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P-band moment of inertia anomaly
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The moment of inertia of the K 0+ bands in some of the rare-earth nuclei differ from other
low-lying bands. Using the 1/N expansion technique, we show that the interacting boson model
with arbitrary kinds of bosons and interactions leads to the same moment of inertia for all bands
and hence does not allow such a variation to leading order. Since there are usually more 0+
bands in this region than can be accommodated in collective models, this could provide a useful
criterion for the selection of the collective P band.

The success of the interacting boson model' (IBM) in
systematically "explaining" the structure of nuclei over
extensive mass regions is well known. Particularly for
even-even nuclei, extensive tabulations of model parame-
ters have been derived to cover a wide range of nuclei.
The properties of the low-lying collective states in even-
even nuclei are adequately and uniformly treated in the
model and generally this is true for states below the pair-
ing gap as recently reviewed by Warner and Casten.
There is, however, a notable exception. In the rare-earth
nuclei, where band structures are most pronounced, the
P-band moment of inertia systematically differs from oth-
er bands. This problem was first raised by Bohr and Mot-
telson, 3 and the inability of the standard (sd) IBM to re-
store the deviation has been recently stressed. 2

Commonly, the P band is taken as the lowest excited 0+
band. However, especially in the rare-earth nuclei, there
are usually several K 0+ bands in close proximity not all
of which can be accommodated in the collective model
space. Thus care must be exercised in choosing the P
band among several candidates. The purpose of this paper
is to show that the 0+ rotational bands with markedly
different moment of inertia are outside of the IBM model
space, and demonstrate with some examples that the
above problem may be due to the wrong choice of the P
band.

In a recent series of articles, we have developed an
angular momentum projected mean-field model which en-
ables algebraic study of rotational systems and investiga-
tion of the role of higher spin bosons neglected in the stan-
dard IBM. Extension of the model from (sd) to (sdg) bo-
sons offers explanations for (i) the extra bands (especially
K -1+ and 3+ bands) observed in some rare-earth nuclei,
(ii) absence of the predicted boson cutoff in 8(E2) values
at spins L =2N, (iii) Ml transitions among low-lying
states, (iv) g-factor variations along the ground band.
The possibility has been raised that the extra g-boson de-
gree of freedom could also resolve the P-band moment of

I

inertia anomaly. In the previous work, we had used a
simple quadrupole interaction, which is sufficient to
demonstrate the above features, and to leading order, it
leads to the same moment of inertia for all bands. Here
we show that even allowing for arbitrarily high spin bo-
sons and using a general Hamiltonian does not change this
conclusion.

We consider a boson system with spins
0 0,2,4, . . . ,p) interacting via a general IBM-1 Hamil-
tonian with one- and two-body terms

2

H ~get nt + tck T ~ T (1)
0

Here nt is the boson number operator and T "1 is the bo-
son multipole operator given by

T(k) gt [blab ](k)
jl

(2)

The parameters of the Hamiltonian consist of the single
boson energies et, the multipole strengths and coefficients
tck and tkjt, respectively. The intrinsic boson operators
bt pixt btt provide a natural basis for low-lying col-
lective bands which can be written as a condensate of N
bosons and its simple excitations

(b ) =—iN), iIyK) -btc iN —I). (3)

The structure coefficients xt are dynamically determined
from (H)

&H&K, L ( K(tI» KlKe )K/& ((lKKPKI '((&K, (4)

by variation after projection (VAP) (Ref. 6).
Calculations for all multipole interactions are rather

similar to the quadrupole interaction which is discussed at
length else~here. Therefore, we give here only the final
results. The ground-band expectation value of the Hamil-
tonian (1), to first layer (i.e., to first order in excitation
energies and moments of inertia) is given by

(H)s, L NE+ 1 — E — +gtck ' N(N —1)(Ak) +NCk+N 1—L Ei 2 L
2yN 2y 2yN

x 2(Ak)
1 k l

2Ak( (I bko) Ak Ak (Dk) bki odd
2y 2 2y
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where L L(L+1) and the various quadratic forms are
defined as

Akn Zj "&j010 I ko&tkjlxjxl,
jl

c» -Z 2k+1
j( 2I+1

Dk gj '
&jl!0[ k I )tkj(xjx(,

jl

E„gl"s(x(, y —,
' glx( .

