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Elastic electromagnetic form factors of Li from three-body models
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Within the context of three-body (alpha particle plus two nucleons) models of Li, the ground-

state longitudinal (CO, C2) and transverse (M1) electromagnetic form factors of the Li nucleus are
calculated. In the zero-momentum-transfer limit of the Co and M1 form factors, the charge radius
and the magnetic moment of Li are extracted, respectively. An attempt is made to extract the Li
electric-quadrupole moment from the threshold behavior of the C2 form factor. By projecting the
alpha-deuteron component from the three-body wave function, the contribution and role of this

part of the wave function is ascertained for the elastic form factors. The Pauli exclusion principle
between the alpha particle and either nucleon is found to be responsible for the minima in the form
factors. With the exception of the quadrupole (only for high q values) form factor, the particular
representation of the Pauli repulsion between the alpha-particle and nucleon in the S&&2 partial
wave of the interaction is unimportant. The presence of the nucleon-nucleon tensor force
suppresses the values of the form factors at high q.

I. INTRODUCTION

Many properties of the 3=6 nuclei at low excitation
energies ((15 MeV) can be satisfactorily explained
within the framework of three-body models. In these
models, the nucleus is composed of an alpha particle and
two nucleons which are all treated as elementary parti-
cles. Calculations with three-body models based on non-
local separable interactions between the constituent parti-
cles have been successful in explaining a number of A =6
phenomena, e.g., Li~a+d momentum distribution, '

Li~a+d asymptotic normalization constants, ' He P
decay, the Li~p+(na) spectral function, and both
elastic and inelastic d +a scattering. Moreover, such
a three-body model is unambiguous in its dynamics and
has no center-of-mass problem which comes with
harmonic-oscillator shell-model states. Another impor-
tant point: Once the parameters of the model are deter-
mined at the two-body level, no further parametrization
follows and all the results obtained thereafter are direct
predictions of the model. Lehman, Rai, and Ghovanlou
(LRG) derived the nonrelativistic ground-state wave
function of the Li nucleus, using nonlocal separable po-
tentials for the interactions between the constituent parti-
cles. Having the LRG wave function for Li available to
us, and encouraged by the general success of the three-
body models, we undertook the calculation of the elastic
electromagnetic form factors of Li with the following
goals in mind: (1) to explain the physics behind the ob-
served diffraction minima in the charge and magnetic
form factors, and, in particular, assess the role of the un-
derlying two-body interactions (aN and NN) on the elas-
tic form factors, and (2) to set a benchmark for further,
more sophisticated, consistent nonrelativistic calcula-
tions. Before presenting the details of this work, we
briefly review the existing literature on the subject.

Good experimental data of the past decade ' have
prompted several calculations of the elastic form factors
of Li. These calculations utilize a variety of methods

based on different models; for example, shell-model calcu-
lations (Payne and Nigam, " Bouten et al. '

),
resonating-group method calculations (Kanada, Kaneko,
and Tang' ), and phenomenological a-d (alpha-deuteron)
cluster models (Bergstrom, ' Noble, ' Jain and Sarma, '

Merchant and Rowley' ). Notable among the more so-
phisticated recent calculations that are closer in their
goals to the spirit of the present calculation and thus
more relevant to it are the cluster-model calculations of
Mertelmeir and Hofmann, ' the three-body coordinate
space calculations of Bang and Gignoux, ' and the
three-body model calculations of Kukulin, Krasnopol'ski,
Voronchev, and Sazanov in which variational techniques
are employed.

Mertelrneir and Hofmann attempted a consistent clus-
ter model description of the electromagnetic properties of
the lithium and beryllium nuclei. ' The monopole and
quadrupole charge form factors, and the charge radius
and quadrupole moment Q.. . of Li were calculated.

The monopole charge form factor is in good agreement
with experiment for q (momentum-transfer) values on the
first lobe before the diffraction minimum; however, in the
region of the secondary maximum, the calculation un-
derestimates the experimental data and the contribution
of the quadrupole form factor becomes important. The
charge radius of 2.40 fm, although smaller than the ex-
perimental value is in close agreement with the three-
body calculation of Bang and Gignoux. ' Their interest-
ing conclusion about Q 6 . was that a pure two-body (a-
d) wave function was incapable of producing the small
negative value of the quadrupole moment and that they
had to use a three-body (anp) wave function with s and-
d-partial waves between the clusters and within the
deuteron, before they could get a small negative value for
Q6„. from their calculation. This corroborates the con-

Ll

elusion of Merchant and Rowley. ' Mertelmeir and
Hofmann's quoted value for Q, 6„., is —0.076 fm in

reasonable agreement with the experimental value of
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—0 0644+0 000'7 fm'. "
Bang and Gignoux' were the first to consider the

charge form factor within the framework of three-body
dynamics. Their three-body model of Li utilized the NN
(nucleon-nucleon) local potentials of Malfliet and Tjon,
and of de Tourreil and Sprung's potential when the ten-
sor force was included. For the aN (alpha-nucleon) in-
teraction an energy independent potential of the same
type as that of Satchler et al. was used. This aN in-
teraction supports a bound state which is forbidden by
Pauli's exclusion principle and should be removed from
the problem. The Faddeev equations for the three-body
problem were then solved in configuration space. The
Pauli principle inclusion in the aN interaction was ap-
proximate, in the sense that the forbidden state was not
eliminated from the problem completely. The monopole
piece of the charge form factor was then calculated for
low q values (before the diffraction minimum), and the
charge radius was computed for both choices of the
above NN potentials. The charge form factor is in
reasonable agreement with experiment at low-momentum
transfer, and the charge radius for both cases of the NN
potentials (2.42 fm for Malfliet and Tjon's potential, 2.44
fm for de Tourreil and Sprung's potential) is about 4%
smaller than the experimental value. Because of limita-
tions imposed by computer space and time, they had to
use a finite number of partial waves in the Faddeev equa-
tions. The truncation of available channels did not seem
to affect the binding energy but was cited as responsible
for the wrong sign and magnitude of the quadrupole mo-
ment. In the above work no attempt was made to calcu-
late the quadrupole form factor, the elastic magnetic
form factor or the magnetic moment of Li.

