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We calculate the charge form factors and the rms charge radii of 'H and 'He using the wave func-
tions generated from the solutions of the Faddeev equations in momentum space with the new Bonn
one-boson-exchange momentum space potential. For the charge radii, we obtain, r, ('H) =1.72 fm

and r, ('He) =1.89 fm, which are in exce11ent agreement with the experimental data. However, our
results for the trinucleon charge form factors in the impulse approximation indicate no improve-
ment with regard to the experimental situation.

I. INTRODUCTION

In 1960 Faddeev published a rigorous method of solv-
ing the nonrelativistic three-body problem. His original
work became widely known in 1965 when an English
translation of his book on his method was published.
With the advent of better computers in the late sixties,
the Purdue ' and Utrecht groups developed several nu-
merical techniques for solving the Faddeev equations for
the H and He ground states with simple local nucleon-
nucleon (NN) potentials. In a series of papers ' during
the early 1970's, the Purdue group published the results
of their Faddeev calculations of the low-energy bound-
state properties of H and He using a "realistic" NN po-
tential [the Reid soft-core (RSC) potential]' using the
numerical techniques developed by the Utrecht group.
These results showed that the nonrelativistic model with
the RSC potential gives a reasonable description of most
of the low-energy bound-state properties of H and He
[binding energy of H, ' the root mean square (rms)
charge radii, ' asymptotic normalizations, ' magnetic
moments, " etc.]. However, their results also showed
small discrepancies (10-15%%uo} with the experimental
data: (1) The calculated triton binding energy is smaller
by —1 MeV, (2) the calculated rms charge radii are too
large, and (3) the calculated asymptotic normalization ra-
tio between the S and D states, ' C2/Co, is too small.
Subsequent refined Faddeev calculations' ' using the
RSC potential and other realistic NN potentials [Argonne
V14 (AV14), super-soft-core C (SSCC), ' de Tourreil-
Rouben-Sprung (TRS), and Paris potentials] have
confirmed the above discrepancies. In addition, there are
other known discrepancies: (4) The calculated Coulomb
energies for He are smaller than 640 keV compared to

the H- He binding energy difference of 764 keV, ' and
(5} the calculated spin-doublet neutron-deutron (nd }
scattering length ' is too large by approximately a fac-
tor of 2 as compared to the experimental value of
0.65+0.4 fm.

Recently, the Bonn meson-exchange model, which
takes into account the various "physical" mesons ob-
served in nature, has been proposed. Indeed, the Bonn
meson-exchange picture of the two-nucleon interaction
may be an effective low-energy limit of a more fundamen-
tal quark-gluon picture of quantum chromodynamics.
Being a full meson field theoretic potential, it has an add-
ed advantage in that one can in principle calculate the
contributions from meson-exchange currents to various
electromagnetic processes in a consistent manner. Furth-
ermore, it has already been applied to nuclear-matter cal-
culations with very promising results.

In recent Faddeev calculations with the new Bonn po-
tential, Brandenburg et al. ' obtained a triton binding
energy, Eb( H)=8. 34 MeV, using the momentum space
version (OBEPQ) of the potential, and Sasakawa ob-
tained Eb( H)=8. 33 MeV using the coordinate space
version (OBEPR} of the potential. This is to be com-
pared to the Reid soft-core and the Paris potential pre-
dictions of Eb( H)=7. 35 (Ref. 19) and 7.64 MeV, ' ' re-
spectively, and to the experimental value of
Eb( H) =8.48 MeV. Sasakawa also reports other
trinucleon calculations with Bonn OBEPR including the
asymptotic normalization ratio and the rms charge radii.
In addition, Klepacki et al. have calculated the asymp-
totic normalization constants with Bonn OBEPQ which
prove to be consistent with the results of Sasakawa. In
light of the above calculations, it remains to be seen how
the Bonn OBEPQ potential predicts the charge form fac-
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tors and the rms charge radii of He and H. We em-
phasize that the OBEPQ and OBEPR potentials are not
identical [for example, the J= 1 tensor coupling parame-
ter e, at 325 MeV (Ref. 36) is different between the two].

In this paper, we present the results of our calculation
of the charge form factors and the charge radii of He
and H using the wave functions generated from the solu-
tions of the Faddeev equations with the new Bonn
OBEPQ potential and also with the RSC potential for
comparison. In Sec. II we first give a brief history of the
experimental results, and a synopsis of the previous
theoretical eft'orts. After providing a description of our
wave functions and our numerics, we then present our re-
sults for the charge form factors and compare them with
the experimental data. Isospin decomposition of the
charge form factors is also made and is compared with
the recent data. In Sec. III we first discuss the incon-
sistencies in the experimentally extracted values of r, ( H }
and r, ( He}, and discuss possible reasons for the incon-
sistencies. Then we present our results for r, ( H) and
r, ( He ). Conclusions and a summary are given in Sec.
IV.

