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Inhuence of the delta-nucleon interaction on the pion-deuteron breakup process
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In order to evaluate the influence on the pion-deuteron breakup process due to short-range hN
interaction which was previously determined through its effects on the elastic scattering observ-
ables, we calculate the contributions to the helicity amplitudes for the process m.d ~AN due to the
hN short-range interaction in the 6nal state.

INTRODUCTION

In a series of papers' we have treated the influence
on ~d elastic scattering of the short-range hN interaction
which is not accounted for in the existing Faddeev calcu-
lations. ' We have shown that, taking as a basis the am-
plitudes obtained by Garcilazo, the theoretical results
can be improved by the inclusion of this interaction to
such a point that all essential discrepancies between
theory and experiment disappear. ' In that way we have
arrived at a determination of AN scattering parameters
which was remarkably stable and showed a smooth ener-

gy dependence. It turned out that only the S2 and P3
AN states show strong effects and that, except for the hN
threshold region in the S2 state, the required inelasticity
is small.

The discrepancies between the theory and experiment
in the breakup reaction m.d ~m.NN are less dramatic than
in n.d elastic scattering, but nevertheless there are statisti-
cally significant deviations. We, therefore, found it im-
portant to investigate the influence of the short-range hN
interaction also on the breakup reaction. The most im-
portant contribution to this process in the energy region
considered (T = 140—350 MeV} is the formation of a b
resonance, according to the graph of Fig. 1.

The 5 particle may interact with the other nucleon in
the final state, and hence we have a contribution whose
skeleton diagram is shown in Fig. 2.

This contribution, whose short-range part is not ac-
counted for in the existing Faddeev calculations, can be
evaluated using the same techniques as we have used in
elastic ~d scattering. ' In the final state the 6 decays
into N~ and the resulting amplitude may be added to the
Faddeev amplitudes. The justification for the simple ad-
dition of the amplitudes is the same as given in the md
elastic scattering case (see Ref. 3, Appendix}.

In order to evaluate the contribution of the diagram in
Fig. 2 we use the same techniques and make the same ap-
proximations as explained in Refs. 2 and 3. Thus we only
take into account the S-wave part of the deuteron wave
function and neglect the influence of the Fermi motion
inside the deuteron on the 5-formation amplitude. It has

been shown in Ref. 1 that these approximations are
indeed well justified. (We recall that the expected contri-
bution of diagram 2 is a rather small correction to the
main contributions given by diagram 1.)

h,N INTERACTION IN DEUTERON BREAKUP

We consider the formation of a state with given isospin
I, spin S, orbital angular momentum L, and total angular
momentum J, corresponding to the skeleton diagram in
Fig. 2. If the direction of the incident deuteron momen-
tum is taken as the projection axis for the spin and the
orbital angular momentum, and sd and sJ are the third
components of the spins of the deuteron and of the hN
system, respectively, the formation amplitude is

M, ,' (s)=2&2g„ivan
~ qd ~

Ft (s)(1,1;sd, 0
~
S,sj )

X(S,L;sJ,Oi J,si) —K' '

3

2S —1

3
(2)

The function FL (s) (s is the square of the total c.m. ener-

gy) is related to the absorptive and dispersive parts of the
triangular diagram. Taking the parametrization of the
deuteron wave function of McGee, we obtain

AbsFL (s)

(maI a/m) &2L +1
Z ZZ 2 2~mz —m~~ m &

—p +m &I &

A, (s,p )
xQL B (3)

and

[as in Eq. (9) of Ref. 2, but with superfluous +~4 elim-

inated]. Here g„tv& is the a+pe, ++ coupling constant
(g ~a/4tr=20 4GeV ), q. d is the deuteron momentum
in the hard c.m. frame and
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FIG. 1. Diagram for the calculation of the undistorted part
of the transition amplitude for m.d ~Nh.

FIG. 2. Diagram for the calculation of the contribution due
to the Nh~Nh interaction in the final state of the transition
m.d ~Nh.

