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The T =0 states of He are investigated in complete Neo shell-model spaces with 3 (N (10 us-

ing a realistic two-body interaction based on the Sussex matrix elements. It is found that it is possi-

ble to describe the ground-state properties and the T =0 excited spectrum of this nucleus in a con-
sistent manner provided the model space is enlarged up to 1(Him of oscillator excitation. In particu-
lar, the lowest 1 state appears in our 10fico spectrum with an excitation energy comparable to the

energy of 24. 1 MeV favored by recent experimental investigations of the reaction 'H(d, p)'H. More-

over, the D-state admixture of the large-basis ground-state wave function amounts to 4.7%, in fair
agreement with the value deduced from recent analyzing power measurements of the reaction
H(d, y) He.

I. INTRODUCTION

Most nuclear structure investigations rely on the as-
sumption that atomic nuclei can be described as systems
of nucleons interacting via pairwise forces. In this pic-
ture the specification of a two-nucleon potential suitable
to the description of a particular nucleus is unavoidably
ambiguous and, accordingly, many effective interactions
have been utilized. Nuclear structure calculations are
nevertheless more credible when the model Hamiltonian
is based to a large extent on the two-nucleon scattering
and bound state experimental data which, after all, are
our most reliable source of information about the nuclear
interaction. In this respect, the set of matrix elements
proposed by the Sussex group' is a well-adapted starting
point for calculations carried out in the framework of the
harmonic oscillator shell model.

The capabilities of the Sussex matrix elements (SME)
have been extensively tested, especially in shell-model
studies of very light nuclei. It is found that most of
the relative energies in the calculated spectra are reason-
ably well reproduced but that, as for other realistic
nucleon-nucleon forces, the theoretical binding energies
are much too small. Different modifications of the SME
have been proposed to correct this defect. In this
problem it is very difficult to evaluate the part played by
the truncation of the model space. Our aim in the
present work is to shed some light on this question by in-
vestigating He in she11-model bases extended beyond
4%co and 5fico of oscillator excitation which are the usual
computational limits in this type of calculations for the
positive and negative parity states, respectively.

We have first calculated the binding energy of He in a
four-nucleon harmonic oscillator basis including all the
configurations up to 196m excitation energy using the
bare SME. From the results obtained it is clear that the
problem of underbinding is inherent in the matrix ele-
ments rather than in the truncation of the basis. There-
fore we decided to modify the Sussex interaction accord-
ing to a procedure proposed by Bevelacqua and Philpott.

We have thus continued our calculations using the SME
multiplied by a single strength factor which was adjusted
in the various model spaces to yield the correct binding
energy. These modified SME were then utilized to calcu-
late the excited T =0 spectrum as well as the charge radii
and the P- and D-state probabilities of both the ground
state and the first 0+ excited state.

We wish to emphasize that the present study is
relevant to shell-model calculations in general. It is well
known that nowadays much work is devoted to the devel-
oprnent of shell-model codes designed to handle huge
configuration spaces. It is thus useful to show explicitly
on an example what might be gained from such an effort.
For this purpose, He appears as a good testing ground
since it is the lightest nucleus showing an excited spec-
trum; moreover, its binding energy per nucleon is compa-
rable to that of heavier nuclei. Of course, by basing our
work on the SME we make the assumption underlying

implicitly most nuclear structure investigations, that a
real understanding of the short-range correlations which
arise from the presence of a repulsive core in the free
nucleon-nucleon potential is not required to describe the
nuclear spectra reliably. In fact, the correct description
of these correlations remains an open problem since even
modern nucleon-nucleon interactions underbind He by
several Mev (Ref. 10). The capabilities of these interac-
tions for the description of excited states are even more
uncertain. Therefore, we believe that approaches which
describe both the ground state and the excited spectrum
in a consistent manner in terms of a few adjustable pa-
rameters are still useful steps towards the understanding
of low-energy nuclear properties. In this context we
stress that besides the usual oscillator parameter, the only
parameter in our model is a single strength parameter
whose value is determined by the observed binding ener-

gy, so that the calculation of all the other observables is
entirely parameter free.

Our paper is organized as follows. The method of cal-
culation is outlined in Sec. II. In Sec. III the modified
SME are used to investigate the properties of the ground
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state and the lowest 0+ excited state as functions of the
total number of oscillator quanta included in the shell-
model basis. Results concerning the T =0 negative pari-
ty spectrum are discussed in Sec. IV. Concluding re-
marks are presented in Sec. V.

