
exactly the same here as in the previous sections: The
sole change is the radial shape of the surface-peaked com-
ponent of the absorptive potential at low energy. The
success of the present model should not be interpreted as
an evidence that the type of refinement considered here is
the correct one. In particular Fig. 19 shows that the
specific parametrization of Eqs. (13.1a)—(13.2c) is rather
arbitrary. Furthermore it must be kept in mind that
another possible refinement would consist in introducing
an angular momentum dependence in the fixed-geometry
model, as was done in Sec. VII of Ref. 1 in the case of
neutrons on Pb, see also Ref. 48.

1.4

&.2

&.0

~ y ~

)0 20
E, (MeV)

50

(b)

40

FIG. 19. Energy dependence of the diffuseness a, and of the
radius parameter r, of the surface-peaked absorption for neu-
trons on Ca. The solid dots are obtained from least-squares
optical-model fits to the experimental cross sections with four
adjustable parameters, namely a„r„W„and 5V„as described
in Sec. XIII. The horizontal solid lines show the energy-
independent values adopted in Secs. IV—XII. The dashed seg-
ments represent the parametrization of Eqs. (13.1a)—(13.2c).

The dispersive optical-model analysis of the experimen-
tal cross sections consists in explicitly taking into account
the dispersion relation which connects the real and imagi-
nary parts of the mean field. This reduces the number of
parameters which appear in the expression of the mean
field. Moreover, this dispersive mean field automatically
includes the complicated energy dependence of the real
part that is associated with the fast decrease of the imagi-
nary part as the nucleon energy approaches the Fermi en-

ergy. The latter property is quite important since the
dispersive optical-model potential can then be extrapolat-
ed analytically from positive to negative energies. This
extrapolation amounts to construct the shell-model po-
tential from the optical-model potential. This is extreme-
ly useful since much more empirical information is avail-
able on the optical-model than on the shell-model poten-
tial.

In Ref. 1 a dispersive optical-model analysis had been
carried out in the case of the n- Pb system. In the
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present paper we perform it in the case of the n- Ca sys-
tem. The main input of the calculation is the experimen-
tal differential, polarization, and total cross sections
which are represented by the dots in Figs. 1—3. The solid
curves in Figs. 1—3 are standard optical-model fits. Al-
though the latter involve five or six parameters, adjusted
at each energy independently, the quality of the fits is not
very good. This partly reflects the limitation of the opti-
cal model in light-medium weight nuclei. A fortiori, one
should not expect very good fits from the dispersive
optical-model potential since it involves fewer parameters
that, furthermore, are constrained to vary smoothly with
energy.

As usual, the imaginary part of the mean field is writ-
ten as a sum of volume and surface-peaked terms, Eq.
(3.3). Except in Sec. XIII we use a fixed-geometry model
in which it is assumed that the radial shapes of these two
terms are independent of energy. Then the dispersion re-
lation (2.3) predicts that the real part of the mean field
also contains volume and surface-peaked dispersive
corrections whose radial shapes are the same as those of
the imaginary potential. These corrections vanish at the
Fermi energy. They must be added to the Hartree-Fock
potential which is assumed to have an energy-
independent Woods-Saxon shape, with a depth that is an
exponential function of energy. We argue in Sec. X that
the latter assumption is quite realistic except for large
negative energies where a linear energy dependence is
more appropriate.

The central value of the real part of the full mean field
is the sum of the depth of the Hartree-Fock potential and
of that of the volume-dispersive contribution, since we as-
sume throughout our analysis that the radial shape of the
volume absorption is the same as that of the Hartree-
Fock potential. The latter is determined by the disper-
sive relation. The energy dependence of the depth of the
Hartree-Fock potential can then be obtained from the re-
quirements that the empirical full depth be fitted and that
the Fermi energy be reproduced. The depths of the full
potential and of its Hartree-Fock component are
represented in Fig. 4.

The strength of the surface-peaked dispersive contribu-
tion can be calculated from that of the surface-peaked ab-
sorption by means of the dispersive relation. It vanishes
in the vicinity of 30 MeV (Fig. 5). There the radius pa-
rameter of the empirical full real potential is close to 1.18
fm. The latter value can then be identified with the ra-
dius parameters rH of the Hartree-Fock potential, since
this potential and the volume absorption have the same
radius.

The value rH ——1.18 fm obtained here for the n- Ca
Hartree-Fock potential is smaller than that (1.24 fm)
found for n- Pb in Ref. 1. It is argued in Sec. VII that
this difference is in keeping with the property that the
central densities of Ca and Pb are approximately the
same. This allows one to derive the depth of the
Hartree-Fock approximation to the symmetry potential
by comparing the depths of the n- Ca and n- Pb
Hartree-Fock potential. The result is represented in Fig.
10(a).

