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Sernidecoupling in doubly odd deformed nuclei
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Structures in which a neutron occupies an 0 2 orbit with decoupling parameter a„=1 and a

proton is in an Q~ 2 orbit have been found in a doubly odd deformed nucleus. These bands are

almost identical to the Q~ 2 bands in neighboring odd proton nuclei. This behavior is repro-

duced analytically within the two-quasiparticle-plus-rotor model.

During the last few years a significant effort has been

done to understand doubly odd deformed nuclei, particu-
larly in the upper rare-earth region. ' This work is reveal-

ing a wealth of very interesting structures and is starting
to lead to a general classification of the ways two distin-

guishable particles couple to each other.
In this context, structures in which Q 2 orbitals are

involved (as expected in decoupling phenomena) play a
special role. Just one by now firmly established example is

that of the doubly decoupled band in which both particles
occupy predominantly Q —,

' orbits. 3 6

We report here on a new type of semidecoupled struc-
ture'3 in which one of the odd valence quasiparticles is in

I

an Q 2 orbit while the other moves mainly in one, or
several, intrinsic states with Q W 2 .

We shall first explore the most simple model which con-
tains the essential ingredients, namely (to fix ideas) the
coupling of Q,„2 to Q~e —,'. This coupling produces
two intrinsic states in the doubly odd system characterized
by the total projection quantum number Ky Q~+' Q„,
which are degenerate except for the possible presence of a
proton-neutron (p n) re-sidual force, V~„. For each value
of the total angular momentum I (except I K & ) one has
two states coupled by a matrix element proportional to the
neutron's decoupling parameter a„. The 2&2 matrix to be
diagonalized is

I(I+ 1)—K)
—a„[(I—K )(I+K +1)]'"

—a„[(I—K & )(I+K& +1)]'

I(I+ 1)—K (

E+ I(I+1)——,
' [K +(K—1) ]

+' [a„I(I+1)+—,
' —K(K —1)(a, —1)] ' (2)

(The K 1 case corresponds to the doubly decoupled band
and has to be treated separately. )

For a„~1 one gets for the lowest eigenvalue

E — (I——,
' )(I+ —,

' ) —(K ——,
' ) (3)

If one defines I' I——,', this expression goes over into

E -I'(I'+1) —Q,' ——,',
which is exactly the same law followed by the A~ band in
the neighboriny odd proton nucleus (except for the small
constant shift 2 which is not reflected in the transition en-
ergies). The Q„—,' quasiparticle acts as a spectator.
Furthermore, the bandhead energy given by (4) [or (3)]
for I K (or I' K ——,

' Q~) coincides with the energy

where A is the inertia parameter Ii 2/2J.
The intrinsic energy is a scalar matrix if the p-n force is

neglected. Actually this force would enter as the
Gallagher-Moszkowsky splitting through the diagonal
of matrix (1) due to the ~ 0 selection rule (here

K( K) —1=K—1).
The two eigenvalues of matrix (1) in units of A are

of the unmixed state I K & K —1 and the difference
between the two eigenvalues for each value'of I(~ K) is

E+ —E — 2I+ 1, (5)

which is exactly the energy difference between consecutive
transitions along the lowest lying band. Summarizing,
one obtains two degenerate rotational bands: I K&,
K& +1,. . . and I K &, K&+1, . . . , which have exactly
the same transition energies (in units of A) as the Q~
band in the neighboring odd proton nucleus but have spin
values shifted by one unit. The deviations with respect to
this behavior will allow us to obtain the difference
&K& ) V~, [K&&—(K& ) V~, )K&) of the p-n interaction
expectation value in the unperturbed bandhead states.

Figure 1 shows a comparison between the n 2 [404]
band in ' ' Lu (Ref. 9) and the +&+[404]vz [521]
band in ' Lu (Ref. 10). At least one of the predictions
made above seems to be fulfilled with a striking accuracy
on account of the fact that in the neighboring odd N nu-
clei of Hf and Yb one finds"' low-lying —,

' [521] bands
with decoupling parameters a„=1. The second predic-
tion, namely the existence of the nonyrast I K (,
K & +1,. . . sequence essentially degenerate with the yrast
one, is also verified (see Fig. 1) but with less accuracy.
However as the spin increases (and the residual p-n in-
teraction becomes less important than the Coriolis cou-
pling which depends on the magnitude of the spin) one
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FIG. 1. Comparison between x-', + [404] bands in odd
' 3'75Lu and the tt-', [404] 181 v-,' [521] band in ' Lu.

clearly sees a tendency of the state of spin I of the non-
yrast structure to have the same energy as the state of spin
I+1 of the yrast one (see, e.g., the I 7 state and the
second I' 6 state in Fig. 1). For instance, from the en-

ergy splitting of states of the same spin it is possible to ob-
tain the quantity (K) i Vt,„i K) ) —(K( i Vt,„ i K() which
turns out to be —70 keV.

The results discussed above are not restricted to the
simple two-band (Ky) system. If an Q, & quasiparti-
cle is coupled to another one which is allowed to move in a
whole set of Nilsson orbits [Qb} one obtains an yrast band
in the doubly odd system which is identical to the yrast
band of the odd mass nucleus ([Qb} system) provided
a, ~1.

For example, one such Q, & particle (which just
enters into the calculation through its decoupling parame-
ter) has been coupled to another one moving in the seven
i '& -parentage Nilsson orbits. From a mathematical point
of view the problem amounts to diagonalize a 14x14 ma-
trix where now also the intrinsic energy (which is no
longer a scalar) has been taken into account. If a, + 1

the results are numerically identical to the ones obtained

by diagonalizing the 7x7 matrix in the odd mass system.
This behavior is related to the one displayed by the sem-
idecoupled bands discussed in doubly odd Tl (Ref. 13)
and Ir (Refs. 1 and 3) nuclei (trh —', 8 vi —", system). The
semidecoupled band follows the general behavior of the
nondecoupled particle (for instance, the staggering behav-

ior); however since in this case the decoupling parameter
of the decoupled particle is larger than one (and also
states other than the Q —,

' orbit participate) it turns out
that the doubly odd system presents a sequence of
compressed transitions until it reaches transitions of the
same magnitude as those found in the nondecoupled band.

The coupling scheme discussed here may also be
relevant for the understanding of two-quasiparticle bands
in even-even nuclei where both particles move in different
orbits (e.g., negative parity bands). Here the problem be-
comes identical to the one in a doubly odd nucleus. For
example, the lowest lying negative parity band in 'soOs

(Ref. 14) shows an odd-even staggering of very similar
magnitude than the i '2' -parentage bands in ' 9' 'Os
(Refs. 15 and 16), where one also finds as low lying bands
the 2 [521] structures. We hence propose for the 4
band in ' Os an intrinsic structure dominated by the
v[2 [521]i '2' } configuration at variance with the earlier
interpretation. '

Summarizing, rotational structures, recently found in a
doubly odd deformed nucleus, which are almost identical
to bands known in neighboring odd proton isotopes can be
described analytically by coupling an Q —,

' neutron with

decoupling parameter near unity to Q~ —,
' states. The

relevance of this semidecoupled scheme for distorted neg-
ative parity two-quasiparticle bands in even-even nuclei is
suggested pointing to the importance of spectroscopic
studies on doubly odd nuclei for the understanding of
band structure in general.
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