AbsFL ($ ')
DispFL (s) =—,ds',

S —S
(4a) A; (s,p )=md +mN —2EdEi —m;

S 2 2 2 2 (6b)

and then where

FL($)=DispFL(s)+i AbsFL($) . (4b) m; =mN+2(p; —pii) .

We define

& =NdmJ, mN/(2~&s
I qd I ), (5a)

Ed ——($+md m)/(2—&s ),
I qd I

=(Ed md)'—, (5c)

Ei ——($+mN —p )/(2~ s )
I qi I

=(Ei —mN)', (5b)

The quantities QL represent the Legendre functions of
the second kind, while the constants Nd, c;, and p;
(i =0, . . . , 5) are parameters of the McGee wave func-
tion.

Since s& coincides with the helicity of the incoming
deuteron, we have Sd —=A.d. We now rotate the final-state
angular momentum projection axis into the direction of
the scattered (i.e., final) nucleon as seen in the hN (and
hard) center of mass frame. Calling AJ the projection of
the spin of the hN system over this direction, we have

and then the quantities 8 and A, (with i =0, . . . , 5) are

given by

Md@ , SLJ(S,g)= -g d J (g)Mdn , SLJ($) . "
AdtA J SJtA J A, d tSJ

SJ

(8)

&(»=2
I qi I I qd I

and

(6a)
Including in the final state the b,N interaction given by

the hN amplitude leading to a final state of total angular
momentum J and helicities A, N, A, z, we obtain the expres-
sion

(S,g)= g g y~d+SLJ($, g)(2L + 1)i/22
S,S' LL'

X( —,', —,';A, N, —A,a IS', A,J) (S'L';A.JOI J,A,J)i&J,N' qN($)( —,
' —3;TN, TJ, I

1, T„) . (9)

SL;S'L',J &s
aN JtN ($) TLL', SS'(S) .

mNmz 2Re qz
(10)

From our earlier work we have concluded that only the
diagonal terms with L =L' and S =S' are important,
and thus we use the parametrization

Here TzTz and T are the isospin components of the N,
b„and n. particles, respectively, and JR~N' aN is the
scattering amplitude for a hN, I =1, state with initial
and final angular momenta L and L', spins S and S', and
total angular momentum J. In the zero width limit of the
5, we write

1
q z —— —

( [$ + ( m z i I /2 ) —mN]-2&s

—4$(m —iI /2) )' (12)

where m z i I /2 is th—e complex 6 mass, with

m& ——1.211 GeV and I =0. 1 GeV. For energies well

above the hN threshold we can use the zero width ap-
proximation Re(qz)=qz (I =0).

The partial wave amplitude M& .'& '
& (s) can be ex-

tracted from Eq. (9) as the factor multiplying
d (g):

AdtAN AQ

2i SLY
~ J

TLL SS( ) ~ ( 9L Set

(s g) =d (g)~ ~ ~' (s) .
d' N' 5 d' N b d' N

(13)

Here qz is the (complex) angular momentum of the 6 in
the c.m. frame

By inserting Eq. (8) into (9) and using Eq. (1), with
Sd =A,d, and Eq. (10), we obtain finally for the partial
wave amplitude
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Mg" 'p . '
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1;T &g„N~ I qd I
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I
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I
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I
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TLL ', SS' ( S )
mNmz 2Re(qz)

(14)

THE UNDISTORTED AMPLITUDE

As an internal consistency check as well as to get an estimate of the order of magnitude of the influence of the final

state Nb, interaction (at least in a certain kinematical region), it is useful to evaluate also the undistorted formation am-

plitude of Fig. 1, using the same normalizations and the same approximations as in the case of the distorted amplitude.
We may write directly for the amplitude corresponding to the diagram in Fig. 1 the expression (cf. Ref. 1):

dN2 N m'N
2 ' ~ 1

(qN, qd, q„)=i(2mN)QM. . . (qz, qd —q~)M, , ('qd qx qd qx+q ) . (15)
(qd —q~ ) —m~ +i e

