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Average s-wave resonance spacings were derived from high-resolution proton resonance data for
11 odd-Z nuclei in the mass range 4 =41-67 and compared with the average s-wave spacings ob-
tained from neutron resonances for their odd-N isobars. After careful correction for missing levels
the neutron and proton results are consistent; proton resonance data can be used to increase the
data base for nuclear level densities. After correction to a common excitation energy, the spacings
show a correlation with the shell correction energy E ., especially for 4=41, 55, and 59, where
data exist for three isobars with quite different shell correction energies. The dependence of the
average level spacing D on E,, is approximately exponential, in good agreement with the theoreti-
cal models of Ignatyuk et al. and Kataria et al. The data also have been used to calculate asymp-
totic @ parameters in these two models. The mass dependence of these parameters can be described
by the simple relation a =0.137 4 with an rms deviation of 4.3%. Attempts to describe the data
within the Fermi gas model resulted in much larger fluctuations of the parameters with 4 and Z.
Finally, the data were compared to the predictions of the microscopic Fermi gas model, using the
single particle level scheme of Seeger and Perisho. At present, the quality of this description is still
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somewhat worse than with the phenomenological models of Ignatyuk et al. and Kataria et al.

I. INTRODUCTION

Average s-wave neutron resonance spacings have long
been one of the main sources of nuclear level density in-
formation.! =3 A large amount of high-resolution proton
resonance data has been accumulated;* however, these
data have not yet been systematically analyzed in terms
of average resonance spacings. The purpose of this paper
is to use this additional information: to extract average
s-wave resonance spacings in a systematic way from the
existing proton resonance data and to compare these re-
sults with the spacings obtained from the neutron reso-
nance data for neighboring isobars. For experimental
reasons proton resonance data suitable for this purpose
exist only for odd-Z nuclei [from (p,p) and (p,p’) studies
on even-even nuclei] up to mass 67. Accordingly in this
study we shall derive average resonance spacings for 11
odd-Z nuclei in the mass range 4 =41-67 from proton
resonance data and for the corresponding odd-N isobars
from neutron resonance data. Comparison of these two
types of data permits a check on the procedures (e.g.,
correction for missing levels) used in the analysis of such
resonance data. This comparison also allows a direct
study of the influence of shell effects on nuclear level den-
sities, as level densities of different isobars of odd-mass
nuclei should be the same except for shell effects.

In Sec. II we describe the procedure used to analyze
the neutron resonance data, while in Sec. III the corre-
sponding analysis for the proton data is described. For
the former we might have used existing information;*
however, the earlier analyses have not always followed
the most accurate procedures for the extraction of aver-
age spacings. Therefore we have reanalyzed the neutron
resonance data by fitting the Porter-Thomas distribution
to the neutron widths; a similar procedure was used with
the proton resonance data.

In Sec. IV a detailed comparison of the proton and
neutron resonance data is presented, with special em-
phasis on shell effects in nuclear level densities. In Sec. V
nuclear level density parameters are derived for all nuclei
studied, both in the framework of the Fermi gas model®
and in the models of Ignatyuk et al.’> and of Kataria
et al.,® which explicitly include shell effects.

Section VI presents a comparison of proton and neu-
tron resonance data with calculations in the frame of the
microscopic Fermi gas model including consideration of
pairing, i.e., a model with no easily adjustable parame-
ters. The results of these calculations are also compared
with those of the model of Ignatyuk et al.’ Sec. VII
summarizes the main conclusions from the present work.

Although the mass range studied is rather limited, this
range contains an important region of structural materi-
als. Thus the level density parameters derived in this
work are also quite important for applied purposes.
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II. AVERAGE NEUTRON RESONANCE SPACINGS

The most recent compilation of neutron resonance data
and evaluation of average s-wave resonance spacings®
uses the experimental data obtained up to 1980 and sim-
ple staircase plots in order to estimate the average reso-
nance spacing D. Since that time, improved data have
been published for a number of nuclei studied in this
work.”~!° In addition a number of computer programs
have been developed!® which allow the estimation of the
fraction of missed levels in an experimental sequence.