Kukulin, Krasnopol'ski, Voronchev, and Sazanov re-
cently studied the ground-state properties of Li using
variational techniques on a three-body model of that nu-
cleus, in a paper which complements their earlier work
on the same subject. ' A multidimensional Gauss-
ian basis was used and the basic variational parameters
were initially randomized. Their model allows for the
following: (a) the central and odd I NN forces, (b) the
repulsive core of the NN interaction with s-, p-, and d-
partial waves, (c) the central aN forces including the
Coulomb interaction without using perturbation theory,
and (d) the spin-orbit aN force. In order to take the Pau-
li principle into account in the aN interaction, a pseudo-
potential scheme is used which, in essence, projects out
the forbidden bound state of the aN interaction. Howev-
er, the removal of the forbidden state is done numerically
by letting the projection parameter approach a large
value, when actually it can be taken to infinity analytical-
ly. The ground-state charge and magnetic form factors
were calculated. The charge form factor has the correct
shape but overestimates the q value of the minimum and
is smaller than the experimental value in magnitude in
the region of the secondary maximum and beyond. The
calculated elastic magnetic form factor gives a good
description of the experimental data up to the first
minimum, but for higher values of q it grossly underesti-
mates the available data. The value of the magnetic mo-
ment for Li obtained from their approach with the Reid

soft-core potential, @=0.8563 pz, is approximately 4%
larger than the experimental value of p,„=0.8220467
JM&,

' however, their value for the electric quadrupole
moment has the wrong sign and is about three times
larger in magnitude than the experimental value. A
surprising result is that the binding energy and the rms
charge radius are both less than the corresponding exper-
imental results. One would expect weaker binding to in-
crease the rms radius. Such behavior may be checked us-
ing the three-body model of the present calculation.

The above considerations of the existing theoretical
work show that a unified description of the static and dy-
namic properties of Li in the elastic case is not achieved
yet. Moreover, there are several interesting questions re-
garding the physics of the form factors which are not
answered. For example, what component of the three-
body model is responsible for the observed diffraction
minimum? What effects do the underlying two-body in-
teractions have on the shape or magnitude of the form
factors? With regard to this last question, two specific
points are of concern. Firstly, it is known that the S»z
component of the aN interaction can be represented by
either a purely repulsive potential or an attractive poten-
tial that supports a forbidden bound state (due to Pauli's
exclusion principle), which is usually projected out of the
spectrum of the Schrodinger equation by a suitable pro-
jection method. Both representations of the Pauli princi-
ple, i.e., in terms of a purely repulsive or an attractive
(with the forbidden state removed) potential, are in agree-
ment with the present phase-shift data and only differ in
their off-shell behavior. One would like to know if the
form-factor calculations are sensitive to these two
different representations of the Pauli principle. Secondly,
the role of the tensor force (in the NN interaction) on the
electromagnetic form factors is not yet known. These
and other questions can be consistently answered within
the framework of a three-body model. To achieve this,
we use the LRG wave function of Li which has been pre-
viously derived. To unravel the effect of the underlying
dynamics, we consider five potential models each of
which by virtue of having different components of the un-
derlying two-body interactions yields unambiguous infor-
mation about the effect of the interactions on the form
factors. A full explanation of these potentials will be
given in Sec. III. The following calculations have been
done: (I) The monopole charge form factor (Fco) and the
charge radius (extracted from F«&, see Sec. II); (2) the
quadrupole form factor (Fcz) and an attempt to calculate
the quadrupole moment (extracted from F~~, see Sec. II);
and (3) the elastic magnetic form factor (FM ) (without
the contribution of the convection currents) and the mag-
netic moment (extracted from F~, see Sec. II). With
these calculations, we intend to give a unified explanation
of the elastic properties of the Li nucleus based on a
dynamically sound model. We will also try to point out
the failures of the model and suggest further improve-
ments or refinements. This calculation can also serve as a
check for the results of other consistent three-body mod-
els of Li, since it is always advisable for different groups
to perform calculations of this complexity.
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The organization of this paper is as follows: In Sec. II,
we present the derivation of the main formulas for the
form factors and other quantities of interest, and
specifically present the a-d projected model (projected
from the full three-body wave function) and formulas for
elastic form factors within that model; in Sec. III, we

present the results with a discussion about the numerical
accuracy; in Sec. IV, we discuss the physics learned from
the results of our calculations; and finally, in Sec. V our
conclusions are presented.

II. DERIVATION OF EQUATIONS

The experimental determination of the longitudinal
and transverse form factors is done by comparing the

I

measured cross section with the predicted formula for the
electron scattering process based on invariance argu-
ments alone. In most cases, the form factors are deter-
mined from a Rosenbluth plot. Therefore, it is instruc-
tive to have a model-independent derivation of the cross
section before we present our calculations of the form
factors.

The one-photon exchange process constitutes the main
contribution to the differential cross section of the
scattering process. The requirements of relativistic co-
variance, together with parity, hermiticity, time-reversal
symmetry, as well as current conservation, lead to the fol-
lowing expression for the electromagnetic current of any
charged "spin-1" object made of individual nucleons:

Z8

V+28;2@f

(Sf' q)(S, q}P" ' F—co(q } Sf 'S
2m (1—q /4m )
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In Eq. (1), Z is the number of unit charges, 6;,S; and Bf,Sf are the initial and final energies and polarization vectors
associated with the "spin-1" object, q" and P" are defined in terms of the initial and final four momenta of the "spin-1"
object:

q is the four-momentum transferred squared, m is the nucleus mass, M is the nucleon mass, and V is the plane-wave
normalization volume. Using the above expression for the current, the laboratory scattering cross section is found to
be.
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where E; is the energy of the initial electron, and 0 is the
angle between the incident and scattered electron direc-
tions. The Mott cross section is given by:

d0
dQ,f Mott

Z a cos (8/2)
4E, sin (8/2)

where u is the fine-structure constant. It should be noted
that a similar formula for the scattering cross section of
Eq. (2) was found by Glendenning and Kramer, and
Gourdin ' for elastic electron-deuteron scattering, using
the impulse approximation, a nonrelativistic wave func-
tion of the deuteron, and the nonrelativistic reduction of
the electron-nucleon interaction. The nuclear current (as
presented earlier in this section) was first derived by L.
Durand for a deuteron vertex. However, the three form
factors (the number of independent form factors for the
case of the deuteron vertex was shown to be "three" by
Glaser and Jaksic } associated with the "spin-1" object
were not introduced to be in any way related to the
charge, quadrupole, and magnetic moment distributions.
It can be shown that in the Briet frame (that frame in

which the initial and final states of the scatterer have
equal, but oppositely directed, momenta), Fco, Fcz, and
FM are Fourier transforms of the charge, the electric
quadrupole moment, and the magnetic moment distribu-
tions. It is important to note that such association of the
form factors with spatial distributions of the electromag-
netic quantities is frame dependent; the association
should not be used in arbitrary frames.