For convenience, we have suppressed the subscript n in
I

Ak„when n 0 and also the quantum number m 0 in the
ground-band mean fields in order to distinguish it from
the P band. Special choices of parameters provide a check
on Eq. (5), e.g. , the one body part gives N for the number
operator (s( 1), and choosing the dipole operator as the
angular momentum operator [t~j( hj([l(l+1)(2l+1)/
3] 'j ] gives L. Notice that Ak -0 for odd k and the odd
multipoles are suppressed by 1/1V compared to the even
ones. Thus, assuming similar multipole strengths, the
leading order mean-field amplitudes are not affected by
the odd-multipole interactions. Calculations of this form
give for the expectation value of the single-phonon K
bands

&H)x, t. &H)g, L+ E(K) —E — 1 — —E'bxpL b

2yN y

+Z(rk 2N [[A»(K) Ak]Ak+ [Bk(K)] ] N 1 A»B»(0)~Kp
k 2yN y

with the quadratic forms defined as

Ak(K) -g( —) &j Kl —K I k0&tkjlxjxx(K,
jl

Bk(K) -g(j K10
~ kK)tkjlxjKxl

jl

E(K) Zc(x(K', E Xs(x(px(, b glx(px(.
( (

The moment of inertia of various bands is given by the
inverse of the L terms in Eqs. (5) and (7). Continuing the
1/N expansion leads to band specific corrections of order
1/N which is in line with the small variation observed in

the moments of inertia of most low-lying bands. From Eq.
(7), it appears that, to leading order, all bands have the
same moment of inertia except for the excited K 0
bands. In fact, as is shown below, the extra b't(p terms in

Eq. (7) disappear after variation, and the moment of iner-
tia of the K 0 bands come in line with the others.

Applying the variational principle to the ground-band
energy leads to the set of equations

(&H), , —) x x) -0, !-0,2, . . . ,p,
X(

subject to the condition I x 1. These equations can be
solved order by order using the following ansatz for the
structure coefftcients:

O y( Z(
x( x(+—+ L, I 0 2, . . . ,p.

N
(io)

Denoting the leading order terms in the energy formula
(5) by H, the next order by H', etc. , Eq. (9) can be cast
into the form

I

where we have used the fact that Eq. (9) should be
satisfied independently for each order (1, 1/N, L/N )
leading to Eqs. (1 la), (1 lb), (1 lc), respectively. Similar
sets of equations can be written down for the other bands
where Eq. (1 la) remains intact, but Eqs. (lib) and (llc)
are different because of the changes in the higher order
terms H ' and H . Restoring the normalization factors
x x in H, we obtain from Eq. (11a)

41V ga»A» gtkj(xj —Akx( +2N(e( E)x(
k i j

(i2)

where tkj( &j0l0( k0)tkj( and we have suppressed the su-

perscript 0 for convenience. Contrary to the odd mul-

tipoles, the one-body terms are included in Eq. (12) be-
cause the 1/N suppression factor is compensated by the
much larger single boson energies. Multiplying Eq. (12)
byx( and summing over l gives)I. 0. Thus Eq. (12) can
be written in the more suggestive form

Z Z(r»A» tkjl+ bjl xj QK» (Ak ) + x( ~

&(

J 2N J

which forms a set of coupled nonlinear equations and has
to be solved numerically by iteration. For our purpose,
however, it is sufficient to note that the extra 8'~o terms in

Eq. (7) (denoted as Hp) can be written as

Hp —N 1— 2b
~k0

2yN y

[HP —kx x]„o=0,
X(

[H A,X ' X]xo~r(IV +
aXI

[H Xx. x] o+,~j~z+
8XI

H'
o

8H
axl

(i ia)

(1 lb)

(i ic)

8(xg QK»A»tkjl+ Bjl xjxlp.
jl k 2N

Substituting Eq. (13) in (14) gives

(i4)

H(( N 1 bkp gxk (Ak ) + x' xp,
L 2b E

2yN y 2N

(is)
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which vanishes due to the orthogonality of the ground and

p bands.
To complete the proof, we next consider the effect of the

variation on the energy formulas [Eqs. (5) and (7)1. Be-
cause of the extra bxo terms given in (14), Eq. (11c) for
the K 0+ bands is different than the others (derivative
of Hp with respect to xI does not vanish). Thus, the
coefficients z are different for the K-0+ bands, and in
turn, this could lead to a variation in the moments of iner-
tia.

We need to substitute the ansatz (10) only in the lead-
ing order term H, since the others (H', H ) contribute to
higher order than the first layer. To the same order, this
can be written as

Ho xo+~+ L
N

HH (x )+g —+ 2L . (16)
N N' rix&, 0

The correction terms in Eq. (16) vanish by virtue of the
Hartree-Bose equations [(1la)-(13)], and hence, Eqs. (5)
and (7) remain the same after variation. In other words,
the leading order 1/N expansion results for the band exci-
tation energies and the moments of inertia are not affected
by variation. This is an important result in itself which
greatly simplifies the application of the 1/N technique in
complex situations.