II. METHOD OF CALCULATION

The operator matrices were constructed in four-
nucleon shell-model bases including all the configurations
up to No harmonic oscillator quanta with No =10. As in
our previous works, "' the basis states were taken of the
form

~[lqtq21, Lq3q4], loo

where q; represents the usual single nucleon harmonic os-
cillator quantum numbers n, lj, ; A is the antisymmetriz-
er and the square brackets are used to denote angular
momentum and isospin coupling as well as normaliza-
tion. It is worth remembering that the basis states of this
type with three or four particles in the same orbit must
be orthogonalized. Actually, for No ——10 there are only
five pairs of nonorthogonal states. The orbits and the in-
termc:diate quantum numbers defining these pairs are
given in Table I.

As the model Hamiltonian is translationally invariant,
the eigenstates of its matrix representation in complete
harmonic oscillator bases are automatically eigenstates of
the center-of-mass (c.m. ) Hamiltonian with eigenvalues

E, equal to

(2n, + l, + —,
' )fico .

In addition, the eigenstates of the energy matrices calcu-
lated in different Nofico spaces and describing the same
internal structure of He are degenerate. These proper-
ties make it possible to identify the eigenstates character-
ized by n, =0 and, via E, , to determine the corre-
sponding values of I, . These quantities are of practical
interest since in a basis coupled to total angular momen-
tum equal to zero, I, is precisely equal to the internal
angular momentum quantum number J of the system un-

der study. To put it in another way, in our calculations

TABLE I. Basis states of the form A[[q, q, ],, [q,q4], , ]00 up
to 1(Hico excitation energy with three or four partic1es in the
same orbit.

orbits

(Od —)

(0d-,' )'(0f-,' )

(Od —,
' )'(0f—', )

the eigenstates of the energy matrices characterized by
n, =0 and a given value of I, in the Nofico space are
at the same time good states (E, = ', fic—o) in bases in-

cluding all the configurations coupled to angular momen-
tum J =I, and of maximum excitation energy equal to
Neo with N =No —J. In this way we were able to ex-
tract from a single energy matrix good eigenstates cou-
pled to different values of J. On the other hand, it is easi-
ly seen that these states have internal parities equal to
( —1) or ( —1) +' according as to whether No is even or
odd.

The charge radii of the ground state and the lowest 0+
excited state were calculated from the expression

' 1/24

~ch 4&ASM I g "i
l
(tSM~+~N gb'

i=1

In this formula b is the usual oscillator length parameter
(fi/inco)' and psM denotes good shell-model states. In
our calculations fi /m was taken equal to 41.4723
MeVfm . The nucleon radius Rz ——0.772 fm was ex-
tracted from the nucleon form factor given by Janssens
et al. '

To calculate the P- and D-state probabilities of these
levels, we have taken advantage of the fact that for J =0
the internal orbital quantum number L is equal to the to-
tal spin quantum number S (L =S =0, 1,2). Consequent-
ly, the probabilities PL of the states characterized by
definite values of L can be obtained by solving the follow-
ing set of equations:

&(tsM l

S'
l PsM & =y L «+1)P

&PsM l
(S )

l PsM) =gL (L+1) PL
L

+PL ——1 .
L

The construction of the matrix representation of the spin
operator S is straightforward. In fact, one has only to
replace the relative two-body matrix elements in the
four-nucleon Hamiltonian matrix by ( —I)'+'5„„5)&.5»
where s, l, and n are, respectively, the spin, the orbital an-
gular momentum, and the radial quantum numbers
characterizing the relative wave function of a pair of nu-
cleons.

The Coulomb interaction is not included in the model
Hamiltonian. We compare our theoretical results with a
Coulomb-corrected experimental spectrum obtained by
assuming that the Coulomb repulsion gives a contribu-
tion of 0.7 MeV to the ground state energy and of 0.5
MeV to the energies of the excited states. Variational
calculations of resonant states in He by Carlson et al. '

indicate that this procedure is accurate within 0.1 MeV.