A. Longitudinal form factors of Li

We use the LRG three-body model of Li to find ex-
pressions for the two pieces of the longitudinal form fac-
tor that we denoted by Fco and FC2 in the cross-section
formula, Eq. (2). Since the isospin function is suppressed
in the Li wave function, it will also be suppressed in the
expressions for the charge and the current operators in
what follows below.

The charge-density operator in the three-body model
of Li is
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p, (r, ri, r2, r3) =fPh(r —r, )+f,"h(r —r2)

+f:h(r —r3» (3)

momentum transfer q„. In coordinate space (with

where fph, f,"h, and f,h give the spatial distribution of
charge for particles 1, 2, and 3, respectively. Then,

3

3F„"(q)=f g d" q.'

ZF,h'(q)= f ( Li
~ p, (r)

~

Li)e'q'd r . (4) X [fPh ( r —r, ) +f,"„(r —
r2 )

In our case Z=3 normalizes the form factor so that at
q =0 the total number of unit charges on Li is
recovered. Here, q is the spatial part of the four-

+f,h(r —r 3)]%'sLe' 'd r .

Introducing r' =r —r for j= 1,2,3 in separate integrals,

3

3F,~L'(q)= f g d r +t„e' "f. e' "f,h(r')d r'

+e 'f e'q'f,"h(r')d r'+e 'f e' 'f,h(r')d r'
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f e'q'fih(r')d r'=Z FJ„(q2),

where

and

Z1 Z2 1y Z3 2

F,'h (0):—Fph (0)= I,
F,h(0) =F,"h(0)=0,
F,h(0) =F,h(0) =1,

one finally gets

3

3F,h'(q) = f g d rj% &L [e 'Fph(q)+. e 'F,"h(q)+2e 'F,h(q)]%,
j=1

In terms of Jacobi coordinates (see the Appendix), the above expression is given by

3F Li(q) Fp (q2) f )Iit eiq (s/2 2p/. 3)@-

+Fn ( 2) )I(t eiq ( —s/2 —2p/3))Ii d3pd3sch q 6Li 6Li

+2F (q ) f %st .e'qP )I(s .d Pd s .

Utilizing the symmetry of )Iis . under exchange of particles 1 and 2, one derives,

(8a)

3FL((q)[Fp(q2)+Fn(q2)] f )I)t e lq(s/22p/ ))I(dpd

+2F,h(q2) f )I), e' p)I) dpd s. .'. (8b)

To bring out the multipole character of the longitudinal form factor more clearly, one may expand the exponentials in
each of the two integrands by using

e' ':4n g i jL(qr)Y— (r)Y (q),
L, mL

where the contrastandard form of the spherical harmonics is used, i.e., Y('l=( —i')Yi . The recoupling of Y( l(r)
L

with the wave functions under the integrals eliminates all terms except those with L=O, 1, and 2. The L=1 term van-
ishes because of its negative parity (the ground state of Li has positive parity). Then the longitudinal form factor is
given by
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F,h'(q)= —,
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where the total angular momentum of the ground-state wave function of Li(J"=1+ ) is now explicit, but the subscript
( Li) is omitted. By the use of the Wigner-Eckart theorem, the above expression may be simplified further, and written
in terms of invariant integrals:
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In all the above formulas the notation of Ref. 34 is used
for angular momenta, tensor operators, and invariant in-
tegrals. The projection integral [. . . I. . . I. . . ] is
different from the reduced matrix element by only a
phase factor and implies that all the spin sums, radial,
and angular integrations are done. Now, it is easily
checked that

I
F h'(tl)

I

=
I
Fco(q')

I

'+
I
Fc2(q')

I

' .
M-, Mf

Corresponding to a well-known result for a "spin-0"
form factor, one may also find an expression for the root-
mean-squared charge radius of Li:

(.,', )"—=0. (16)

In this work, the root-mean-squared charge radius of Li
is extracted from Fco(q ) by finding the slope of Fco(q )

around the origin. On the other hand, the behavior of
Fc2(q ) as q ~0 yields a quantity that is proportional to
Q6 . . The quadrupole moment can be found using

N

Q =(Jmj ——J (&16m/5) g e,'r, Y2o(r;) I
JmJ ——J),

i=1

(17)

where e,-' is the number of unit charges in the cluster C
and Xc is the number of clusters. By taking the limit of
the expression for Fc2(q ) as q ~0, it follows that

Similar formulas apply to the proton and alpha particles,
but

BFc2(q )

Bq

1

q~ o 9&2 Li
(18)
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This expression shows that, in principle, the electric
quadrupole moment, like the rms radius, may be extract-
ed by finding the slope of the Fc2{q ) vs q plot near the
origin.

B. Transverse (magnetic) form factor

To derive the expression for the elastic transverse form
factor, the transverse projection of the current operator is
needed. By the minimal coupling of the electromagnetic
field in the nonrelativistic Hamiltonian of the three-body
model, and noting that the Hamiltonian interaction is
proportional to the dot product of the field and the
current, the expression for the nucleus current is extract-
ed. After some simplifications in the form of the opera-
tor, the transverse part of it may be written as F, {0}=1, (20)

In Eq. (19), F~~h(q ) for j=1,2,3 (i.e., p, n, and a, respec-
tively) is the constituent particle's charge form factor,
Fj,s(q ) for j=1,2 is the magnetic form factor of the
proton and neutron, respectively, e is the charge of each
constituent particle, and M is the corresponding mass
with M, =M2 ). ei is a unit polarization vector of the ex-
changed virtual photon, and A.(=+1) designates one of
the two possible independent polarization directions in
the plane. The operators are written in the contrastand-
ard notation, for example, P('] is the A, component of
the momentum of the jth particle. p is the magnetic
moment of the jth particle,

iq r.3

e&J=i ge
j=1

I'~g(1]
eF,„(q }

J

F', (q )

j 2MJ
jljqk, o j[&] (19)

and

5~) =(1—53 ) .