We have tested the leading order 1/N results against
exact numerical diagonalization using the computer code
SDGBOSON. Calculations, carried out for a quadrupole
interaction plus single boson energies, indicate that the
relative error is always less than 1/N and becomes much
smaller for N ) 10. It appears that band mixing effects,

which are still important for small boson numbers
(N =6-7) as indicated by staggering in the y band, rap-
idly die off with increasing N and become negligible for
N ) 10. Thus for deformed nuclei, the leading order 1/N
results are accurate within a few percent.

In the rest of the paper, we examine the available rare-
earth data in the light of the previous results. In Table I,
we list the energies and the moment of inertia ratios
Rx lp/lg of the y and K=0+ bands in the Dy, Er, Yb,
and Hf isotopes. Included in the list are only the well
formed rotors with energy ratio E4/E2 close to 3.3. In-
spection of the table shows that the ratio R„mostly stays
in the vicinity of 1, and only in a few cases the deviation is
larger than 1/N. Exceptions occur in the Hf isotopes
(174-176) where R~=0.85. In fact, in these nuclei,
there is staggering in the y band and the moment of iner-
tia is not very well defined. Taking into account band
mixing eff'ects or simply using the even members of the y
band in extracting the moment of inertia rectifies R~ here
also. The situation is rather different for Rp which shows
ffuctuations much larger than 1/N, sometimes as large as
1.5. Nevertheless, in the majority of nuclei in Table I,
there is a K 0 band with Rp close to 1, though in some
cases it is the second excited 0+ band (e.g., Er isotopes).

The E2 transition rates could provide some further evi-
dence as to the collectivity of the 0+ band. In the con-
sistent Q formalism (i.e., the same quadrupole operator is
used in the Hainiltonian and the E2 operator), the leading
order P g to y g B(E2) ratio is given by

B(E2; 2p~ Os) 1 B2(0)
B(E2;2„~Og) 2 B2(2)

where B2(K) are defined in Eq. (8). For a simple quadru-
pole Hamiltonian, the eigenmode condition holds, and this

TABLE I. Energies (in keV) and moment of inertia ratios of y and K 0 bands in rare-earth nuclei.
Data from Ref. 9. The underlined 0+ bands have Rp„&(0.1.

Dy

Er

Yb

Hf

158
160
162
164
162
164
166
168
170
166
168
170
172
174
170
172
174
176
178
180

13
14
15
16
13
14
15
16
17
13
14
15
16
17
13
14
15
16
15
14

E„

946
966
888
762
901
860
786
821
934
932
984

1146
1466
1634
987

1075
1227
1341
1175
1300

R„

1.01
1.04
1.07
1.10
1.01
1.06
1.10
1.06
1.03
0.96
1.06
1.05
0.95
1.01
1.00
0.90
0.84
0.85
0.99
1.15

Ep

991
1275
1131
1655
1087
1246
1460
1217
891

1043
1154
1069
1043
1487
880
871
828

1150
1199
1107

1.05
1.16
1.08
1.21
1.22
1.33
1.20
1.34
1.14
1.01
1.1 1

1.22
1.05
1.04
1.24
1.16
1.26
1.15
1.20
1.01

Ep

1400

1420
1702
1703
1422
1324

1197
1229
1405
1886

1336
1239
1293
1434
1164

1.50

1.27
1.07
0.99
1 ~ 12
1.30

1.10
1.09
1.10
1.05

1.50
1 ~ 14
1.04
1.50
0.97
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ratio vanishes. However, in realistic applications, one
should add the single boson energies in the Hamiltonian.
We have performed some simple calculations in the (sdg)
IBM framework including a g-boson energy of 0.5-1.0
MeV. Rough fits to the energies indicate that the ratio
Rp, stays in the vicinity of 0.1. Experimentally, R~,
changes between 0.1 and 0.5, except for the underlined 0+
bands in Table I for which Rp„((0.1. Notice that all of
these bands have anomalous moment of inertia. Con-
versely, in the Yb isotopes where Rp„ is larger than 0.1,
R& = 1. Thus, the E2 data appear to support the idea that
the 0+ bands with anomalous moment of inertia are not
collective P excitations but rather 2-qp excitations.

In summary, using the 1/N expansion formalism in a

general IBM framework, we have shown that for well
formed rotors, all collective bands have the same moment
of inertia to leading order. This result is quite general and
inclusion of higher spin bosons or arbitrary two-body in-
teractions does not change it. Examination of the energy
systematics and the E2 data in the rare-earth nuclei sug-
gests that the choice of the first excited 0+ band as the
collective P band is not well founded and those with anom-
alous moment of inertia appear to be outside the collective
model space.

The authors would like to thank D. D. Warner for help-
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