Therefore it was decided to perform a new determina-
tion of the average s-wave spacings for odd-N nuclei in
the mass range 4 =41-67 using the code STARA.!!'!?
This code performs a maximum likelihood fit to the ob-
served reduced neutron widths, assuming a Porter-
Thomas distribution with a diffuse detection threshold.
This detection threshold may also have a linear depen-
dence on neutron energy. From the fit, we obtain the
most likely value of the average reduced neutron width, a
quantity specifying the detection threshold, and an esti-
mate of the fraction of resonances lost because of the
finite detection threshold. This latter quantity will be
called MF (missing fraction). In addition the fit to the
width distribution allows an excellent visual check of the
compatibility of the resonance widths with the assumed
Porter-Thomas distribution. The distribution of the re-
duced neutron widths is given by the relation

P(I% /T %) =exp[ -9 /2T 21/27T9/T )12, (1)

with T equal to the reduced neutron width and T 9
equal to the average reduced neutron width.

This distribution of the reduced neutron widths can be
transformed into a uniform distribution of values in the
range 0 <u <1 if the new variable u is defined by

u=erfc(I'%/2T9) . )

Thus the set of data points {u;,E,;} corresponding to
the individual resonances will be uniformly distributed in
the (u,E,) plane, except for the region ¥ < u, which cor-
responds to reduced neutron widths below the detection
threshold. The small increase of level density with neu-
tron energy E, is neglected.

Figure 1 shows the distributions of the neutron reso-
nances in the (u,E,) plane for two examples: a recent
measurement’ of *®Ni and the older resonance data of
Ref. 4. The pictures clearly show the quality of reso-
nance data which is achievable at present, but also
demonstrate the need for a considerable correction for
undetected weak resonances in most older measurements
(which are all that are available for most nuclei).

The uncertainty in the calculated D values was as-
sumed to arise from three sources.

(i) The first is the statistical error due to the finite num-
ber of resonances in the energy range studied. A Wigner
distribution is assumed for the nearest-neighbor spacing
distribution for levels of the same spin and parity (here
%J'); this results in a fractional error
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with N the observed number of resonances and MF the
fraction of resonances below the detection threshold.

(ii) The second source of the uncertainty is the statisti-
cal error due to the uncertainty in the quantity MF from
visual inspection of the (u,E,) plots described above.
This uncertainty was estimated to be 25% of MF. The
fractional error is
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FIG. 1. Distribution of neutron resonances in the (u,E,)
plane for *®Ni + n. The more recent data (a) are from Ref. 7,
while the older data (b) are from Ref. 4. The horizontal lines
give detection thresholds u, estimated by the code STARA.
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(iii) The third source is the statistical error in the actu-
al number of levels in the undetected range of the
Porter-Thomas distribution. Here the normal statistical
error is applied—contrary to contribution (AD/D),.
This fractional error is

AD 172

D

MF
N

(6)

3 corr

The total fractional uncertainty of the D values was ob-
tained by combining the three contributions in quadra-

ture:
/NCOI'I' +

The results from this analysis are summarized in Table I.
Columns 2-5 list the data source, the neutron separation
energy, the energy range of the neutron resonance mea-
surements, and the number of s-wave resonances
identified in this energy range. Column 6 lists the miss-
ing fraction MF and columns 7-9 list our results for the
average level spacing D as well as the values of D from
Refs. 4 and 3.

As the table shows, there are large discrepancies be-
tween the D values derived in Ref. 3, Ref. 4, and the
present work. The D values used by Dilg et al.? for their
parametrization of the back-shifted Fermi gas model
exceed our values on average by a factor of 1.4. This is
mainly because the need for missing level corrections had
not been generally recognized at the time of Ref. 3. The
same comment also applies to the resonance data used by
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Gilbert and Cameron in Ref. 2. Thus it seems clear that
the most common level density parameters underestimate
the nuclear level densities at the neutron binding energy
by about a factor of 1.4 (at least in the mass range
A =41-67 studied here) and that these parametrizations
should be updated. Such a change will probably result in
an increase of the a parameters by about 45 %.

It should also be noted that there are considerable
discrepancies between our values and those published in
Ref. 4, which is the most recent compilation of neutron
resonance data. There are several reasons for this.

