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Potential separable expansion approach to scattering on Coulomb-like potentials
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An approximation method based on the separable expansion of the potential is described that can
handle complicated local or nonlocal Coulomb-like potentials in scattering state calculations.

Almost all particles involved in nuclear physics are
known to be composite, so they should be considered as
clusters of more elementary particles. To avoid the incal-
culable N-body equations, it has been proposed to seri-
ously consider them in a certain domain of physics to be
pointlike particles and to put all information on their
internal structure and on the Pauli principle into their
effective interaction. ' Such an effective interaction has a
local part, which comes from the direct interaction of the
constituents, and a nonlocal part, which comes from the
Pauli exchange. The local potential is generally a long-
range Coulomb-like potential, while the nonlocal poten-
tial is of short range because the exchange between the
clusters takes place only when the clusters overlap.
Moreover, these potentials might have an explicit energy
and momentum dependence.

Handling a potential of this type is not trivial even in
the case of two-body problems. The method, based on
the direct numerical integration of the Schrodinger equa-
tion in coordinate representation can handle complicated
long-ranged local plus nonlocal potentials, but might be-
come quite troublesome for momentum-dependent poten-
tials. The momentum representation approach is applic-
able to practically any potential. In a clever way it treats
exactly the long-ranged Coulomb interaction, but the
solution of the equation on a momentum space grid is a
large numerical work.

A great simplification of the problem can be reached
by the separable expansion of the potential. In this
method the potential V, local or nonlocal, is approxirnat-
ed by a nonlocal separable finite-rank potential
V =g;J, ~X, )A,, (X, ~, and so the solution of the
Schrodinger equation is reduced to the solution of a sys-
tem of linear algebraic equations. Here, N defines the
rank of the expansion and ~g, ) are the form factors.
There are many ways of building up finite-rank approxi-
mations to a given potential. The form factors are gen-
erally chosen so as to rninirnize the rank of the expansion.
Various sets of functions have been proposed and applied
mainly to nucleon-nucleon potentials.

A flexible and easy-to-apply variant of the above
method can be gained by projecting the operator V on a
finite subset of a Hilbert space basis I ~

i ) )

This also leads to a separable expansion to the potential,

V(= Vc+ ~s( (4)

where Vc=Z&Z2e lr is the pure Coulomb potential and

V&( is a short-range potential. The radial wave function
u( of a bound or resonant state is the solution of the
homogeneous Lippmann-Schwinger equation

u()=gt «)Vst
l

u, ),
where gt (E)=(E H+ —Vc) ' is the—Coulomb-Green
operator and Ho( is the kinetic energy operator. This

and here the basis can be chosen so that a large part of
the work in the solution of the equations can be done
analytically. The use of the harmonic-oscillator eigen-
states as form factors was very successful in practical ap-
plications. The method was used, e.g., for looking for the
bound-, resonant-, and scattering-state solutions of a
given potential. These applications proved that the
method yields convergence at an acceptable small N for
any physical quantities such as bound and resonant state
energy, phase shift, wave function, etc. This is only pos-
sible if we use a special smoothing procedure, namely, in-

stead of (1) we approximate Vby
N

V= = g ~i)o;(i ~v~j)cr (j~ (&)
I,J =1

In the formulas the only modification implied is to re-
place (i

~

V
~
j) by o; (i

~

V
~

j)cr The .choice of cr;,

0'l
1 —exp I [a(i —N —I ) I(N—+ 1 ) ] I (3)

1 —exp( —a )

with a-6 has proved to be very successful in practical
applications.

The potential separable expansion (PSE) method, based
on the harmonic-oscillator eigenstates, however, failed to
cope with the long-ranged Coulomb potential in a simi-
larly simple way. Therefore, another basis set, the com-
plete set of Coulomb-Sturmian functions, was proposed
and the method was applied in bound- and resonant-state
calculations. The aim of this paper is to extend it to
scattering-state calculations and to demonstrate its power
in a nontrivial example, in the fishbone optical model.
First we recall some results of Ref. 8, which form the
background of this paper.

For the sake of simplicity we restrict ourselves to a
given partial wave l. A long-ranged Coulomb-like poten-
tial V( can be written in the form
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equation is solvable if and only if its Fredholm deter-
minant Dt(E}=det[l g—t (E)vst] is equal to zero and
these zeros give the bound- and resonant-states eigenva1-
ues. If the potential Vsl is approximated in the separable
way (2), Dt (E) boils down to a simple algebraic deter-
minant

Dt' ( E)=det [ 1 —g, V s, ],
where

and

are the Green and smoothed potential matrices, respec-
tively.