III. MODIFIED SUSSEX MATRIX ELEMENTS

(Od2) (1d—,')

(Od —,
' )'(og —,

'
)

As was shown by Elliott et al. ,
' the matrix elements of

the internucleon potential deduced from the nucleon-
nucleon scattering data are subject to the constraint,

(4n +21+3)%co & 330 MeV .
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TABLE II. Extrapolated values (in MeV) of D& matrix elements involved in 8fico and 1(Hico calcula-
tions.

b =1.6 fm

(2'D,
i

V i3'Di) (3'D,
i

V i3'Di)

b =1.8 fm

(3'Di
I
V14'D) ) (4'Di

I
V14'Di)

4.28 4.40 3.50 3.64

I

t8

b {fm)

I

2.0 2.2

FIG. 1. Theoretical energies of the ground state (solid
curves) and the lowest 0+ excited state (dashed curves) obtained
in the various NAco spaces as functions of the oscillator length
parameter using the bare SME.

Therefore, the investigation of nuclear properties in a
complete NAco model space relying solely on these data
cannot be achieved unless the oscillator length parameter
is larger than some value which for N =6, 8, and 10 is
equal to about 1.4, 1.6, and 1.8 fm, respectively. In fact,
for b equal to 1.6 and 1.8 fm a few D, matrix elements
needed in our 8Acu and 1(Hi~ calculations are not tabulat-
ed in Ref. 1. They were estimated by extrapolating the
known SME to lower b. The values thus obtained are
given in Table II. We have checked that these additional
matrix elements have little effect on the calculated spec-
tra. For instance, in a 8hcu calculation with b =1.6 fm,
the variation of the binding energy of He is equal to
about 0.2 MeV when the matrix elements

3 D&) and (3 Di I
V 13 Di) are both

varied from zero to 10 MeV.
The theoretical energies E~(g.s.) and EIv(0+) of the

ground state and the lowest 0+ excited state of He calcu-
lated in the various NAY spaces using the bare SME are
displayed in Fig. 1 as functions of the oscillator length
parameter. It is apparent that the decrease of Ez(g.s.)

when the model space is enlarged up to 1(Hico, though im-
portant, is not suScient to bring this energy in agreement
with the Coulomb-corrected experimental value of —29
MeV. Likewise, E~(0+) remains much greater than the
Coulomb-corrected experimental value of —8.7 MeV.
Actually, the preceding inequality defining the accessible
orbits makes the agreement of Ez(g.s.) and E~(0+) with
experiment impossible, even in arbitrarily large model
spaces. For instance, the lowest possible value of Ez(g.s.)
in the 10A'co space ( —19.66 MeV for b =1.8 fm) is
greater than its counterpart in the 8A'co space ( —20. 31
MeV for b =1.6 fm). Note that in the 6%co and 8%co mod-
el spaces the excitation energy

E„z(0+)=Ez(0+ ) —Ez(g. s. )

of the lowest 0+ excited state coincides with the
Coulomb-corrected experimental value of 20.3 MeV for b
equal to about 1.6 fm, a typical value for the oscillator
length parameter in shell-model investigations of He;
however, when the models space is enlarged further, it is
no longer possible to bring E„&(0+) in agreement with
experiment as for N =10 the highest value of this energy
drops to less than 17 MeV.

It turns out that a correct shell-model description of
the binding energy of He can be achieved using sets of
two-body matrix elements obtained by changing the SME
within limits compatible with the expected uncertainties
in these quantities. Bevelacqua and Philpott have pro-
posed a very simple procedure to generate such sets. It
merely consists in defining an effective interaction of the
form A. V "' " where A, is an adjustable parameter. These
authors obtained a good description of the ground state
properties of the A =3 and A =4 systems in 4Aco model
spaces by taking A, =1.168 and b =1.6 fm. The lowest
0+ excited state of He, on the contrary, was still found
much too high in energy.

We have employed the same method in our large-basis
calculations. The values of A, defined in the various NAm
spaces by the condition E~(g.s.) = —29 MeV are given in
Table III for b =1.6 and 1.8 fm together with the corre-
sponding excitation energies E„N(0 ). It is clear that
the extension of the model space from N =4 to N =10
improves, considerably, the position of the lowest 0+ ex-
cited state. In a 10%co calculation, the discrepancy be-
tween the theoretical energy and the Coulomb-corrected
experimental value is reduced to practically 1 MeV for
b =1.8 fm. We wish also to emphasize that for a given
value of the oscillator length parameter, the strength fac-
tor is noticeably shifted towards unity with increasing N.
In fact, Ez(g.s.) and E„~(0+) are sensitive functions of A,:
For all the values of N and b considered, we found that
when A, is increased by 1%, EN(g. s.) and E„N(0+) de-
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TABLE III. Strength factor A, determined in each NAco space by the constraint EN(g.s.) = —29 MeV

for b =1.6 and 1.8 fm, and excitation energies of the lowest 0 excited state calculated using the in-

teraction A, v "'"";corresponding values of the charge radii and the D-state probabilities of both the

ground state and the lowest 0+ excited state.