(i) First, corrections were made for missing levels based
on the Porter-Thomas distribution. The approximate
method of staircase plots used in Ref. 4 cannot detect any
neutron-energy-independent missing level fraction [such
as that present in the data of Fig. 1(b)].

(ii) Second, in a number of cases (e.g., **Ca, **Ca) the
results in Ref. 4 are based on data sets which were prob-
ably “contaminated” with p-wave resonances to a consid-
erable extent, as indicated by our (u,E,) plots for those
isotopes.

(iii) Finally, in the case of *>Cr careful measurements®
published after the cutoff date of Ref. 4 proved that the
earlier data were rather bad and contained a large num-
ber of spurious resonances.

Thus it appears that a new careful analysis of the data
compiled in Ref. 4 and all later publications is needed to
make optimum use of the existing neutron resonance
data.

III. AVERAGE PROTON RESONANCE SPACINGS

The proton resonance data used to obtain the 1 level
densities were obtained in a series of measurements which

TABLE 1. Average s-wave neutron resonance spacings of odd- 4 nuclei with 4 =41-67.

Energy
Data range Number of D (Ref. 4) D (Ref. 3)
Nucleus source B, (MeV) (keV) resonances MF D (keV) (keV) (keV)

YAr Mughabghab® 6.10 0-630 7 0.22 70.2+17.0 90
4Ca Mughabghab® 8.36 0-1400 31 0.28 32.6+4.3 45+6 45
$Ca Mughabghab® 7.93 0-580 27° 0.25 15.8+2.1 8.6+1.0 28
#Ca Mughabghab® 7.41 0-570 21 0.13 24.11£3.2 16+2 33
gl ¢ Mughabghab® 8.88 0-370 12 0.19 25.0+4.4 20+8 22
“Ti Mughabghab® 8.14 0-360 16 0.19 18.3+2.9 1313 25
Sicr Mughabghab® 9.26 0-600 41 0.11 13.3+1.3 15+2 21
Cr Agrawal® 6.25 0-900 15 0.09 54.4+8.2 1542 66
Fe Mughabghab® 9.30 0-500 23 0.17 18.0+2.4 13+2 20
SFe Mughabghab® 7.65 0-900 41 0.14 19.2+1.9 1742 25
Fe Mughabghab? 6.58 0-350 114 0.20 25.4+4.9 35+15

Ni Perey® 9.00 0-650 52 0.00 12.5+0.9 13.7+2 22
*INi Perey' 7.82 0-450 30 0.07 13.9+1.5 16+2.5 17
Ni Mughabghab® 6.84 0-600 30 0.25 15.0+2.0 19.1+3.6 19
Zn Garg® 7.05 0-380 80 0.16 4.0+0.3 4.7+0.4 6

*Reference 4.

°14 weak resonances for which the / =0 assignment in Ref. 4 appeared doubtful were not used.

‘Reference 8.

45 weak resonances for which the / =0 assignment in Ref. 4 appeared doubtful were not used.

‘Reference 7.
Reference 9.
EReference 10.
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were primarily on 1f-2p shell nuclei. These data are
unique in terms of comprehensiveness and of energy reso-
lution. They were obtained as a part of a systematic
study of the fine structure of analog states. Most of the
data is contained in a review,!? although several nuclei
were studied later. References to specific nuclei are given
in Table II.

In keeping with the approach described in Sec. II, we
have accepted the spin assignments and proton widths as
listed in the earlier references, but have analyzed the
width distribution to determine the fraction of levels
missed (MF). Reexamination of all our proton resonance
results determined that the data are sufficient to provide
reliable level density estimates for 11 odd-Z nuclei.

In a given sequence we assume that above an energy E,,
all levels with laboratory width greater than some
minimum width (I'>T,; ) are observed. With this as-
sumption the largest minimum 2 value for the sequence
can be determined, and a maximum fraction of missing
levels obtained. This y2 value corresponds to the max-
imum reduced width value of the ' ;, level, which occurs
at the lower energy bound E,. From this width one can
determine the maximum fraction of missing levels for the
section of the sequence with E > E,. Since the data ex-
tend over a wide energy range, and the Coulomb penetra-
bility changes rapidly with energy, the fraction of levels
missed depends strongly on the choice of E|,.