The matrix element of the above operator is given by

(21)

(22)

where M =M for j= 1,2. This matrix element in the limit of q ~0 is proportional to the magnetic moment of Li. TheJ
magnetic moment operator is

(23)

where I. represents the angular momentum of the jth particle. Using the above, one finds thatJ

il p(~]
I

ip(il
Ll

(24)

in the notation of invariant integrals. We use this proportionality of the matrix element in Eq. (22) and the magnetic
moment, Eq. (24), in the limit of q ~0 to normalize the magnetic form factor of Li such that

FM"(0)=i 6„ (25)

As in the case of the charge form factor, the plane-wave exponential in the expression for the matrix element, Eq.
(22), may be expanded. The recoupling of the terms in the expansion, using considerations of rotational, parity and
time-reversal invariance, forces most of the terms to vanish. Application of the Wigner-Eckart theorem on the surviv-
ing terms, and expressing them in terms of the invariant integrals results in the final expression for F~(q ) in momen-
tum space:
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In the actual calculations, we only consider the spin-
current terms in the above expression; the convection
contribution is neglected due to its complexity relative to
the size of its contribution compared to the spin current.

In any calculation of form factors, the question of the
importance of the mesonic degrees of freedom is raised.
How significant are the meson exchange currents in a cal-
culation like this one? The lowest-order contribution of
the isoscalar meson exchange current to the charge
operator is a relativistic correction of 0(U /c ) or
equivalently 0(1/M ). ' The LRG wave function is
nonrelativistic and of order 0(1). To include relativistic
corrections in such calculations, the wave function
should also be corrected to 0(1/M ) for consistent results.
Any attempt to include the 0(1/M ) meson exchange
corrections with the available wave function would be in-
consistent, and yield ambiguous results. The same situa-
tion prevails in the case of the elastic magnetic form fac-

tors where the lowest-order mesonic contributions are of
0(1/M ), and should not be included in a consistent cal-
culation of the magnetic form factor unless relativistic
corrections are also accounted for in the wave functions
to the same order.

C. Elastic form factors from the projected a-d component

We give the derivation of the elastic form factors of Li
in a two-body (ad) model in which a real deuteron wave
function and an elementary a particle are projected from
the three-body (anp) model of Li. This enables one to
distinguish the contributions of the a (np-) component
(three-body correlations) in the results. To achieve this,
we use the completness of plane waves and the two-
nucleon states in Eq. (8b).

Specifically, for the two nucleons,

gym (s)lp[') (s')+ scattering contribution=5 (s —s'),
md

(27)

where y[')(s) is the deuteron wave function in coordinate space. If the "scattering contribution" to the completeness

relationship in Eq. (27) is ignored, one obtains F,„(q) in the a-d model. Then the form factor may be written as
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We define the alpha-deuteron overlap amplitude
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~

Li;lm )
I d

md, md

and

I2 ——g f d Q( Li; lm'
~
ad;Q+q/3, 1md )(ad;Q, lmd

~

Li;lm ) .
md

According to the work of Lehman and Rajan

(ad;Q, lmd
~

Li;lm) = g f&(Q)(lm&lm
~

1 )m&d4n. Y['t (Q),

(32)

(33)

(34)

where f&(Q) is the Ith partial-wave a-d momentum-distribution amplitude for Li, with fo(Q) being dominant and

f2(Q) negligible compared to fo(Q) except at the zero of fo(Q). The quantum number I is even because of the positive
parity of the Li nucleus, and (2 due to the deuteron and Li both having spin 1. It is also important to note that in
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the I, case, the body form factor of the deuteron appears and so the deuteron's charge form factor can be defined in
exactly the same way as the Li charge form factor (both of them being 1+ objects):

F (q)=[F~„(q )+F" (q )]f d s'e' "y('}.(s') y('}(s')

I

=F—co(q }5, +&12m.Fcz(q }g ( —1)
mk

1 2 1

—md Plk md
I[2] ( ) (35)

where Fco(q ) and Fcz(q ) are related to the static properties of the deuteron by:

lim Fco(q )=1
q ~02

and

2

lim Fcz(q )= q Qd

o 3&2

(36)

Qd denotes the quadrupole moment of the deuteron. If we neglect the d-wave a-d overlap amplitude, fz(q), the Li
monopole charge factor has the form

3Fco (q) =Fco(q)I, +2F,„(q)I z

where

I i'= fd'Q—fo( I Q —2a~3
I )fo(Q)

and

I z'= f d'Q—fo( I Q+q ~3
I }fo(Q»

(37)

(38a)

(38b)

while the quadrupole form factor becomes

3Fcz (q) =Fez(q)I;" . (39)

~hen fz(q) is not neglected, we find

»mFco(q)=4~ f q'"q' [tf oq(])' +[fr q(l)'1q~0 0
(40)

where the right-hand side is the percentage of a-d component in the three-body Li wave function. In an analogous
fashion, the quadrupole moment of Li in the a-d projection is given by

Q6„=Qd 4~f p'dp[[uo(p)]'+( —,'. )[u~(p)l'I

4m f p'dpp'u, (p)uo(p) —(4n/2~2) f p'dpp [u, (p)]15 0 0
(41)

where

u, (q)=&21'~f q'dq jI(qp)fI(q)
0

(42)

The quadrupole moment at this level has two contributions: (1) From the intrinsic quadrupole moment of the deuteron
times what is essentially the fraction of a-d component in the Li wave function, and (2} from the d-wave relative
motion of the alpha particle and the deuteron.

For the elastic magnetic form-factor calculation in the a-d projected model, we follow the same procedure outlined in
Eqs. (27)—(33) for the matrix element:

iq&
n 2[ppFgr(q )+p„F~(q')]f 0(') (p, s)e""" '~"'oI"0'"(p,s)d'pd'g . (43)
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F~(q) =FM(q)I,

where FM(q) is the deuteron magnetic form factor.