1.6

1.8 4
6
8

10

1.166
1.142
1.124

1.225
1.182
1.154
1.137

E„,~(0+ )

(MeV)

29.43
25.34
24.03

26.78
23.26
22.40
21.37

R,h(g. s.)
(fm)

1.70
1.68
1.68

1.78
1.73
1.72
1.71

2.37
2.58
2.72

2.60
2.82
2.91
3.05

PD(g.s.)
(%)

3.84
4.43
4.71

3.12
3.90
4.35
4.70

PD(0+ )

(%)

3.80
3.66
4.34

2.72
2.59
3.37
3.31

crease roughly by 0.7 and 0.3 MeV, respectively. Let us
note, by the way, that these energy shifts are of the same
order of magnitude as the contributions of the Coulomb
repulsion.

In Table III we have also displayed the charge radii
and the D-state probabilities of the ground state and the
lowest 0+ excited state calculated using the modified
SME; the P-state probabilities were found negligibly
small and, accordingly, they are not presented. It is seen
that in all the model spaces considered, the charge radius
of the lowest 0+ excited state is significantly greater than
the charge radius of the ground state, and that both these
states have comparable D-state probabilities. Our results
thus support the usual breathing-mode interpretation of
the lowest 0+ excitation of He. It is also apparent that
the ground state charge radius, whose experimental value
is equal to 1.68 fm (Ref. 15), is best described by the
b =1.6 fm calculations. Moreover, for this oscillator
length parameter the D-state admixture of the Slice

ground state wave function is in fair agreement with the
value of 4.8% deduced from recent tensor analyzing
power measurements of the reaction H(d, y) He by
Weller et al. ' However, as noted above, these calcula-
tions are restricted to N & 8 model spaces, which prevents
a correct description of the lowest 0+ excited state. Ac-
tually, the transition to the 10Am space is rewarding as,
for b =1.8 fm, the resulting reduction of E„z(0+) rela-
tive to the lowest value of this energy in the 8fico space
amounts to 2.66 MeV, whereas the charge radius and the
D-state admixture are only slightly changed.

IV. THE T =0 NEGATIVE PARITY SPECTRUM

According to the survey done by Fiarman and Mey-
erhof' in 1973 the only T=0 excited levels whose
characteristics are firmly established are, besides the
breathing-mode excitation, the 0 and 2 states with ex-
citation energies equal to 21.1 and 22. 1 MeV, respective-
ly. The 1 isoscalar state, which belongs to the same
SU(4) supermultiplet, is mentioned as uncertain and is lo-
cated 8.9 MeV above the 2 state. On the other hand,
more recently Gruebler et al. ' have reported strong evi-
dence for a 1 T =0 state at 24. 1 MeV. The existence of
such a level at a comparable energy (24.4 MeV) results
also from a R-matrix analysis of four-body reactions by

Hale and Dodder. ' It is thus of great interest to see how
the T =0 negative parity spectrum comes out in large
shell-model spaces. It must be realized, however, that the
specification of the model Hamiltonian relevant to the
negative parity spectrum is somewhat ambiguous when
binding energy restrictions are imposed, as shell-model
states belong to NAco spaces with N even or odd accord-
ing as to whether the parity is positive or negative. Con-
sequently, to calculate the negative parity spectrum in
the Neo space, there is no obvious choice between the in-
teractions determined either in the (N —l)A'co or in the
(N+1)%co space. Fortunately, this ambiguity about the
interaction causes uncertainties in the calculated energies
of the negative parity levels which, for N & 5, become less
than 1 MeV. The spectra presented in this section were
calculated by using in the NAco space the strength param-
eter determined in the (N + 1)fico space.