We considered how this maximum fraction behaves
versus energy (over the whole energy range of the se-
quence), using the minimum observed laboratory width
as [';,. In practice, a value of approximately 30% miss-
ing levels seemed to be a good compromise. The reduced
widths were assumed to follow the Porter-Thomas distri-
bution. The value for the minimum width was then used,
together with the average reduced width y?, to determine
the MF. Although this procedure appears to work reli-
ably, the method does depend crucially upon the
minimum width observed.

We therefore used a second method to determine MF.
The energy range is determined as before, yielding a set
of N reduced proton widths. We then take the set of N
reduced widths and sample (with replacement) at random
N times from this set. The resulting set of y2 values are
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then analyzed as before to obtain MF. The entire pro-
cedure is repeated many times. One then obtains a distri-
bution of MF values. The average value gives MF and
the spread provides an estimate of the error in MF. This
statistical procedure is called the bootstrap method;'* an
example of the application of this statistical approach in
nuclear physics is given by Shriner et al.'> In 10 of the
11 nuclei studied, the two methods for determining MF
agreed. However, for %Zn the two methods give
significantly different results.

Since we believe the second procedure to be less sensi-
tively dependent on the value of one width, we adopt the
bootstrap procedure to obtain the final values for MF.
These results are listed in Table II. Columns 2-6 list the
data source(s), the proton separation energy, the energy
range of the proton resonance data, the number of s-wave
resonances identified in this energy range, and the value
of the missing fraction (MF). The average s-wave level
spacing D (and its error) is listed in column 7.

The errors in the level density were determined in the
same manner as described in Sec. II, except that the un-
certainty in MF was obtained from the bootstrap calcula-
tion. Since the bootstrap distribution is not always com-
pletely symmetric, we consider the width of the central
68% of the distribution to be equal to 20.

IV. COMPARISON OF NEUTRON AND PROTON
RESONANCE SPACINGS

The average resonance spacings derived in Secs. II and
III correspond to quite different excitation energies in the
range of 6—10 MeV (see Tables I and II). As a first step
all data are converted to a common excitation energy;
this energy was chosen to be 8 MeV. For this purpose it
is necessary to use some model for the energy dependence
of the nuclear level densities. For reasons discussed later
we used the level density model of Ref. 6 and converted
our s-wave spacings to 8 MeV by multiplying with the
factor

R:p(%*’, U=8 MeV)/p(%*, U=Uexp) N

calculated with the level density parameters of Ref. 6.
For the uncertainty of this conversion we assumed a max-

TABLE II. Average s-wave proton resonance spacings for odd- 4 nuclei with 4 =41-67.

B, Energy range Number of D
Nucleus Reference (MeV) (MeV) resonances MF (keV)
i '€ 16 7.80 2.210-2.598 25 0.26 11.5+1.5
8¢ 17 4.92 2.152-2.981 26 0.15 27.0+3.3
8¢ 18 6.89 2.118-3.006 79 0.19 9.1+1.7
Mn 19 8.07 2.167-2.686 47 0.36 7.1£0.7
Co 20 6.03 2.438-3.140 28 0.23 19.4+2.4
Co 21 6.03 3.121-4.001 56 0.15 13.3%1.1
¥Co 20,22 7.37 2.589-3.104 82 0.31 4.31+0.4
%Cu 23 6.12 2.715-3.097 44 0.32 5.9+0.7
v 24 5.17 2.088-3.068 22 0.19 36.0+4.8
oy 25 6.76 2.496-3.102 46 0.19 10.6+1.0
sty 26 8.05 2.242-2.949 68 0.24 7.9+0.6
“Ga 27 5.27 3.045-3.255 52 0.38 2.5+0.2
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FIG. 2. Mass dependence of average s-wave spacings of odd
nuclei for excitation energy U=8 MeV derived from proton res-
onances (circles) and from neutron resonances (crosses).

imum error of 10% in the nuclear temperatures. This er-
ror in the temperature results in uncertainties in the con-
version factor R of 1-21% depending on the energy
difference between the actual data and the reference ener-
gy of 8 MeV. This error was added quadratically to the
errors given in Tables I and II. Figure 2 shows the values
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FIG. 3. Correlation between average s-wave resonance spac-
ings at U=8 MeV and the ground-state shell correction energy
E ;. The straight lines are estimates to guide the eye for the
dependence of D (U=8 MeV) on the shell correction energy for
A=41, 55, and 59.