Here qd, q„, qz, qN, qd —qN are the momentum of the deuteron, pion, 6 resonance, final nucleon, and intermediate nu-

cleon, respectively. The spin components are defined analogously.
For the deuteron-nucleon-nucleon vertex function we use

$2 ag 3 (~ qN)(qN 4
M, ,', (qN, q„—qN)=X ' Fs((qd —qN) )(o"g ')+ FD((q„—qN) ——(o"g ) (io2)X" .

qN

(16)

In the above expression qN and g', the deuteron spin vector, refer to the rest frame of the deuteron. For
F, ((qd —qN ) ) and FD((qd —qN ) ), which are the S and D-wav-e deuteron form factors, we take the McGee wave func-
tion.

For the mNA vertex we use the nonrelativistic expression

M., ", (qd qN qd qN+—q.)=g.—NE( TN ( 2» ~»s~ —s2 I
-', s~ &(4

'
v'3 (17)

Sg —Sp
where the vector q+ represents the pion momentum in the b, -rest frame. The internal polarization vector g

' is used
to represent the spin of the 5 particle and TN, Tz, T„are the isospin components of the nucleon, 6 particle, and m.

meson, respectively.
For low energies we may use Galilei transformations and obtain

qN qN ——,
'
qd q'. =q.+

s +m —md
2 2

2 'qN
s+mz —m

Three vectors without specifications refer to the m. —d c.m. frame.
We have shown in Ref. 1 that the deuteron D-wave component and the "recoi1 term" proportional to q+ —q are of

little importance for the final-state interaction, but for the direct contribution (Fig. 1) there may be kinematical regions
where those contributions are important. However, in view of the purpose of the calculations presented at the end of
the paper, which aim to demonstrate only qualitatively the importance of the final state hN interaction corrections, we
neglect in the following both the recoil correction q „—q„and the deuteron D-wave contribution.

Using the relation

X '(a g ')(i o )X "=&2(—,', —,';sN, s~
I
sd &, (19)

we obtain within the approximations mentioned above,
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F,«qd —qN )')
( —2&2)Q, .', , (qN, qd, q„)=(i)(2mN) z z

(qd q—N )' m—N+i~

X& —,', —', ;TN, T,
I

1, T (20)

with s' =s& —sd +sz.
As in the distorted case, we may choose the direction of the outgoing nucleon as the angular momentum projection

axis for the final-state particles, and then the helicities of the nucleon and the delta are given by A, ~ =s~, k~= —s~. We
then introduce the deuteron helicity by a Wigner rotation

(s g)= gd' ( —8)Q""' ~ (s g),d' N' 5 d' d d' V' b,
Sd

where 8 is the angle from the deuteron to the nucleon momentum direction.
We may change to an LS coupling in the following way. We express

(4 * q.)=d'.
,o( —8) Iq. l

and use for the product of d functions d' o(8)d,' z (8) the well-known addition formula

I

d ', (P)d ', (P)=( —1) ' 'g & j, ,jz', m, , —m, lj, m ) & j„jz',mI, —m2 lj, m')d (f3),

(21)

(22)

(23a)

and use the formula

X & 2) 2) ~N sd ~N l, sd ) &, , ) ~N 4—sd,—sd ——
Sd

x& l, l, sd —(AN —Aq)) sd
I
s, —(—AN —Aa))=E & —,—,AN, —A~

I
s, AN —)(q) (23b)

to sum over Clebsch-Gordan coefficients. We have

', sN sd sN -I 1 sd)&-,' 1 sd —sN 'I-,'s~)(g"' q. )d,'~ ( —8)
Sd

&1, 1;)(d,OI S, ld )& —,', —;AN,—A~
I
S;AN k~) K' 'dq g g ( ——8), (24)

S =1,2

where K' ' is given by Eq. (2), and we then obtain

Fs«qd —qN )')
, g.Na( —v'3&2 2 TN T~

I
1 T.)) lq. l

+2
(q. —qN )' —mN

2

X g &1, 1;I, OIS, A,, )& —,', -', ;A, , —A,, IS,A, —A, )K'"d'. . . (8).
S=1

We project out the partial wave amplitude by performing the integration

M dm-, NA;J (s) + M d));Nh (s g)d J (8)dgd' N' 5 4~ d' N' b, d' N ~b,

and again make use of the addition formula Eq. (23) to simplify the results. We then obtain