(44)

Here again, if we take only the s-wave piece of the ad- Li
overlap amplitude, we find, after some algebra, that
FM(q) is given by

charge form factor at q=0. For the parametrization of
the a-particle form factor, the formula of Frosch et al.
was used. The charge and magnetic form factors of the
deuteron, which were used in the projected a-d (two-

body) calculations of the Li nucleus, were kindly provid-
ed by Friar (for the Reid soft-core potential). '

A. Monopole charge form factor

III. RESULTS

Before the actual presentation of the results, we sum-
marize the utility of the five two-body interaction models
employed in this work. The "simple model, "

by having
only the P3/2 part of the aN interaction, enables us to
observe the effects of the presence of the S& &2 interaction
which is included in all the other four models. ' The
P

& y2 part of the aN interaction is also included in the
remaining four models, but it is weak enough that any
major observable difference between the "simple model"
and the other models is attributed to the presence of the
S

& y2 interaction in those other models. The "full-
repulsive" and "projected bound-state" models enable us
to see the differences in the representation of the S»2 in-

teraction in the aN system; and each of them is employed
with an NN interaction that yields either (4%) or (0%)
D-state probability in the deuteron so that the effect of
the tensor force in the NN system can be studied.

The general procedure for the calculation of all the
form factors involved in this work is as follows: First,
with the Li wave function as given in the Appendix, all
the recouplings of the spin and angular functions are
done using Danos' method; therefore, all the spin sums
are performed first, and then the angular and radial in-
tegrations are performed.

The coupling of the spherical harmonic functions to
zero is expressed in terms of polynomials in scalar prod-
ucts of the vectors found in the arguments of those spher-
ical harmonics involved. This method has been used in
the previous works of Lehman and collaborators involv-
ing the Li wave function. ' The polynomials men-
tioned are obtained by properly contracting all the ten-
sors involved to yield a scalar function in terms of the an-
gular variables. In order to check our derivations, the
symbohc manipulation module REDUCE was used to pro-
gram the above method. The program developed is gen-
eral enough to allow for the coupling of any number of
spherical harmonic functions to zero. Another REDUCE
program generates a FORTRAN code of all the terms in
the matrix element with their proper phases, coefficients
and couplings. This FORTRAN code is then included in a
bigger program which performs the numerical integra-
tions.

The parameters for the isoscalar nucleon charge and
magnetic form factors required in the calculations of the
monopole and quadrupole charge form factors and the
magnetic elastic form factor of Li were taken from
Hohler et al. It is important to note here that different
sets of parameters of Hohler et al. have different normal-
izations at q=0. For example, the different sets are not
constrained to yield unity for the nucleon isosc alar

As a check of the form-factor code, the contributions
of all the components of the wave function in the normal-
ization integral, which was done earlier and with a
different method of derivation were compared with those
produced by the Fco code at q =0 [it is easy to show that
Fco(0) and the normalization integral are identical]. The
analytical and numerical results both agreed between
these two different methods for all the potential models
considered here. The results for the Fco form factor us-

ing different models are shown in Figs. 1 —4. In Fig. 1,
the result for the projected bound-state (4%) model,
which is one of the best models used (because of its better
prediction of the binding energy relative to other models),
is plotted against the experimental data. Most models
show a diffraction minimum between q =9.0 fm and

q =10.0 fm . The full-repulsive (0%) model has the
minimum between q =8.0 fm and q =9.0 fm . The
simple model does not reproduce the diffraction
minimum at all. In Fig. 5, the F&0 form factor for the
projected a-d component of Li is presented vs the three-
body projected bound-state (4%) model of Li. The pro-
jected a-d predicts a minimum between q =10 fm and

q =10.5 fm . To find the charge radius of Li from the
Fcp form factor, six points are generated near the origin,
and a least-squares fit is done. The slope of this line then

10

10

10

I
—4.

I I I I I I I I I I I I I I I I I I I IIIII I I I I

0 2 4 6 8 10 12 14

q' (fm-')

FIG. 1. The monopole charge form factor of Li for the pro-
jected bound-state (4%%uo) model, and the experimental data.
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FIG. 2. The monopole charge form factor of Li for the pro-
jected bound-state (4%), and projected bound-state (0%) mod-
els.
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FIG. 4. The monopole charge form factor of Li for the full-
repulsive (4%), full-repulsive (0%), and simple models.

determines the charge radius. In Table I, the calculated
charge radii for different models are presented next to the
binding energies in the corresponding models. A linear
least-squares fit to the charge radius (R,„)vs the binding
energy (B) for the values in Table I gives

R
U
—— (0 22—+0 0. 2)B +. (3.32+0.06)

with correlation coefficient r =0.991.
It is found that for q values up to 6.0 fm it suffices

to use 10-Gegenbauer (for two-radial integrations), 6-
Gaussian (for the two-polar-angle integration), and 20-
Simpson (for one-azimuthal-angle integrations) grid
points for the desired accuracy of three significant
figures. However, for q =6.0 up to 14.0 fm, one must
use 16-6egenbauer, 10-Gaussian, and 20-Simpson grid
points in order to get the desired accuracy.

B. Quadrupole form factor

The number of terms in the quadrupole-form-factor
matrix element is considerably larger than the monopole
form factor, mainly because the operator in the quadru-

00

TABLE I. The electrical charge radius of Li. Experimental
result, Ref. 1: R,h

——2.56+0.05 fm.
6L1

Potential
model

Binding energy Charge radius
(MeV) (fm)

0 2 4 6 8 1Q 12

(P (fm ')
FIG. 3. The monopole form factor of Li for the ful1-

repulsive (4%), and projected bound-state (4%) models.