II. CHARGE FORM FACTORS

The first measurements of the charge form factors of
He 2 HHe and H, F,„"'(Q ) and F,h (Q ), were carried out by

Collard et al. in 1965 for momentum transfer squared
Q, 1.0&Q &8.0 fm, and the corresponding rms
charge radii of r, ( He) = l.87+0.05 fm and
r, ( H) =1.70+0.05 fm were extracted. Since then, more

He 2 Hmeasurements of F,h'(Q ) and F,h (Q ) have been
made for 0.032 fm &Q &100 fm and the corre-
sponding rms radii, r, ( He) and r, ( H), have been ex-
tracted. ' In 1970 McCarthy et al. measured

He 2
~
F,h'(Q }

~

for 0.032 fm &Q &20 fm and found
Hethe first minimum,

~
F,h'(Qm;„)I =0, at Qm;„=11 fm

and the secondary maximum
~
F,i",'(Q,„)

~

=6X10 at
Q2,„=16-19fm

Since then the first minimum and the secondary max-

imum of
~
F,h'(Q )

~

have been investigated with various
theoretical models. ' ' ' Most of these theoretical cal-
culations predict much smaller values of the secondary
maximum compared to the experimental value. Earlier
calculations were based on the impulse approximation us-
ing the variational method, truncated, and approxi-
mate Faddeev solutions with the Reid soft-core poten-
tial' efFective in 'So and S, D, partial-wav—e states
(J & 1). They all underestimated

~
F,h'(Qm, „)

~
by fac-

tors of 8-10. Later in 1975 the Purdue group' im-
Heproved the previous Faddeev calculation of

~
F,h'(Q )

~

for Q & 21 fm with J & 1 and obtained the first
minimum at Q =14 fm and the secondary maximum

at Q,„=18 fm with
~
F,h'(Q, „)

~

= 1.4X 10
which is still small by a factor of -4 compared to the
measured value. Since then, there have been many other

HeFaddeev calculations' ' ' of
~
F,h'(Q )

~
using the

RSC potential' as well as other realistic nucleon-nucleon
(NN ) potentials. More refined Faddeev calculations with

X g e 'p;(Q)

X 0 ~ (r, r2r, ),
where Q is the three-momentum transferred to the nu-
cleus, Z is the number of protons in the nucleus, and
4„(r,r2r3) is the antisymmetric ground-state wave func-
tion in configuration space. The charge operator p, (Q)
)s55

p, (Q) =e, (Q') —Q'e;(Q')/8M

(iQ o—; Xk.;)[2p;(Q ) —e;(Q )]/4M, (2)

where the last two terms are the Darwin-Foldy and spin-
orbit terms, respectively, and are relativistic corrections
to the first term. Corrections due to meson-exchange
currents are ignored. The quantities cr; and k; are the
spin and momentum of the ith nucleon, and M is the nu-
cleon mass. The operators e;(Q ) and p;(Q ) are defined
as

and

e;(Q )=—,'[I+r, (i )]Ffh(Q )

+ —,'[1—r, (i)]F,"„(Q ) (3)

P;(Q )= 2pz[1+r, (i )]F~m—,s(Q )

+—,'p„[1 r, (i )]F",s(—Q ) (4)

with r, (i) as the z component projection of the ith
nucleon's isospin. F~z"'(Q ) and F~',"'(Q2) are the
proton (neutron) charge and magnetic form factors, and
for the present calculation we used the parametrization of
nucleon form factors of Iachello et al. and Blatnik and
Zovko. pz~„~ is the proton (neutron) anomalous mag-
netic moment in nuclear magnetons. Using the Jacobi
coordinates x; =r, —rk, y,.=r; ——,

' (rJ + rk }, R=—,
'

( r; + r~

+rk ), and after integrating over the center-of-mass coor-
dinate R, Eq. (1) becomes

F,h(Q2)= —f f dx;dy;%*„(x,y,. )

Xe 'p;(Q')W„(x;y;), (5)

the RSC potential have been recently carried out by the
Hannover group' and the Los Alamos-Iowa group'
keeping all J & 2 (18-channel)' and all J & 4 (34-
channel)' NN partial-wave states . Their calculated

Hevalues of
~
F,h'(Q )

~

are very similar to the Purdue
groups's original 5-channel (J & 1) calculations' with the
RSC potential. '

HExperimental measurements of
~
F,h (Q )

~

have been
very few ' ' due to the difficulties associated with han-
dling H targets. Most recently in 1985 Juster et al.
measured F,h(Q ) for 0.3&Q &22.9 fm and found

H 2the first minimum of
~
F,h (Q )