D (8 MeV), obtained in this way as a function of mass
number A. As the figure shows, there are still rather
large differences between the level densities between
different isobars and there is also no smooth dependence
on A, as predicted by simple level density models. How-
ever, even from this figure it can be recognized that there
is no obvious discrepancy between the level densities de-
rived from proton and neutron resonance data.

A better understanding of the data can be obtained if
the data for the various isobars are plotted as a function
of the ground-state shell correction E ) (defined in Sec.
V) as shown in Fig. 3. For all cases where there are data
for several isobars with different correction energies (e.g.,
for A=41, 55, and 59) one sees a clear correlation of the
D (8 MeV) values with the shell correction energy E g
This approximately exponential dependence of D on
E . is qualitatively in agreement with the level density
models of Kataria et al.® and Ignatyuk et al.’

V. DETERMINATION OF LEVEL DENSITY
PARAMETERS

The experimental average resonance spacings were
used to extract level density parameters which can be
used for cross section calculations. In the following we
consider simple level density models which are based on
the methods of statistical mechanics.?® The state density
w(U) as function of the excitation energy U is

1

mexp[S(U)] ’ (8a)
where S(U) is the entropy and D(U) is the determinant
related to the saddle point approximation. The density of
levels with spin I around excitation energy U is given in
terms of the state density «(U) and the spin cutoff pa-
rameter o(U):

o(U)=

2I+1

x (I+1/2)?
2V2ma3(U)

204 U)

p(U,I)= - o(U).  (8b)

For the Fermi gas model (FG model), assuming equidis-
tant single particle states with a density g and an empiri-
cal pairing correction A, the following relations hold:

2

T
a=—g,
U—A=at?,
(9a)
S(U)=2at ,

p)=Ba12u—ay2.
m

The spin cutoff factor is related to the temperature ¢ and
to the average value (m?) of the square of the angular
momentum projection of the single particle states

aZ(U)=g<m2>z=#et . (9b)

The quantity © can be regarded as the moment of inertia
of the nucleus under consideration.
Calculations based on realistic single particle states
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predict for the level density shell effects which may be
pronounced at lower excitation energy and tend to disap-
pear at higher energies. Among the simple semiempirical
models which account for such energy-dependent shell
effects we selected the models of Ignatyuk, Smirenkin,
and Tishin® (IST model) and of Kataria, Ramamurthy,
and Kapoor® (KRK model). Both of them relate the shell
effects of the level densities to the ground-state shell
correction

Eshell =Mexp_Mdrop ’ (10)

defined as the difference of the experimental mass M.,
and the liquid drop mass M ;,,.”

The IST model® employs in Egs. (9a) and (9b) an
energy-dependent a parameter

[1—exp(—yU)]
U

a(U)Zﬁ 1+Eshell (11)

Here, @ is the asymptotic a parameter which should ex-
hibit no shell effects. The parameter y was determined
by comparison with calculations using more realistic sin-
gle particle states. This model was later refined in Refs.
30 and 31 by accounting for collective enhancement and
for pairing correlations.
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The KRK model® starts from a Fourier expansion of
the shell fluctuations of the single particle state density.
The last three relations of Eq. (9a) are replaced by

mw*t’cosh(rot) 1

U—A=at’>+E,,
hell sinh¥(7ewt)

m2w?t cosh(mwt ) Tt
sinh¥(7rwt) sinh(7et )

E shell
t

S(U)=2at +

>

(12a)
pw=8a12y_ap~.
m

Again @ represents the asymptotic a parameter and
w=w()A 1/3 ,

where A is the mass number, is related to the major shell
spacing. For the spin cutoff factor the following expres-
sion is proposed:
o’ U)=—1-2—6w , (12b)
#i 2a
where S (U) is the entropy defined in Eq. (12a).
Ramamurthy et al.3? pointed out the close relation be-

TABLE III. The resulting level density parameters.