Simple
Repulsive (0%)
Repulsive (4%)
Projected
bound state (0%)
Projected
bound state (4%)

4.6720
4.4460
4.0624
4.2940

3.9030

2.257
2.325
2.403
2.352

2.434
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FIG. 5. The monopole form factor of Li for the three-body

and two-body (a-d) projected bound-state (4%) models.

pole case is of rank two and allows for more angular
momentum couplings between the different components
of the ground-state wave function. Therefore, the angu-
lar dependence of the form factor is also more complicat-
ed than the monopole case. This makes the numerical ex-
traction of the quadrupole moment of Li from the low q
behavior of the form factor very difficult. The extraction
of the quadrupole moment was attempted here, using Eq.
(18) and noting that

Fci(q )
Q6L, ——(1/9&2) lim

q ~0
The attempt was unsuccessful because the numerical in-
tegration of the complicated integrand of F&2 is not accu-
rate enough to allow for a stable value of the ratio
[Fc~(q )/q ] for low-q values. The accuracy of results
for this limit were checked for different integration grid
points. Even with 24-6egenbauer, 16-Gaussian, and 40-
Simpson grid points stability was not reached. The cost
for any checks beyond the above becomes prohibitive.

For the plot of the I~2 form factor, the 16-
Gegenbauer, 10-Gaussian, 20-Simspon integration grid
point scheme yields adequately accurate results for
higher q values. In Fig. 6 a plot of the absolute value of
the charge form factor of Li is given with explicit sepa-
ration of the monopole and quadrupole contributions
[note that (F,„') =Fco+Fcz]. Figures 7—9 show the

F~2 form factor for different models. In all models a
maximum is reached between q =1.0 fm and q =1.5
fm . Then the form factor drops without any further
structure for higher q values. In this work, the charge
form factor of Li and its rms charge radius are com-
pared with the experimental results of Li et al. (Figs. 1

and 6).

0 2 4 6 8 10 12 14

q (fm-')
FIG. 6. The total charge form factor of Li for the projected

bound-state (4%) model, with the monopole and quadrupole
contributions separated, and the experimental data.

C. Elastic magnetic form factor

In the calculation of the magnetic form factor, the con-
vection contributions to the current operator were
neglected for the reason given in Sec. II. Even the spin
part of the current operator is not fully included. All the
terms for the [o '

&& Y )(q)] ' operator, and only the

I I I
)

I f I I
t

I l I I
f

I I I I
/

I I f I
f

I l I I
f

I l I

PN ss. (oC,'

mj ss. (4a)-—

10

1
-4

O
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I l I I I I

0 2 4 6 8 10 12 14

q'(r -')
FIG. 7. The quadrupole form factor of Li for the projected

bound-state (4%) and projected bound-state (0%) models.
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FIG. 8. The quadrupole form factor of 'Li for the projected

bound-state (4%) and the full-repulsive (4%) models.
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FIG. 9. The quadrupole form factor of Li for the full-

repulsive (4%), full-repulsive (O%%uo), and the simple models.

most important contributions of the [a ' X Y (q)]('
are in the final results. The inclusion of only the impor-
tant terms for the [cr ' X Y (q)] ' piece of the operator
show that these terms are negligible. At the worst case,
the form factor value was changed in the third significant
figure relative to the calculation with the
[0 ' X Yl )(q)](' part of the spin-current operator only.
As mentioned in Sec. II, the value of the magnetic form
factor at q =0 yields the magnetic moment of Li (ju6 . ).
In our calculation F~(0) yields only the spin contribution
to the magnetic moment, because we only include the
spin-current operator. In Table II, results of our calcula-
tions of p, of Li for different models are given. An in-
dependent three-body calculation of p6 . for these

different models, in which the magnetic moment is calcu-
lated directly is also given in Table II. In this indepen-
dent calculation, the L-S component probabilities are cal-
culated by recoupling the three-body wave function from
its Jacobi-coordinate form, and p6„. is determined using

the L-S probabilities for each model. The advantage of
this approach is that the orbital (convection piece) and

0
gg I I 1 I I I 1 I

)
I t 1 I I I 1 I I

i
l I I l l I I I I

t
g

10

10

TABLE II. The magnetic moment of Li. Experimental re-
sult, Ref. 22: p,„,=0.82205 p&.

Potential
model

p~ (p~)
of this work

vs (I ~)
(Lehman (Lehman

and Parke) and Parke)

Simple
Repulsive (0%)
Repulsive (4%)
Projected
bound state (0%)
Projected
bound state (4%%uo)

0.7752
0.8319
0.7972
0.8292

0.7946

0.7710
0.8283
0.7932
0.8262

0.7918

0.8328
0.8575
0.8423
0.8566

0.8417

-7
10 I I I I I I I I I ~ I I I I I I I I I I I ll I I I I I I I l I I

FIG. 10. The magnetic elastic form factor of Li for the pro-
jected bound-state (4%%uo) model, and the experimental data.
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FIG. 11. The magnetic elastic form factor of Li for the pro-
jected bound-state (4%), and the projected bound-state (0%)
models.
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FIG. 13. The magnetic elastic form factor of Li for the full-

repulsive (4%), full-repulsive (0%), and the simple models.

spin contributions to the magnetic moment are given sep-
arately (note that (tt=(ML+)ttz). This independent calcu-
lation serves the purpose of checking the code for the
form factor.

For the production of the form factor plots, 10-
Gegenbauer, 6-Gaussian, and 20-Simpson grid points
were used throughout the range of q values. The reason

being that the second lobe of the form factor is by 2 or-
ders of magnitude smaller than the experimental results,
and an improvement in the second or even first significant
figure (which is all one gets by increasing the grid points
here) would not improve the understanding of discrepan-
cies at all; however, the cost of computations would soar
if the number of grid points were significantly increased.
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FIG. 12. The magnetic elastic form factor of Li for the pro-

jected bound-state (4%) and the full-repulsive {4%)models.

Q (fm ')

FIG. 14. The magnetic elastic form factor of Li for the
three-body and projected two-body (a-d) [projected bound-state
(4%)] models.
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Generally, all models considered here, with the exception
of the simple model, exhibit a diffraction minimum be-
tween q=2.0 fm ' and q=2.5 fm '. The value of the
form factor for higher q is lower than the experiment by
approximately 2 orders of magnitude. Figures 10—14
show the form-factor calculations for all models. In Fig.
14 F~ is shown for the three-body and projected two-
body (a-d) [both for the projected bound-state (4%) mod-
el] models. In this work, the magnetic form factor is
compared with the experimental data of Bergstrom
et al. ' (see Fig. 10).