In the calculation of Dt (E) the most crucial point is
the calculation of the matrix elements of the Coulomb-
Green operator. To make this analytically possible we
choose the set of Coulomb-Sturmian functions' and per-
form a transformation on the Eq. (5). The Coulomb-
Sturmian functions are the Sturm-Liouville solutions of

I

the hydrogen problem. In coordinate representation the
bound-state Coulomb-Sturmian functions have the form

(r
I
nl & =S„t(r)=[n!/(n +21+1)!]' (2br)'+'

X exp( b—r )L„'+ '( 2br ),
where L is the Laguerre polynomial and b is a scaling pa-
rarneter which is connected to the energy in the Sturm-
Liouville equation. These functions are orthogonal and
form a complete set with respect to the weight function

1/r, so the set [ I

nl &] =[6'
I
nl &], where

(r
I
6

I

r'
& =l(r r')/—r, is orthonormal and complete in

the conventional sense. With
I ut & =b '

I
ut &,

g
c gl/2gcg1/2 a d V g —1/2V g —1/2 we ha

I
"t&=gt vst I

"t& (8)

It is easy to show that the transformation leaves the
Fredholm determinant unchanged.

To construct the Fredholm determinant, we need the
potential matrix, which, in general, can only be calculat-
ed numerically. It is possible, however, to set up a three
term recurrence relation between the matrix elements of
the Coulomb-Green operator

(n 'I g,'I n+11&=
(n+I+1)(4mE 2' b —) 4mhZ—~Z2e

2mE +Q2b 2

—[n(n +21+1)]' (n 'I
I g t I

n —ll &
—5„„[(n+1)(n+21+2)]

2mE +$2b2
(9)

1 1 ib /k—
2F, —I +iri, I; I +i rl+2;1+ig+1 1+ib k

(10)

which makes the calculation of every matrix element possible if g txi
——(Ol

I g t I
Ol & is at our disposal. This matrix ele-

ment also can be given in a closed form,
'2 '2

m 2ib /k
fg2b 1+ib /k

where k =(2mE/fi }' is the wave number,

g =Z, Z2e /k, and 2F, is the hype&geometric function.
Upon deriving (10), we have assumed that k lies in a re-
stricted area of the complex k plane, but the result is
more general because it can be continued analytically to
the whole complex k plane, except for a branch cut from
0 to —~.

We can calculate that matrix elements of the Green
operator nearly on the whole complex k plane including
the real k axis, so we have several ways to use our
method in scattering-state calculations. We could calcu-
late the S matrix directly from the Fredholm determinant
(see p. 522 in Ref. 11), or we could start from the inhomo-
geneous Lippmann-Sch win ger equation for the wave
function. Instead, we have chosen a more straightfor-
ward approach which wi11 be easy to generalize to mul-
tichannel problems.

The scattering amplitude of a Coulomb-like potential
can be written in the form A (k, k'}=A (k, k')
+A'(k, k'), where A is the pure Coulomb, and A' is
the Coulomb-modified nuclear scattering amplitude. The
amplitude 3' can be expanded into a fast converging
partial-wave series, and the partial-wave scattering ampli-

Ak
(k, —

I
tst(k+iO)

I kt +

where o-l is the Coulomb phase shift, 6l is the Coulomb-
modified nuclear phase shift, and (r

I
kt + & =Pt (k,r)—

are the radial Coulomb wave functions. The operator tsl
is connected to the potential Vsl via the Lippmann-
Schwinger —type equation

c C C
tsl = Vsl + Vslgl tsl . (12)

To make use of our formulas (9) and (10) we transform
our quantities according to Eq. (8). The operator

t C 6 ]/2t CE 1/2
SI SI

also satisfies the Lippmann-Schwinger —type equation
—C —C-Ct Sl VSl+ VSlg l t Sl

(13)

(14)

tude al' is proportional to the on-shell matrix elements of
the Coulomb-modified transition operator tsl between
Coulomb scattering states (p. 430 in Ref. 11)

i (20 (+6()
a,'= —e ' ' sin5,

k
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If the potential V&l is expanded in the Coulomb-Sturmian
basis

I
n! ), the operator t st has a similar separable ex-

pansion,

So, for the partial-wave scattering amplitude we arrive at

a('(k)= — g (k( —
I

b,
I

nl )