IST model KRK model

Individual FG model y=0.404""17 MeV~! ©0=0.174%"3 MeV™!

parameters a MeV~h a Mev™ a (Mev™)
YAr 6.80+0.27 5.56+0.22 5.31+£0.24
4K 6.09+0.10 5.35+0.09 5.30+0.10
41Ca 5.99+0.11 5.84+0.11 5.83+0.11
$Ca 7.3510.14 6.42+0.12 6.35+0.13
S¢ 7.09+0.13 6.41+0.11 6.3710.12
Ca 7.44+0.14 6.51£0.12 6.42+0.13
¢ 6.761+0.07 5.94+0.06 5.89+0.06
ITi 6.35+0.15 5.97+0.14 5.93+0.15
MA"% 6.68+0.13 6.5410.13 6.5410.13
“Ti 7.21+0.16 6.99+0.15 6.98+0.15
v 6.81+0.08 6.63+0.08 6.63+0.08
Sty 6.421+0.06 6.55+0.06 6.55+0.06
SIcr 6.56+0.08 6.85+0.09 6.85+0.08
5Cr 7.36+0.16 7.13£0.16 7.10+0.16
Mn 6.71+0.08 7.07+0.08 7.07+0.08
Fe 6.57+0.11 7.73£0.14 7.67+0.12
S"Fe 7.54+0.10 8.09+0.11 8.08+0.10
S1Co 6.76+0.07 7.97+0.08 7.88+0.08
Fe 8.56+0.23 8.421+0.23 8.41+0.23
$Co 7.45+0.08 7.93+0.09 7.92+0.08
Ni 6.97+0.06 8.30+0.08 8.191+0.07
*INi 7.82+0.11 8.40+0.12 8.39+0.11
ONi 8.68+0.15 8.65+0.15 8.651+0.15
Cu 8.18+0.12 8.56+0.12 8.56+0.12
¢Zn 10.07+0.09 9.19+0.08 9.15+0.09
“Ga 9.94+0.09 9.43+0.09 9.42+0.09

Average

parameters

a MeV™h 0.138 0.138 0.137

X* (MeV~2) 14.642 2.111 2.090
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tween the IST and the KRK models. In this context the
authors proposed the following weak dependence on the
mass number A of the parameter y of the IST model:

y=ro4"'",

which we adopted in this paper.

From the average s-wave resonance spacings listed in
Tables I and II the level density parameters a and @ of the
three previously mentioned models were deduced. We
assumed that at the relevant excitation energies the level
density is parity independent. For the moment of inertia
© in Egs. (9b) and (12b) we used the rigid body value
(1/#2)©=0.01504°"® and for the pairing correction A
the values proposed by Gilbert and Cameron.> The re-
sults are listed in Table III. In view of the relatively nar-
row mass range we tried to represent the asymptotic a
parameters as a linear function @ =a A4 of the mass num-
ber A. The constants a and y, or w, of the IST and the
KRK model, respectively, were found by minimizing the
quantity

X2=2 (a[—aA[)z y
i

where the subscript i refers to the individual nuclei. The
resulting parameters ¥, and o, are listed in the second
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FIG. 4. Ratio of the deduced level density parameters to the
mass number A (crosses for neutron and circles for proton reso-
nances) and the results of the least-squares fits (solid curves) de-
scribed in the text. For the FG model (a) the quantity @ stands
for the parameter a of Eq. (9a) while for the IST model (b) and
the KRK model (c) @ represents the asymptotic level density pa-
rameter @ defined in Egs. (11) and (12a).

2547

line of Table III and hold for the following individual
asymptotic a parameters. An analogous fit was also per-
formed for the parameters a of the FG model. The re-
sults of the linear least-squares fits are shown in the lower
part of Table III. Figure 4 and the x? values of Table III
show that, in contrast to the parameter a of the FG mod-
el, the asymptotic level density parameter @ of the IST
and KRK models are quite well described by the relation
d=aA. Both models yield very similar results with a
mean-square deviation of the individual asymptotic a pa-
rameters from the relation d=a 4 of about 4.3%. The
spread of the @ values, however, is still definitely larger
than the values due to the experimental errors of the
quantities D (see last line of Table III). This indicates
genuine deviations of the true @ values of a few percent
from a smooth behavior.