Fs((qd —qN ) )
( —&)(2mN )

I q.I, , g.N~( —v' —', & —,
'

—,
'

TN T~
I

1 T.»
(qd —

qN
)' —mN

(25)

(26)

2 J+S
X g g PL(8)&1, 1;Ad, OI S,Ad)& —,', —,', 7N, —A~ ISA)

s=iL, =IJ—s

xE (s~ (2J+1) k —kd 2$ —k —Ad 2L +1—1) '( —1)
4m. 2J+1

X & S,L;A.d, 0
I
J, )(.d ) & S,L;A. ,0

I
J,A, )d Q, (27)

with A, =A.~ —k&.
Using the McGee representation
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C,.

Fs(q )= Nd X (q —m~) (28)
q —m,

[see Refs. (9) or (3) for the definitions and values of the parameters c; and m; ], we can perform the integration over cos8
which leads to Legendre functions of the second kind. In the zero 5-width approximation they are related to the func-
tion AbsFI (s}similarly to Eq. (3), but with zero width for the b, .

We finally obtain for the undistorted (kind of impulse approximation) partial wave amplitude the expression

m s IqdI

with A, =kz —k&.

J+S
X g g AbsFL (s)&2L + l(1, 1;Ad, o

I
SAd )

S=1,2 L=iJ —Si

x(S,L;xd, o
I
J,xd )( —,', —', ;x„,—x, Is, x) (S,L;x,o

I
J,x) z' ', (29}

CONSISTENCY CHECK: WATSON'S THEOREM

An ef5cient check of the internal consistency of our calculations can be made through the Watson theorem, since our
distorted amplitude is a result of the final-state interaction correction to the simple formation amplitude. Adding to-
gether the distorted and undistorted expressions, we should obtain the characteristic phase multiplication (in the limit
of small phase values) of Watson's theorem. We have

&i 'g 'i'+Mi .'i 'g ——2&2 ' g„/g/-'(-', -', T~, Ta I
1,T„) Iqd I

XK' '(1, I;Ad, o
I
S,Ad ) (S,L;Ad, o

I
J,Ad ) &2L +1

e 2is
X ( —,', —,'; A ~, —A q I

S,k ) ( S,L; A, ,o I
J, A, ) i AbsFL (s)+iFL (s)

2l
(30)

If we keep only the "on-shell" part of FL(s), this expres-
sion yields for the large squares expression the value

2i5
i AbsFL(s) I+

2

For small 5 this is approximately

2i5

i AbsF&(s) 1+ =i AbsFL(s)t 1+i5I
2

I

bined with the appropriate amplitudes obtained from a
Faddeev calculation, will lead to the correct description
of ~d breakup at these energies. With the purpose of
demonstrating the relative importance of the short-range
AN interaction effects in md breakup, we present some re-
sults for the nd ~b,N differential cross section, using, in-
".stead of the full Faddeev amplitudes, the undistorted am-
plitudes 9i .'i i (s, 8) given by Eq. (25). The full cross

section can be obtained from the sum of these quantities
with the contributions of the hN interaction to the angu-
lar dependent helicity amplitudes

=i AbsFL (s)e' (31)
M" .' (s 8)= gM ' ' (s)d (8)yAQyAQ Ardyt+yAQ Ad, k+ AQJ

(33)

We thus have

M+M =Me'

which is Watson's theorem.