IV. DISCUSSION

A. Monopole charge form factor

and

3/2 1/2 3/2 1/2
(F)(3g2)) XF)(3~q)) ) X(F)(3~q)) XF)(3~q)) )

0 1/26 XFo(1/2pj

leads to the location of the minimum. Other contribu-
tions, e.g. , 6 &(6, tend to fill the minimum. Thus, the
imPortant role of the Fo~, /20] comPonent of the wave

function in determining the minimum confirms our con-
clusion of the previous paragraph about the importance
of the S»2 aN interaction.

A revealing picture of the distinct two- and three-body

The following features are readily observed in an in-
spection of our calculations of Fcp for different models
(see Figs. 1-5).

(1) All models except for the simple model predict a
diffraction minimum about 1 fm larger than the experi-
ment.

(2) The 0% models are slightly larger in their values of
~
Fco

~

in the region of the maximum.
(3) The projected bound-state and the full-repulsive

models are basically indistinguishable in terms of their
prediction of the shape and magnitude of Fgp.

The first observation leads to one of the most impor-
tant contributions of this work, namely, that the S, /2 aN
interaction is responsible for the observed diffraction
minimum (note that the P)zz component of the aN in-
teraction is not expected to be responsible because it is at-
tractive and too weak in comparison with the I'3/2 com-
ponent). This is most easily seen from Fig. 4 in which the
results of the simple model (where the S)zz interaction is
not included) are presented against those of the full-

repulsivq model. The second observation indicates that
Fcp is sensitive to the tensor forces in the region after the
minimum (Figs. 2 and 4), where the 0% models are dis-
tinctively higher than the 4% models. The third observa-
tion implies that Fcp is not sensitive to the particular rep-
resentation of the S»z interaction (Pauli s exclusion prin-
ciple) in the aN system (Fig. 3).

What components of the Li wave function (see the
Appendix) are responsible for the diffraction minimum in

~
Fco ? A detailed analysis indicates that a subtle can-

cellation between the terms that contain the combina-
tions

correlations is given in Fig. 5 where, for one of the mod-
els considered [projected bound state (4%)], we present
the projection of the a-d component of the three-body
wave function. Here the differences seen in our solid-
dash and solid curves are purely due to three-body corre-
lations. Not only the three-body correlations are essen-
tial in getting the right magnitude for Fcp, but also they
move the position of the diffraction minimum. An im-

portant point to note here is that for purely two-body cal-
culations of the form factor, one should not normalize
the q =0 point to unity. The exact three-body calcula-
tions show that the a-d contribution at q =0 is at most
about 65%, the remaining 35% is due to the three-body
a-(np) channel. Therefore, an a-d model normalized to
unity at q =0 has the wrong spectroscopic factor.

The strong linear relationship between the charge ra-
dius and the binding energy (BE) given in Sec. III
confirms physical intuition that larger binding should re-
sult in smaller radius. The model with the closest binding
energy to the experiment is the projected bound state
(4%) with a binding energy of 3.9030 MeV, bearing in
mind that the Coulomb interaction is ignored in our cal-
culation. The charge radius of 2.43 fm for this model is
in agreement with the best results of Bang and Gignoux's
three-body (coordinate space) calculation. ' Their calcu-
lations for MalQiet and Tjon's and for de Tourreil and
Sprung's potentials yield 2.42 fm (BE=3.55 MeV) and
2.44 fm (BE=3.20 MeV), respectively. The approximate-
ly 5% discrepancy between the theory and experiment
may disappear if the Coulomb interaction is included in
the calculation, since the charge radius seems to be sensi-
tive to the binding. The Russian group's three-body cal-
culation, where the values of the charge radius and the
binding energy are both larger than the experimental
measurements, is probably not that surprising because
their Gaussian wave functions do not have the proper
asymptotic behavior (the wave function should fall off ex-
ponentially at large distances) which manifests itself in
the low q behavior of the wave function in momentum
space.

Now the question arises: In the absence of a fully rela-
tivistic model, what more can be done to explain the
current discrepancies? Even though we understand that
in order to reproduce the experimental results we must
include the missing parts of the dynamics (like three-body
forces, etc.), there are a few things which can be done be-
fore one is convinced that all has been accomplished in
the nonrelativistic approach. The first thing to try is to
use a more sophisticated NN interaction. This has been
shown to improve the cluster model results dramatically
(see Jain et al. ' ). A more sophisticated NN interaction
would incorporate the NN short-range repulsion and
hopefully improve the binding-energy results to which
the form factor seems to be sensitive at least in the low-q
regions. Finally, one should include the Coulomb in-
teraction to see if the static properties can be improved.

B. Quadrupole form factor

As seen in Fig. 6, the FC2 form factor seems to behave
exactly as expected, i.e., not much significance on the to-
tal charge form factor except for the filling of the
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minimum. Figures 8 and 9 show the results for different
models. What seems to dominate throughout these plots
is that the projected bound-state model is higher in value
throughout the q values than the repulsive models, and
again the 0% models are bigger than the 4% models (Fig.
7). Therefore, the Fc2 form factor is sensitive to the par-
ticular representation of the S,&z interaction in the aN
system (Fig. 8), especially in the q & 4 fm region. Fc2
is also sensitive to the tensor forces (Figs. 7 and 9). As
mentioned earlier numerical difficulties made the extrac-
tion of the quadrupole moment from the quadrupole
form factor essentially impossible. However, we expect
the wrong sign for the quadrupole-moment value since

F~2&0 for small q in all models. This appears to be sub-

stantiated by the projected a-d model [Eq. (41)] which
yields a positive value for the quadrupole moment slight-

ly lower than that of a free deuteron. For a definite pre-
diction of the quadrupole moment, one must resort to a
direct calculation of the matrix element of the quadru-
pole operator.

C. Elastic magnetic form factor

An inspection of the calculated plots for FM using our
models leads us to the same conclusions that were ob-
served for the Fco form factor (Figs. 11—13). However,
we must remember that in this calculation only the spin
current operator is included. In Table II, the spin contri-
bution to the magnetic moment (p6 . ) for different mod-

els are shown opposite to an independent calculation by
Lehrnan and Parke. Here, one can clearly observe that
the orbital contribution to the form factor at q=0 is
small compared to the spin part. This prompted us to in-
clude the spin current only. In addition, it is known that
for the magnetic form factor of H, the convection-
current contributions are negligible except in the region
of the diffraction minimum.