The dashed curves in Figs. 1 and 2 and the solid curve

in Fig. 3 show that our fixed-geometry model is in fair

agreement with the experimental cross sections, except
for scattering energies smaller than 10 MeV. We em-
phasize that the expression "fixed geometry" refers to the
radial shapes of the volume and surface-peaked irnagi-
nary potential and correspondingly of the dispersive con-
tributions to the real part. Since the strengths of the
dispersive contributions depend upon energy, the radial
shape of the real part of the full mean field depends upon
energy. In particular its radius decreases with increasing
energy for E & 10 MeV (Fig. 9). A similar behavior was
found for the n- Pb system, ' in which case it had first
been noticed on purely phenomenological grounds. ' '

The radius of the real part of the full mean field in-
creases with energy in the negative energy domain ( —20
MeV, 0), where the bound valence single-particle states
are located. As a consequence the global attractive
strength of the full real potential increases with energy in
that domain, as illustrated by the volume integral per nu-
cleon (Fig. 7). This is the main reason why the calculated
bound-state energies are in good agreement with the ex-
perirnental values, in contrast with the Hartree-Fock
spectrum which has a too-large particle-hole energy gap
as well as a too-large spacing between the subshells
within the two valence shells (Fig. 12).

One of the intrinsic interests of Ca is that the energies
of the deeply bound 1p and 1s proton orbits have been lo-
calized. This yields a reliable estimate for the energies of
the 1p and 1s neutron orbits. Our dispersive mean field
strongly overbinds the ls orbit (Sec. X). This is due to
our assumption that the depth UHF(E) of the Hartree-
Fock potential is an exponential function of energy. The
empirical energies are well reproduced if one adopts a
linear energy dependence for UHF (E) at negative ener-
gies. Thus, empirical evidence exists in favor of an ex-
ponential energy dependence of UHF(E) at positive ener-

gy and of a linear dependence at negative energy. This
can be understood from the fact that the energy depen-
dence of the depth of our local Hartree-Fock potential
actually reflects the nonlocality of the original microscop-
ic Hartree-Fock field. A Percy-Buck type of nonlocality
remarkably reproduces the energy dependence of UHF(E)
that had been deduced from our analysis (Fig. 13).

The dispersive mean field takes into account, in an
average way, the effect of the residual nucleon-nucleon
interaction. This is exhibited by the existence of an imag-
inary component in the mean field. As a consequence the
dispersive mean field includes an average description of
the deviations from the independent-particle model, in
particular of the following facts. (i) The occupation prob-
abilities of the single-particle orbits are smaller than uni-
ty inside the Fermi sea and different from zero outside
the Fermi sea. (ii) The spectroscopic factors of the
ground and excited single-particle levels of Ca and 'Ca
are smaller than unity. Our analysis moreover predicts
the radial shape of the single-particle orbits, in particular
their root-mean-square radii. The calculated occupation
probabilities, spectroscopic factors, and root-mean-
square radii are listed in Table I.

When the excitation energy in Ca or 'Ca is larger
than several MeV, there no longer exists one single level
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that carries most of the single-particle strength. Rather,
the single-particle strength is distributed over many lev-
els. The average behavior of this distribution is described
by the spectral function. It approximately has a
Lorentzian shape. The location of its maximum can be
identified with the single-particle (or quasiparticle) energy
and its full width at half maximum with the single-
particle spreading width. In the case of the d—,'orbit our
predicted spectral function is in good agreement with the
measured distribution of the l =2 single-particle strength
in Ca (Fig. 15). Our predicted spectral functions for the
1p (Fig. 16) and lf—,

' (Fig. 17) orbits show that the energy
domains covered by the presently available experimental
data only extend over about half of the distribution. In
particular, the 1f—,

' orbit is most probably less bound than
would be indicated by a straightforward interpretation of
the experimental data.

Figure 3 shows that our fixed-geometry model yields a
too-large total cross section for scattering energies small-
er than 10 MeV. This is not unexpected since the mean
field only describes an average over partial waves, while
the total cross section at low energy is dominated by very
few partial waves (Fig. 11). Moreover, the total cross sec-
tion at low energy is quite sensitive to small modifications
of the radial shapes of absorptive potential; this is exhib-
ited in Sec. XIII. There we show that by decreasing the

diffuseness and increasing the radius of the surface ab-
sorption, while keeping its volume integral unchanged,
one can obtain a good agreement between the calculated
and experimental total cross sections at low energy.

In conclusion, a dispersive optical-model analysis has
been successfully performed for the n- Ca system. In
particular it has been shown that this approach enables
one to reliably extrapolate the optical-model potential
down to the large negative energies of the most deeply
bound orbits.
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