~

at Q =12.6+0.4 fm
Our charge form factors, for He and H are defined as

F,h(Q')= —' f f f dr, dr2dr3% J(1 ir2r3)
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where the momentum conserving 5 function is
suppressed. After Fourier transforming the
configuration-space wave function %'„(x;y; ) to the
momentum-space wave function 4 z (p, q,. ), we obtain

F,h(Q'}= —f fdp;dq;+~(p;q, ')p;(Q')+~(p;q;),

(6)

where q'; =q, +—', Q, and p; and q; are the conjugate mo-

menta to the Jacobi coordinates x; and y, , respectively.
For a given two-nucleon potential, we solve the Fad-

deev equations in momentum space to obtain the Fad-
deev amplitude qiF(pq}. The totally antisymmetric wave
function 4„(pq) is generated from VF(pq) by the follow-

ing equation:

@A (pq) = ( I +P )~F(pq)

C4

4P
X
L

EJ

IO

10

IO

IO

10

-5
10

N
= g 'p.'(pe)4. (pq)

a=1
M

+ g +'"(pq)P (pq),
a=1

(7)

where P is the sum of the cyclic and anticyclic permuta-
tion operators, 4 (pq ) is the direct term generated from
the solution of the Faddeev equations, and 4'"(pq } is the
exchange term involving the permutation operator. The
partial-wave states p (pq) are chosen to be the Jj cou-
pling states, denoted by

a= t[(Ls)J, (1—,')j]88„(T,')77;1, —

where capital letters refer to the "pair" nucleons and
small letters refer to the "spectator" nucleon. The de-
tailed expressions for 4 (pq ), 4',"(pq ), and P,(pq) are
given in Appendix A. Explicit expressions of the partial-
wave decomposition of Eq. (6) for the charge form factors
in the Jj coupling scheme are given in Appendix B.

Three wave functions are generated for the Bonn
OBEPQ potential corresponding to the Faddeev ampli-
tudes with J &1 (5-channel, N=5), J &2 (18-channel,
N = 18}, and J & 4 (34-channel, N =34) two-nucleon
partial-wave states. This will allow us to study the sensi-
tivity of the first minimum and the secondary maximum

Heof
I
F,h'(Q )

~

to higher partial-wave components of the
wave function. For the Reid soft-core potential, we gen-
erated a 5-channel wave function. The antisymmetriza-
tion of the wave function was carried out to 34-channel
states for the exchange term (M =34) in Eq. (7) for all
four wave functions. The pair and spectator momenta p
and q have ranges 0 &p & ao and 0 & q &q,„,where q,„
is specified for each case later. Our calculated 34-channel
H binding energy is E& ( H ) =8.34 Mev with the Bonn

OBEPQ potential as in Ref. 32. The calculated probabili-
ties of each partial-wave state are summarized in Table I.
The Derrick-Blatt probabilities ' for our Bonn 34-
channel wave function are as follows. We have for the
symmetric S states, P(S ) =92.57%, the mixed symmetric
S states, P(S') =1.25%%uo, the P states, P(P) =0.05%, and
the D states, P(D ) =6. 13%.

To show the convergence of F,h(Q ) as a function of

"6
IO

10 I I I I I I I

IO 20 30 40 50 60 70 80

Q (fm )

HFIG. 1. Convergence of
~

F,h'(Q ) I calculated with the 5-,
18-, and 34- channel Bonn OBEPQ potential wave functions us-

ing point nucleons and with the restriction 0 & q & q,„=5.5

fm ' for both the direct and exchange terms of Eq. (7).
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FIG. 2. Convergence of
~
F,P(Q )

~

calculated with the 5-,
18-, and 34- channel Bonn OBEPQ potential wave functions us-

ing point nucleons and with the restriction 0&q &q,„=5.5
fm ' for both the direct and exchange terms of Eq. (7).
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the number of two-nucleon partial-wave states used, the
He 2 Hresults of F,h'(Q ) and F,h (Q ) calculated with J & 1

(S-channel), J & 2 (18-channel), and J &4 (34-channel) us-

ing the Bonn OBEPQ potential and 0 & q & q,„=5.5

fm ' [for both the direct and exchange tertns of Eq. (7)]
are compared in Figs. 1 and 2, respectively. For all cases
of Figs. 1 and 2, the point nucleon form factors are used.
As can be seen from Figs. 1 and 2, the 18-channel and
34-channel cases already appear to be identical except

near the very sensitive regions around the diffraction
minimum. All three cases are very similar, and hence the
5-channel case can essentially be considered to be con-
verged.

With the nucleon form factors of Blatnik and Zovko
and of Iachello et al., we have calculated

~
F,h(Q )

~

for
He and H using the Bonn OBEPQ potential with J & 1

(5-channel) and J & 4 (34-channel) and also using the RSC
potential with J & 1 (5-channel). For both the direct and

TABLE I. Partial-wave components and their probabilities.