NUMERICAL RESULTS

(32)

with the partial wave amplitudes being given by Eq. (14).
In the zero-width approximation the differential cross

section is given by

4m' m~ I q~ I

64~'.s I q. I

I

M~ 'N~z (s,8)+4" ' a (s, 8)
I

AQAQ

Using the hN amplitudes determined in Ref. 5 we have
evaluated the distorted part of the helicity partial waves
for J =2 and 3. Their values are given in Table I for in-

cident pion lab energies of 0.256 and 0.325 GeV. Ac-
cordingly with our previous experience with elastic n.d
scattering, we expect that these quantities, when com-

(34}

However, this zero-width approximation for the 5 parti-
cle in the final state would lead to an unrealistic energy
dependence near threshold, as we must take into account
the finite width of the produced 5, in the same way as it
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TABLE I. Values (in GeV ) of the real and imaginary parts of the partial wave helicity amplitudes given by Eq. (14) for the pion
lab energies 0.256 and 0.325 GeV. The 24 amplitudes are reduced to 12 due to the symmetry A.d, k&, A.&~ —A,d, —A.&, —A.&. As can
be observed from the table, there are only seven independent amplitudes for each J value.

2Ad

1

1

1

1

—1

—1

—1

—1

1

1

1

1

—3
—1

1

3
—3
—1

1

3
—3
—1

1

3

T =0.256 GeV
J=2

—18.500
—16.022
—13.082
—9.250
—8.011

—11.329
—13~ 875
—16.022
—16.022
—13.875
—11.329
—8.011

10.986
9.514
7.768
5.493
4.757
6.728
8.240
9.514
9.514
8.240
6.728
4.757

—11.244
—12.317
—10.667
—7.111
—5.806
—8.709

—10.057
—9.181
—9.181

—10.057
—8.709
—5.806

J=3
11.524
12.624
10.933
7.288
5.951
8.926

10.307
9.409
9.409

10.307
8.926
5.951

2Ad 2k +

1

1

1

1

—1

—1

—1

—1

1

1

1

1

—3
—1

1

3
—3
—1

1

3
—3
—1

1

3

T=0.325 GeV
J=2

—10.979
—9.508
—7.763
—5.489
—4.754
—6.723
—8.234
—9.508
—9.508
—8.234
—6.723
—4.754

3.198
2.770
2.262
1.599
1.385
1.959
2.399
2.770
2.770
2.399
1.959
1.385

—1.367
—1.497
—1.296
—0.864
—0.706
—1.059
—1.222
—1.116
—1.116
—1.222
—1.059
—0.706

J=3
1.806
1.978
1.713
1.142
0.933
1 ~ 399
1.615
1.475
1.475
1.615
1.399
0.933

tO—
has been done for the intermediate state b [cf. Eq. (3)].
We then evaluate a cross section

cia

(~b/sr)

cr(s, 8,p ),
where p is the varying mass of the final state 5, and de-
scribe the experimental cross section using a Breit-
Wigner shape for p. Thus

m 2~+a (ma I a/m )
~(s' e)=f2 p 2 22 2 z ' 'p

m2~ —a (m2a p) +m—aI a

Q. I

O. i 5 0.2 0.25 0~
T (GeV)

FIG. 3. Comparison of the cross section values at 60' c.m.
angle for the process m.d~NE, obtained with the undistorted
amplitude (dashed line) due to the diagram in Fig. 1, and with
the distorted amplitude which takes into account the contribu-
tion of the h¹interaction of short range (solid line}.

The quantity a corresponds to the range of invariant
masses, in which a mN system is experimentally counted
as a 6 resonance. In the numerical calculations we have
taken a = I /2=0. 050 GeV.

We are well aware that the model calculation for the
full cross section should only be used as a demonstration
for expected effects of the bN final-state interaction. For
small angles of the outgoing pions, the NN final-state in-
teraction (after the decay of the b, resonance) will play an
important role' while for large angles the deuteron D-
wave and the recoil corrections become important. To
avoid such unfavorable circumstances, we present in Fig.
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3 the energy dependence of the differential cross section
only at the intermediate angle of 60', where the model is
at least qualitatively reliable. We observe in the whole
energy range a decrease in the value of the differential
cross section, which ranges from about 10% to about
50%. These results show that the short-range AN in-
teraction is a non-negligible ingredient for the proper
description of the md breakup cross sections.
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