The errors listed for a and @ reflect only those of the
underlying quantities D. Additional uncertainties result
from the neglect of a parity dependence of the level densi-
ty as indicated by the data of Agrawal et al.® Account-
ing for the reported difference of the densities of positive
and negative parity resonances with spin /=1 of >Cr de-
creases the respective parameters a and @ of Table III by
about 5%. As an indication of the effects of uncertainties
of the moment of inertia © we mention that a reduction
of this quantity by a factor of 2 decreases the parameter a
for all three considered models by about 12%.

If combined with a constant temperature form for the
lower excitation energies, as suggested by Gilbert and
Cameron,? these models can be used to deduce level den-
sities for application oriented cross section calculations.
The IST and KRK models offer clear advantages com-
pared to the FG model. Apart from providing a more
realistic energy dependence of the level densities, the sim-
ple relation between the parameter @ and the mass num-
ber allows a more reliable assessment of this parameter
for nuclei with no resonance data.

We also determined level density parameters for two
other simple models: the back-shifted Fermi gas model
and the extended IST model described in Refs. 30 and 31.
In the former case the level density parameters a show
similar features as those displayed in Fig. 3(a) and the
back shifts also exhibit considerable scatter. The asymp-
totic a parameters resulting from the extended IST model
are well represented by the relation @ =a A. However,
the numerical values of the constant a (@=0.093 with
and a=0.113 without consideration of vibrational
enhancement) and consequently also the asymptotic level
densities differ from those of the original IST model.

VI. COMPARISON OF THE RESONANCE SPACINGS
WITH PREDICTIONS OF THE MICROSCOPIC
FERMI GAS MODEL

The nuclear level spacings determined from both neu-
tron and proton resonance experiments were also com-
pared with the corresponding results of a microscopic
theory which includes the nuclear pairing interaction.
The formalism of the code used* is described in Ref. 34.
For the calculation of the single particle levels, the pa-
rameters of Seeger and Perisho’® were used. Since all nu-
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clei considered have odd mass, the presence of one un-
paired nucleon must be accounted for in the calculation.
As the blocking effect due to the odd particle is not in-
cluded in the computer program, an empirical method of
considering this effect was chosen. Such procedures were
suggested by Behkami and Huizenga.’® We made the cal-
culations for the odd-A4 nuclei, using only 50% of the
Gilbert-Cameron pairing energies® for that type of nu-
cleon whose number is odd, and 100% for the other type.
The resulting level densities were also compared to those
calculated for the adjacent 4 + 1 even-even nuclei with
full pairing energies. The energy shift resulting from the
above parameter choice which accounts for the addition-
al quasiparticle is around 2 MeV.

According to our calculations, both parities contribute
equal amounts to the level density at the projectile bind-
ing energy. A deviation of p* /p~ at the binding energy
from unity had been obtained by Mengoni et al.>” and is
physically more satisfactory.

The D values resulting from the microscopic Fermi gas
calculation are presented in Table IV for s-wave proton

TABLE IV. Comparison of experimental and calculated (mi-
croscopic Fermi gas model) proton and neutron resonance spac-
ings of odd- 4 with nuclei with 4 =41-67.

Average
excitation ﬁexpa D,
Nucleus energy (MeV) (keV) (keV)
SR 10.21 11.5£1.5 11.2
3Sc 7.49 27.0£3.3 52.4
5S¢ 9.45 9.1£+0.7 10.0
v 7.75 36.0+4.8 14.8
vy 9.56 10.6+1.0 9.4
sty 10.65 7.9+0.6 9.0
Mn 10.50 7.1+0.7 3.9
1Co 8.82 19.4+2.4 29.7
1Co 9.59 13.3+1.1 18.6
¥Co 10.22 4.3+0.4 49
Cu 9.03 5.9+0.7 4.4
Ga 8.42 2.5+0.2 1.0
Average