As the breathing-mode excitation is best represented in
the 1(Rico space by b =1.8 fm calculations, we have used
the same harmonic oscillator parameter to investigate the
T =0 negative parity spectrum. The theoretical excita-
tion energies obtained in the various NAco spaces are
compared in Fig. 2 with the Coulomb-corrected experi-
mental energies. As was outlined in Sec. II, our comput-
ing procedure makes it possible to extract from the ener-

gy matrices, besides the 0+ spectrum, the 0 and 1 ei-
genvalues up to N =9 but the 2 eigenvalues only up to
N =7. However, given the regular dependence of these
energies upon N, it is obvious that a reliable estimate of
the 2 eigenvalue in the 9%co space can be obtained by ex-
trapolating the eigenvalues calculated for N (7. The ei-
genvalue obtained in this way is indicated in Fig. 2 be-
tween brackets.

It is seen from Fig. 2 that the theoretical energies of
the negative parity states are strongly reduced with in-
creasing N, and that in the 9Acu space the 0 and 2
states are predicted close to their respective experimental
counterparts. Concerning the 1 state, our large-basis
calculations yield results which are compatible with the
conclusions of the experimental investigations of the
H(d, p) H reaction by Griiebler et al. ' and the R-

matrix analysis by Hale and Dodder. ' In this context,
the fact that the theoretical energy of this level in our
3%co calculation is close to the value mentioned as uncer-
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previously mentioned uncertainties connected with the
specification of the modified SME for odd values of N.
Clearly, only an enlargement of the configuration space
beyond the usual computational limits is capable of re-
ducing significantly this deficiency.

V. CONCLUDING REMARKS
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',22.60
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FIG. 2. Theoretical T =0 negative parity spectra obtained
using modified SME determined in each Neo space by the con-
straint Ez+&(g.s.) = —29 MeV for b =1.8 fm. The 9%co excita-
tion energy of the 2 state mentioned within brackets was ob-
tained by extrapolating to N =9 the energies calculated for
N (7. The Coulomb-corrected experimental excitation energies
(see the text) were deduced from the experimental data present-
ed in Ref. 17 (solid lines) and Ref. 18 (dashed line).

tain in the survey by Fiarman and Meyerhof' is obvious-
ly a mere coincidence and is by no means to be con-
sidered as an argument supporting the existence of a 1

T =0 state at high excitation energy.
Finally, attention must be drawn to the fact that the

excitation energy of the breathing mode calculated in the
4%co space (26.78 MeV) is located between the energy of
the 2 state calculated in the 3fico (27.27 MeV) and its
counterpart in the 5fico space (24.66 MeV). Thus, in too
restricted shell-model bases the order of these states can-
not be defined properly. Actually, the ambiguity inherent
in comparing positive with negative parity shell-model
spectra blurs most shell-model studies, irrespective of the

We have shown that it is possible to achieve an accept-
able shell-model description of the T=0 spectrum of
He, including binding energy restrictions, provided the

configuration space is extended up to 10%~ of oscillator
excitation. The model Hamiltonian used in our calcula-
tions is based on internucleon matrix elements obtained
by multiplying the SME by a single scale factor of order
unity. It is likely that our results could be improved by
varying individual SME. However, such a procedure
would necessarily introduce a good deal of arbitrariness
in the calculations, especially in extended model spaces as
in this case the bulk of numerous configurations, whose
weights taken separately are extremely small, contributes
significantly to the lowering of the calculated energies.

Actually, our results seem to indicate that in large-
basis shell-model calculations, complicated multinucleon
effects can to a large extent be simulated by increasing
the strength of the free nucleon-nucleon potential by less
than 15%. It would be interesting to test this idea start-
ing from the Reid softcore, Paris, or other sophisticated
potentials. In fact, we chose the popular SME among
other "realistic" interactions merely to have the possibili-
ty to compare our 4%co results with those reported by oth-
er authors. Of course, as was illustrated in our previous
works, "' any two-body interaction having finite matrix
elements in a harmonic oscillator basis can be used as in-

put of our computer program.
It would also be worth extending our study to heavier

systems. In this respect, we mention that our calcula-
tions, which required the handling of a shell-model basis
comprising 2765 four-body antisymmetrized states con-
structed so as to have good total angular momentum and
isospin, were made feasible with reasonable economy on a
modest computer (an IBM 4341) thanks to an elaborate
procedure based on the storage of numerous geometrical
quantities. Given the rapid development of computer
technology, the extension of this procedure to the study
of the lightest p-shell nuclei is thus not unthinkable.

The authors are much indebted to Dr. F. Michel for
his constant interest and his careful reading of our
manuscript.
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