State label

L S
Partial-wave component

J I J
Probability (%)

RSC Bonn OBEPQ

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

4.388(+ 1)

1.118(+0)

1 AHA( 1)

2.644( —1)

1.224( +0)

5.259( —1)

4.440(+ 1)

1.067(+0)

3.113(+0)
2.300( —1)

3.795( —1)

5.823( —1)

1.399( —1)

9.982( —2)

1.190( —1)

1.104( +0)

3.994( —1)

4.070( —2)

1.173( —2)

1.398( —2)

5.329( —2)

4.730( —2)

2.309( —1)

1.605( —1)

6.293( —2)

4.295( —2)

8.362( —2)

9.567( —2)

1.619(—2)

1.212( —2)

2.000( —2)

2.132( —1)

9.412( —2)

1.018(—2)

4.598(+ 1)

9.168( —1)

9.827( —2)

2.156( —1)

1.038(+0)
4.279( —1)

4.621(+1)

8.697( —1)

2.000(+0)
9.619(—2)

2.317(—1)

3.671( —1)

1.191(—1)

9.183( —2)

5.844( —2)

6.297( —1)

1.378( —1)

8.040( —3)

5.913(—3)

9.159(—3)

3.500( —2)

3.236( —2)

1.453( —1)

6.098( —2)

1.999( —2)

1.594( —2)

2.662( —2)

3.272( —2)

1.055( —2)

9.089( —3)

2.284( —3)

7.213( —2)

2.453( —2)

1.265( —3)
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exchange terms of Eq. (7), we restrict q to
0&q &q,„=5.5 fm ' for the Bonn OBEPQ potential
and for the RSC potential. Due to the presence of
q'=q+ —', Q in the final-state wave function qi'„(p, q') in

Eq. (6), %& (p, q') is set to zero whenever q' exceeds q
when carrying out the actual integration. The above
truncation is expected to introduce increasing numerical
inaccuracies as Q increases. However, if we assume that
4„(p,q) is negligible beyond q & 5.5 fm ' (a reasonable
approximation), then the numerical integration of Eq. (6)
up to q =q,„=5.5 fm ' is expected to give accurate re-
sults for Q & —', q,„=—,'(5.5) fm '=8.25 fm ' or Q &68
fm . To check this accuracy, we extended qm, „ to 11.5
fm ' for the 5-channel wave functions and found negligi-
ble changes in our results. Our calculated values of

I F,h(Q )
I

for He and H are plotted in Figs. 3 and 4
and are compared with the data points of McCarthy,
Sick, and Whitney and Arnold et al. for He and Jus-
ter et al. for H. In these figures we also compare our
calculated results which use the nucleon form factors of
Iachello et al. ss with our calculated results which use the
nucleon form factors of Blatnik and Zovko. This
demonstrates the sensitivity of our calculated values of

He 2 HF,h'(Q ) and F,h (Q ) to the nucleon form factors used
for large values of g . We note that for Q &20 fm

the experimental data are for
I

A' (Q ) I, which is
defined as

g(Q2) [IF H (Q2)I2 2 IF H (Q2)I2]y(I

with (tt3
———3.2 nuclear magnetons and r=g / 4M„

He

(M„ is He mass), rather than for F,h'(Q ). Since there
are no available data for F,h'(Q ) [or F ";(Q )], Q &6

He 2fm ', comparison of the calculated Fg'(Q ) and the ex-
perimental A'~ (g2) may be premature, but we assume

that A(g )= IF,h'(Q )
I

for 9 fm '&Q&6 fm

The above shows the importance of measuring F ",s(g ),
Q & 6 fm ' in the future.

Figures 3 and 4 show that the char~e form factors of
'He and '» IFIh'(Q')

I soon and
I
Fch «')

I norm gen-
erated from the Bonn potential decrease more slowly at
small Q than

I F,h'(Q )
I R„d and

I
F,h (Q )

I R„d gen-
erated from the RSC potential. This observation is con-
sistent with the binding energy predictions' '
of the two potentials as tighter binding is expected to give
smaller rms charge radii. However, the slow decrease of

I
F,h'(Q )

I tt,» causes the first minimum to occur at
Qm;„=17.5 fm for the Bonn OBEPQ case, away from
the observed Q;„=11.5 fm . Similarly, the first

10 IO

-2
IO

-2
IO

C4

C3

Xr

IO

10

OJ0
Z

~CJ

IO

-4
IO

-5
IO

-5
IO

-6
IO

-6
IO

IO
IO 20 30 40 50 60

Q(f )

70 80 IO
0

I I

IO 20
I I

30 40
[ I I

50 60 70 80

FIG. 3. Comparison of the 34-channel Bonn OBEPQ poten-
Htial wave function result of

I F,h '(Q )
I

with the data points of
McCarthy, Sick, and Whitney (Ref. 38) and Arnold et al. (Ref.
46) and also with the 5-channel RSC result. The nucleon form
factors of Blatnik and Zovko (Ref. 57) and Iachello et al. (Ref.
56) are used. For the Bonn OBEPQ and RSC potential wave
functions, q is restricted to 0&q &5.5 fm ' for both the direct
and exchange terms of Eq. (7).