excitation Bepr D,

Nucleus energy (MeV) (keV) (keV)
YAT 6.42 70.2+17.0 54.1
41Ca 10.80 32.6+4.3 29.4
$Ca 8.22 15.8+2.1 23.6
4Ca 7.70 24.1+3.2 38.8
41T 9.07 25.0+4.4 13.4
“Ti 8.32 18.3+£2.9 64.6
sicr 9.56 13.3+1.3 17.9
5Cr 6.70 54.4+8.2 25.7
S5Fe 9.55 18.0+2.4 31.5
STFe 8.10 19.2+1.9 22.0
Fe 6.76 25.4+4.9 249
¥Ni 9.33 12.5+0.9 14.9
SN 8.10 13.9+1.5 15.0
63Ni 7.14 15.0£2.0 14.4
$7Zn 7.24 4.0+0.3 1.8

?From the publications quoted in Table II.
®From the publications quoted in Table I.
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FIG. 5. Comparison of level densities from the microscopic
FG model (solid lines) and the IST model (dashed lines) for *'K,
5Fe, and ®Ni.

and neutron resonances. The ratio of calculated to exper-
imental D has a mean value of 1.02 for proton resonances
with a standard deviation of 0.46, and 1.21 for neutron
resonances with a standard deviation of 0.75. There is a
correlation of merely 0.07 between the ratio of theoretical
to measured D and average excitation energy, indicating
that there is not a systematic problem with the slope of
the level density.

A comparison of the level densities resulting from the
microscopic Fermi gas model and the model of Ignatyuk
et al.’ for 3 of the 26 nuclei considered is displayed in
Fig. 5. The agreement is surprisingly good, given that no
adjustment procedure has been used for the microscopic
calculations. The discontinuity®® of the pre-exponential
factor (determinant) in the level density at the critical en-
ergy is due to an inaccuracy in the formalism>’ in the su-
perconducting phase and should be of minor influence on
the resonance spacings. The relevant energies are above
the critical energies except for ®'Ni where the discon-
tinuity is small.

VII. CONCLUSIONS

The results of this paper can be summarized as follows.

(i) High-resolution proton resonance data can be used
to determine nuclear level densities with about equal ac-
curacy as achieved in modern neutron resonance experi-
ments.

(i) Comparison of average s-wave spacings derived
from both proton and neutron resonance data clearly
show that both types of data give consistent results, indi-
cating that the problem of missing levels can be handled
adequately in both cases.

(ili) After conversion to a common excitation energy
the spacings show a definite correlation with the shell
correction energy Eg ., especially for 4=41, 55, and 59
where data exist for three isobars with quite different
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shell correction energies. The dependence of the average
level spacing D on E,, is approximately exponential, in
good agreement with the IST (Ref. 5) and KRK (Ref. 6)
models.

(iv) The observed average resonance spacings can be
reasonably well described within the phenomenological
IST and KRK level density models which contain an
empirical shell correction, and the microscopic Fermi gas
model including pairing. Attempts to describe the data
with a simple Fermi gas model produced much poorer re-
sults.

(v) When the results from the phenomenological IST
and KRK models in which two adjustable parameters are
fitted to the data, and the microscopic Fermi gas calcula-
tions are compared, the quality of the description of the
experimental resonance spacings by the former is some-
what superior. This can be estimated quantitatively by
comparing the rms values of the quantity ln(ﬁexp/Dcalc)
for the two cases. For the microscopic Fermi gas model
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a value of 0.51 is obtained from the data in Table IV. For
the IST and KRK models this quantity can be derived
from the spread of the @/ A values around the straight-
line fits in Fig. 4. From the observed rms value of 4.3%
and the sensitivity of the level density to the @ value one
obtains an rms value of ln(Dexp/Ecalc) of about 0.34, con-
siderably less than the value of 0.51 obtained for the mi-
croscopic Fermi gas calculations. Thus for estimating
level densities for nuclei in the mass range studied in this
work for which no resonance data are available it still
seems best to use the IST or KRK model. Further
refinements of the microscopic Fermi gas model may
change this situation.
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