Figure 10 shows that the theoretical curve falls short of
the experimental data by up to 2 orders of magnitude (for
q&2 fm '). Based on previous experience it is not very
likely that the inclusion of the convection currents are
mainly responsible for this huge discrepancy, although
one must, as a first correctional step, include the convec-
tion parts of the operator in future calculations. The
same remedies suggested for F&0 may be prescribed here
for the improvement of understanding with regard to the
existing discrepencies.

Our calculation, however, is rather successful in the
low-q region, and in particular yields magnetic moment
values (see Table II) with only the spin operator in agree-
ment with pz of Ref. 28 and in reasonable conformity
with experiment. The only other dynamically sound cal-
culation of the magnetic form factor performed by Kuku-
lin et al. suffers from the same discrepancy between the
theory and experiment in the region of the maximum. As
observed in Fig. 13, the S]y2 interaction between a and N
is again playing the major role in reproducing the
diffraction minimum, and F~ is not sensitive to the repre-
sentation of the Si&2 interaction in the aN system (Fig.
12). However, the tensor forces have a definite effect in
the high q region (q & 2.5 fm ') after the minimum (Figs.

11 and 13}.
Figure 14 shows the two-body (projected a-d model)

result and the full three-body calculation for the magnet-
ic form factor. As is clear from the figure, for high q
values the a-d model fails to reproduce the minimum. In
spite of the fact that only the s-wave piece of the a-d
momentum distribution is included, one can conclude
that three-body correlations are even more pronounced in
the case of the transverse elastic form factor for getting
the right shape of the FM form factor.

V. CONCLUSION

The present work that uses the LRG three-body wave
function to determine the elastic electromagnetic form
factors of Li, confirms that the LRG model is successful
in explaining the low-q (momentum transfer) behavior of
the electromagnetic form factors, which lie within the
realm of the validity of the model. It is surprising that
even for higher-q values, the model can predict the gen-
eral shape properly and provides a qualitative explana-
tion of the physics of the form factors. This shows that it
is possible to do a consistent nonrelativistic three-body
calculation of the elastic electromagnetic form factors of
Li, based on the low-energy parametrization of the un-

derlying two-body interactions of the constituent parti-
cles. Once these parameters are set, no further parame-
trization occurs and calculations of physical observables
are direct predictions of the three-body model.

Basically the static properties of Li, extracted from
the form factors (charge radius, magnetic moment), are
predicted within a few percent with the exception of the
quadrupole moment for which a separate calculation
should be done to circumvent numerical problems. A
study of the shape of the form factors shows us the im-
portance of the S&&2 interaction in the aN system for the
prediction of the diffraction minima of the form factors.
All the form factors (except for Fcz in the high-q region)
are insensitive to the particular representations of the
S»2 interaction in the aN system. On the other hand,
the tensor forces are felt by all the form factors con-
sidered here, lowering the form factor values at higher-q
values (generally beyond the diffraction minimum).

The following steps might be considered for refinement
of the model: (1) Employ a more sophisticated NN in-
teraction to incorporate short-range repulsion. (2) In-
clude the Coulomb interaction to further improve the
binding energy and thus the charge radii and to assure
that the low-q discrepancies are purely a binding effect;
all this in the elastic longitudinal form factors. (3} For
the elastic magnetic form factor, inclusion of the convec-
tion currents is the natural extension of the work done
here.
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APPENDIX

This appendix explicitly defines the form of the three-
body wave function used in this paper. The Jacobi-
coordinate s is used to define the relative position of the
proton (1) with respect to the neutron (2), while p gives
the coordinate of the a particle (3), relative to the (n, p)
pair, both s and p are defined in the center of mass of the
three-body system, and are related to the center-of-mass
coordinates of the three particles by

k23
————'k+ —'p, (A4)

p1= —k —pp ~ (A5)

k3, ——k ——P, (A6}

In momentum space, the conjugate Jacobi momenta are
used, where k; denotes the relative momentum of the ith
and jth particles, while pk represents the relative momen-
tum of the kth particle with respect to the center of mass
of the other two. In terms of k, 2=k, p3 =—p, the permut-
ed sets are given by

s 2pr, =——
2 3

(Al)
p2

——k ——,'p (A7)
$2p12=—
2 3

r3=
3

(A2)

(A3)
The wave function of Li as defined by LRG (Ref. 8)

can then be written as

2

gl'(k, 2)G'( ) t [ Y('}(kI2)XX(')(12)](')X F(' l(p3)]g
I 3 I, I'=0

K +k12+
3/2 1+J J'+ 1/2

+ s y y y pl+I'AJ
J =1/2 J'=

~
1 —J

~

I'=J' —1/2

X I hl (k23 )Fl ( JI)(pI )[5'I(IJ2)(k23, 2) X 'PI (,q2)(p„ 1 )]|I
+( —1)'hl (k3, )Fl (JI)(P2)

X [PI(In)(k3„)X O'I (4)(p2, 2)]g I

where

and

(k 2)= g (litt —'r)
~

JM) F~(' (k)X(„' (2)

pression, and the wave function is symmetric under the
exchange of particles 1 and 2. gl'(k) and hI (k) are NN
and aN interaction form factors, respectively, and are
analytically represented by

PL. [1+(—1}']
2

The spectator function G'(p) is the I-wave momentum
distribution amplitude of the a-particle relative to the
center of mass of the two nucleons, and F, IJII (p) gives the
total-angular-momentum J'-orbital angular-momentum
I' component of the momentum distribution amplitude of
a nucleon relative to the center of mass of an a-N pair in
the Jl state of their interaction. It should be mentioned
that the isospin function is suppressed in the above ex-

(t 'J2k}
gl'(k) =

[k 2+ (Pl )2]( I + 2) /2

AI (k) =
[k 2+ (P/) ](I + I )

where the P&'s are the inverse range parameters for the
potential.

A. , and AI are the strength parameters of the potentials.
For a more complete description of the potentials and
wave function components see LRG.
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