Q (frn )

FIG. 4. Comparison of the 34-channel Bonn OBEPQ poten-
Htial wave function result of

I F,h (Q')
I

with the data points of
Juster et al. (Ref. 43) and also with the 5-channel RSC result.
The nucleon model of Blatnik and Zovko (Ref. 57) and Iachello
et al. (Ref. 56) are used. The restrictions for q are the same as
those used in Fig. 3.
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Hminimum of
~
F,i", (Q )

~ n,„„occurs at Q;„=18.5 fm

as compared to the observed value of Q;„=12.6 fm

Figures 3 and 4 also show that the experimental value
He

~
F,i", '(Q,„)~,„&=6X 10 . We obtain the ratio

~ =
i F.."'(Q'...) I.„&IF.."'(Q'...)

I
=9

)pl

F,g (Q)

)p0

F,"„(a)

Fs (Q2) F He(Q2)+ ]F H(g2) (8a)

for the Bonn potential as compared to R =4 for the RSC
potential.

As expected, the effects of the Darwin-Foldy and spin-
orbit terms of Eq. (2} are found to be small for Q &20
fm . For example, these terms leave the first minimum

Heof
~
F,i", '(Q }

~

relatively unchanged, and their contribu-
tion to the secondary maximum is approximately
20—25 %.

Our ~F,i", '(Q ) ~n, „„calculation shows that the first
minimum and the secondary maximum are insensitive to
the higher partial-wave components. For example, the
secondary maximum varies less than 1% going from 5-
channel to 18-channel states. At high momentum
transfer, higher partial-wave components of the wave
function are expected to come into play. However, we

Hebelieve that the secondary minimum of
~

Fg'(Q )
~

is a
poor place to look for the effect of higher partial waves as
we are dealing with very small high-partial-wave contri-
butions there as indicated by the results in Figs. 1 and 2,
and also dealing with large uncertainties in the nucleon
form factors (in particular, the neutron charge form fac-
tor).

Figure 5 shows the isoscalar F,i, (Q ) and isovector
F ), (Q ) decompositions of the trinucleon charge form
factors which are defined as

lO
I

O I

Q (fm')
3

and

Fv (g2) F He(Q2) 1F &(Q2) (gb)

They are compared to the recent measurements by Beck
et al.~ The figure shows that F,), (Q ) and F,„(Q ) cal-
culated with the Reid soft-core potential compare better
with the experimental data than those with the Bonn po-
tential in the impulse approximation.

FIG. 5. Comparison of the data (Ref. 60) and the calculated
results of F,&(Q ) and F,"z(Q') using the 34-channel Bonn
OBEPQ potential wave function and the 5-channel RSC poten-
tial wave function. For both cases, the nucleon form factor of
Blatnik and Zovko (Ref. 57) is used. The q restriction is the
same as those used in Figs. 3 and 4.

TABLE II. The current experimental status of the root mean square {rms) charge radii for 'He and
H.

Reference

Collard et al. '
McCarthy et al.
Szalata et al. '
Dunn et al. d

Retzlaff and Skopik'
Beck et al.

Juster et al ~

Otterman et al."

Martino'

Q';„(fm ')

1.0
0.347
0.032
0.7
0.885
0.0477
0.0477
0.0477
0.3
0.20

0.3

Qi,„(fm i)

8.0
20.0
0.34

11.0
3.20
9.0
9.0
2.96

22.9
3.7

22.9

r, ('He) (fm)

1.87+0.05'
1.88+0.05'
1.89+0.05'
1.935+0.03'
1.877+0.019'
1.87+0.03'
1.88+0.02"

1.976+0.015'
1.956+0.020'
1.93+0.03'"

r, ( H) (fm)

1.70+0.05'

1.68+0.03'
1.76+0.04'

1.81+0.05'

'Reference 37.
Reference 38.

'Reference 39.
Reference 40.

'Reference 41.
'Reference 42.
~Reference 43.

"Reference 44.
'Reference 47.
'Power-series analysis.
"Fourier-Bessel analysis.
'Sum of Gaussian analysis.