N

t si='si = 2 I
nl)ts, (n'1

n, n'=0
(15) x[t sil „.&n'1

I

~
I ki + & . (17)

and for its matrix we get

tsi=[[Vsil ' gI'—] ' (16)

We can immediately notice that everything, needed for
calculating a/(k) is already at our disposal, except for the
matrix elements ( ki +

I
b,

I
nl ). This can also be given in

a closed form via the three-term recurrence relation

(ki+ ID, In+11)= ( n +1 + 1 )(4mE —2A b ) 4mhZ—
&
Z2e

(k(+
I
5

I
nl)

2mE +$2b2

[n(n—+21+1)]' (kI +
I
6

I

n —11) [(n+1)(n+21+2)] (18)

with starting values

(ki h
I

b, I 01)=exp[+i o& +2 riarct na(k/b)]
exp(2m rt ) —1

' 1/2
2k /b

1+(k/b)'

' I+1 I 2 2
' 1/2

j(j+-,') (19)

We can also calculate the phase shift 51 from the relation

8I ——log[2ikal'(k)exp( 2io—I )+ 1]/2i . (20)

We show now the power of the method in the example of the two-cluster fishbone optical model. This model can be
considered as a Pauli-correct optical model of the interaction of composite particles. Its basis equation looks like a
Schrodinger equation with the Hamiltonian

H~"=~oI+ ~P" & I uI; )—& ui; I &ot+ ~P" e
I uii)~—'J & aij I

. (21)

Here 00I is the kinetic energy operator and VI'~' is a real
or complex local potential. The third term, to be inter-
preted as a nonlocal potential, represents the Pauli
effects. It is given in terms of the norm kernal eigenstates

I uI;) of the two-cluster system. The Pauli principle
enters through the symmetric matrix M ', whose elements
are equal to 1, whenever i or j refers to a fully Pauli-
forbidden state, and are equal to 1 —[(1—g; )/(1 —rl, )]'
otherwise, where g; are the normal kernal eigenvalues
and i (j. The fully Pauli-forbidden states are removed
from the physical part of the spectrum by choosing the
energy e; to be very high. We present the example of the
a —0' scattering with a potential

VP'= Vo(1+ Vtr )exP( P, r )—

cannot be displayed on this figure.
In this Brief Report the potential separable expansion

method based on Coulomb-Sturmian functions has been
presented for single-channel two-body scattering states.
The method treats exactly the part of the Hamiltonian
which has an effect on the asymptotic motion, viz. the ki-
netic energy operator and the Coulomb potential. We
have demonstrated that the short-range interaction is
well represented by our separable form if we use the z';

88

+ V2exp( P2r )+16e—erf(P3r)/r, (22)

where V0 = —139.16 Me& V1 =0.041 11 fm
P&

——0. 13428 fm, V2 ———1.67709 MeV, P&
——0. 18963

fm, P3=0.43546 fm ', and e; =300 MeV. The eigen-
states of the norm kernel operator are harmonic oscilla-
tor states of width parameter a =0.512 fm, and the ei-
genvalues are taken from Ref. 12. In Fig. 1 the line
represents the phase shift 51 at I =3 and E = 12 MeV as a
function of X with smoothing parameter a =6 while the
arrow shows the result of direct numerical integration.
The values without smoothing differ so much that they

85'—

82—'

to t5 zo

FIG. 1. The convergence of the phase shift 6 of the a —0"
scattering calculated by the fishbone optical model in
Coulomb-Sturmian basis.
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smoothing factors. The rate of convergence is rather
stable against any reasonable variation of the smoothing
parameter a and of the Coulomb-Sturmian parameter b.
The best choice for a is cx-6 while the best b depends on
the range of the potential. The method is as accurate and
fast as the other well-known standard numerical
methods.

The main advantage of our method lies in its generali-
ty. Any short-range potential, which has some relevance
to nuclear physics, can be treated in the same way, and
the solution of the Lippmann-Schwinger equation is re-
duced to the solution of some matrix equation. Moreover
all matrix elements, except for the potential matrix, have

been calculated analytically. The method can also easily
be extended to two-body multichannel problems. The
channel-coupling interactions are generally of short-
range type and they can be approximated by separable
forms. The multichannel Green operator is block-
diagonal in channel space and the blocks are our single-
channel Green matrices. So, everything that we need for
the matrix of the t-matrix operator is practically at our
disposal.
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useful discussions.
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