The data of Juster et al. (Ref. 43) are used.
"The data used are from Refs. 37—46.
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F„(Q')=1——,'Q'( &+ —„',Q'( (9)

to extract ( r, &. Another commonly used fitting method
is based on the Fourier-Bessel expansion of the underly-
ing charge and current densities, which involves the
spherical Bessel functions. Still another method is
based on a series of the Gaussian functions. Beck's cal-
culations indicate that using these fitting procedures
over the entire available range of Q may result in a rather
poor fit at small Q, the region in which data are scarce or

III. ROOT MEAN SQUARE RADII

As pointed out by Dreher et al. ' and Friar and
Negele, there are difficulties in determining the rms
charge radii from data as regards normalization of
different data sets, propagation of uncertainties, finite ex-
tent of data in momentum space and the completeness of
finite truncated expansion series.

Table II shows a summary of the experimentally ex-
tracted values of r, ( He) and r, ( H) as well as their ex-
traction methods. We first note that the extracted values
of r, ( H) vary from 1.65 to 1.815 fm. Even for the most
recent measurement of r, ( H), Juster et al. have ex-
tracted r, ( H)=1.76+0.04 cm, while Martino has ob-
tained r, ( H)=1.81+0.05 fm from the same electron-
scattering data. Furthermore, despite the relative abun-
dance of experimental data, the extracted values of
r, ( He) also vary widely, l. 87 & r, ( He) & 1.98 fm.

One method of obtaining r, ( He) and r, ( H) is by
fitting F,z(Q ) to a sum of analytic functions over the en-

tire observed momentum transfer Q and then using a
power series for small Q,

do not exist and to which r, ( He) and r, ( H) are most
sensitive. Therefore, accurate determination of F,„(Q )

at very small Q is absolutely necessary to extract r„and
this no doubt is a challenging problem for experimental-
ists.

In this paper we choose to extract the rms charge radii

using Eq. (9), and expand our calculated F,h (Q ) and

F,h'(Q ) in a power series in Q over the interval
0&Q &0.06 fm and extract (r, & from the expansion
coefficients. Our results calculated with various nucleon
form factors (point nucleon, Blatnik-Zovko, Iachello-
Jackson-Lande, and Janssens et al. ) are summarized
and compared with previous calculations in Table III.
As can be seen from the table, our values are in reason-
able agreement with the previous calculations of Refs. 6,
16, and 17 for the RSC potential and Ref. 33 for the
Bonn potential. Our calculated values of the rms radii
are smaller by -0.03 fm compared with the calculated
values given in Refs. 16, 17, and 19. This discrepancy
may be due to the differences in the antisymmetrization
schemes used or may indicate our level of accuracy for
calculating the rms radii of He and H. The table also
shows that the rms charge radii predictions are insensi-
tive to the nucleon form factor models, as at very small Q
the proton charge form factors are accurately known and
the neutron charge form factors are close to 0. The table
also shows that our Bonn potential charge radii compare
fairly well with those of Ref. 33, r, (3H)=1.73 fm and

r, ( He)=1.91 fm, obtained from the coordinate version
of the Bonn potential (OBEPR). Our calculated results
with the Bonn OBEPQ potential in Table II also show
that the convergence of the Faddeev partial-wave series

TABLE III. The calculated rms charge radii of 'H and 'He in fermis with the nucleon form factors of Blatnik and Zovko (Ref. 57)
(BZ), Iachello, Jackson, and Lande (Ref. 56) (IJL), and Janssens, Hofstadter, Hughes, and Yearian (Ref. 65) (JHHY).

NN potential
(No. of channel)

This work
Nucleon

form factors He
Nucleon

form factors 3H

Other work

'He Reference

RSC
(5)

OBEPQ
(5)

OBEPQ
(18)

OBEPQ
(34)

Point
BZ
IJL

JHHY
Point
BZ
IJL

JHHY
Point

BZ
IJL

JHHY
Point

BZ
IJL

JHHY

1.66
1.80
1.78
1.79
1.55
1.70
1.68
1.69
1.57
1.71
1.69
1.70
1.56
1.71
1.69
1.70

1.86
2.01
2.02
2.03
1.70
1.86
1.87
1.88
1.70
1.86
1.87
1.88
1.70
1.86
1.87
1.88

Point
BZ

JHHY

JHHY

1.70( 1.698')

1.83

1.73

1.89( 1.933')
2.04

1.96

1.91

16,19,24'
17

6a

33'

'Darwin-Foldy and spin-orbit terms in the impulse approximation Eq. (2) are omitted.
The Bonn OBEPR potential (Ref. 29) with J (4 (34 channel) is used. Reference 33 does not state whether Darwin-Foldy and spin-

orbit terms of Eq. (2) are included or not.
'Reference 24 includes the Coulomb interaction for 'He. All other cases in this table neglect the Coulomb interaction.
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for the rms radii is rather fast as are the cases of the
charge form factors (Figs. 1 and 2) and of the binding en-

ergy of H.
Comparison of Table III with Table II shows that our

Bonn OBEPQ result of r, ( H) = 1.71 fm compares very
well with the experimentally extracted values of Collard
et al. , and Beck et al., but not with Martino's value
of r, ( H) = 1.81+0.05 fm. Also our Bonn OBEPQ result
of r, ( He) =1.86 fm agrees well with the experimentally
extracted values of Refs. 37—39, 41, and 42, but not well
with Refs. 40, 44, and 47. Corrections due to the
Coulomb force are yet to be made but are expected to
give =0.04 fm increase. When the estimated Coulomb
corrections of -0.04 fm is added, our calculated values
of r, ( He) may become consistent with those of Refs. 40
and 47 but not with that of Ref. 44. The experimental
values of r, ( He) by Dunn et al. , Otterman et al. , and
Martino are -0. 1 fm larger than those of Refs. 37—39,
and 41 —43 as shown in Table II. Thus, we conclude that
the Bonn OBEPQ potential is capable of reproducing the
experimental values ' ' of the rms charge radii of
H and He within the experimental uncertainties.

IV. SUMMARY AND CONCLUSIONS

We have calculated the charge form factors and the
rms charge radii of H and He using the wave functions
generated from the solutions of the Faddeev equations in
momentum space with the new Bonn OBEPQ potential
and, for comparison, with the RSC potential.

For the charge form factors, as discussed in Sec. II we
find that the partial-wave expansion converges very rap-
idly. However, our calculated results with the Bonn

H 2 HeOBEPQ potential for F,h (Q ) and F,h'(Q ) do not im-
prove the previous RSC results. A similar situation exists
for the results calculated with the addition of three-
nucleon forces. Since the meson-exchange current
corrections have not been calculated in a consistent
scheme yet for the Bonn OBEPQ potential as well as
other potentials, it may be premature to assess definite
merits of the Bonn OBEPQ and other potentials in repro-
ducing the trinucleon charge form factor data for inter-
mediate values of Q & M = 5 fm '. For Q & M, on the
other hand, both the conventional meson-exchange
currents (which involve 1/M expansion) and the nonrela-
tivistic potential model are expected to be invalid. In this
regard, it may be a desirable fact that our impulse ap-

H 2 Heproximation results for F,h (Q } and F,h'(Q ) are sub-
stantially smaller than the data for large Q, since we will
be able to add contributions from relativistic models
and/or the QCD-motivated quark models with appropri-
ate currents associated with them for Q &M. Therefore,
the failure of the Bonn OBEPQ potential in reproducing
the charge form factors for Q & M is not necessarily a
disadvantage from a much broader and fundamental
point of view.

As expected from the successful prediction of H bind-
ing energy, the Bonn OBEPQ potential yields the correct
rms charge radii of H and He as discussed in Sec. III.
There we also noted that some of the rms charge-radii-

extraction methods may not be reliable.
In summary, the Bonn OBEPQ potential is shown to

reproduce the rms charge radii of H and He, but does
not improve the charge form factors at least in the im-
pulse approximation. It has been now shown to repro-
duce the following trinucleon properties: (1) the binding
energy of H (Refs. 31 and 32), (2) the rms charge radii of
H and He (this work), (3) the asymptotic normalization

constant for H (Ref. 35), and (4} the binding energy
difference between H and He (Ref. 25). In contrast,
other realistic potentials' ' fail to reproduce the
above properties. It remains to be seen whether the
Bonn OBEPQ potential is also capable of reproducing the
spin-doublet nd scattering length.

Even though all terms in the Bonn OBEPQ potential
originate from a set of Feynman diagrams, their nonrela-
tivistic reduction to static potential forms inevitably in-
troduce approximations with adjustable parameters, thus
losing the original "fundamental" nature of the strong in-
teraction. However, since the Bonn OBEPQ potential is
capable of reproducing both the two-nucleon data and
most of the low-energy trinucleon data better than any
other existing realistic potentials, ' ' it can be regard-
ed as a new successful semiphenomenological potential
model for low-energy nuclear physics. This, in turn, will
allow us to introduce additional corrections due to con-
tributions from the relativistic models and/or from sub-
nucleonic degrees of freedom such as the QCD-motivated
quark models ' for higher energy regime and processes.
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APPENDIX A

Here we present our results for the antisymmetrization
of the trinucleon wave functions. Our antisymmetric
wave function in Jacobi coordinates is defined as [Eq. (7)]

%„(pq)=(1+P)VF(pq)

N
= g 'p. (pq)4. (pq)

a=1

+ g qi'"(pq)p (pq),
a=1

where a represents the quantum numbers in the Jj cou-
pling,

and
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0.(pq) = [[Yi,(p) X&s, ]J, X [Yl {q)X+1/2]j, j 1/24,

( 1T /1/2)l /2'T

P is the sum of the cyclic and anticyclic permutation
operators which act upon our system of three identical
nucleons using the standard isotopic spin formalism. The
direct term is obtained from the solution to the momen-
tum space Fadeev equations,

+.(pq)= f f q'F(pq)4. (pq)d pdq,

and the exchange term %""(pq ) is then determined from
the permutation operator by

q"."(pq)= f f [Pq' (pq)](().(pq)dpdq

After some lengthy algebra, we have

%"~"(pq ) = g g g g ( —1) ' '(E1S1J1f'll
1j 1 )(E3S3J31313J3)(r &1r2/343)

a, ~~ rr, r, X,S,

X xP„x—1

qD(a, P3q3
] A 3 L3 A p &

13
( ——,'p)"(-', q) '

( —p) ( ——,'q) '
(P3) '(q3) '

2L3+ 1

[2(L3—A)+ 1] [2(1,—A, )+1]
2l, +1

L) l' f2 I)
~00 0 00 0 0 0 0 0 0

A A rl L3 A 13 A r2

S32 2

X '

S,

1 1

2 2 rl r2 X3

T, I) L r

Li Si Ji

L3

X. l,
S3 J3 A L3 A L3

j3 ''A 13 I 13

where

(23 [[(L3S3}J3 (13T~)j3]PS (T3 )2 7
and

p3
—( —'p +,9 q ——'pqx), q3

——(p +—'q +pqx)', E=(2L +1)'

and P„(x ) are the Legendre polynomials.

APPENDIX B

We present a partial-wave decomposition of Eq. (6). First we write Eq. (6) as (the subscript i for particle index is
suppressed)

F h(Q') = z f fdp dq +&(p, q')[pl(Q'}+p»(Q')]+ & (p, q}—=F!h(Q') +F'.h(Q
2 3

with p, (Q )=[1—(Q /SM )]e(Q ), and p, l(Q )=( i/4M )Q—o Xk[2p(Q }—e(Q }],where the operators e(Q ) and
1M(Q ) are given by Eqs. (3) and (4).

F,'h(Q } and F,"„(Q ) can easily be evaluated by employing the spherical tensor algebra. The spin-isospin and angu-
lar part of the ground-state wave function P (p, g } in Eq. (7) is given in Appendix A in terms of the spherical tensor
product. By expanding VA(p, q') =%„(p,q+ —', Q} in terms of the basis states ofp and g, we obtain

(I —2) 3 1 1 pj3(p, q')P, (2 }
0'„(p q')= g ~q

' ('Q) f d~— , [p (pg)XY (Q)]dp, ,
O

where
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and

&= [[(Ii Si)Ji (lo —,
' }jo)+~,;(T,—,')-,', r, I,

ct'=[[«i Si}Ji (Ii 2}j&)~'o"',;(T,—,')-,', r, I

P, = [r,k, j'o, r, I, I,= [I&,A, d'],

' 1/2
21o+1

Il +1) +Jo+J ) +Jo+ l +
2A,

[2(lo —A, )+ 1] 9 r& lol & j&jo

r r 1

X(jo) 8 0 0 0 0 0

r Io —A, I, 'A,

0

Io —lt, lo
'

Jo Jo

'r Io —A, I,

Ji Jo Jo

Jo

r r)
J

Jo

with J=(2J+ I )'~2.

Using the above expressions, we obtain for Fth(Qz),

2

P~(z } a(p q )
XP (p, q) f dz

t [F,h(Q )k( —) (1——,'T}Fvh(Q~)],

aken for He( H) nucleus, F,h(Q2)= —,'[F~&(Q2)+F,"h(Q2)], and F~z(Q2}where the +( —) sign is t
=—,

' [F,h ( Q') —F,"h (Q') ].
Evaluation of F,"„(Q ) is more involved due to the presence of the factor, Q o Xk. By setting k=q in the center-of-

mass system, we obtain

' 1/2
. I 2l+1Ftt ( Q2) g g ( )~0+ J1

(
g

Q )k+ 1

SZM
(I )~(l

) ) [z2(I —g)+ 1]112(p)2(J )2( ~ )2

r I —A, I)
X[G (Q )+( —) (1——', T)G (Q')]

1 I I)

0 0 0

X 0
r 1

0 0 Jo A, Jo

J A, I —A,

r 1

2

J
I,

Jo
1

2

+ & P„(z )g.(p, q')
X f f dpdqp q' "+ f'(p, q) f dz

where A= I r, i j o, l„j,j, and 6 (Q )=2G, (Q )—F,h (Q ) with 6, (Q )=—,'[JLt Fr, (Q )+p,„F",(Q )] and

G,s(Q )=—,'[Is~F~,s(Q )—P„F",s(Q )].
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