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Systematics of Dirac impulse approximation predictions for cross sections and spin observables in
elastic proton scattering by '°0, “°Ca, and 2*Pb at energies of 200, 500, and 800 MeV are presented.
The analysis is based on an optical potential constructed from complete sets of Lorentz-invariant
NN amplitudes. The NN amplitudes are determined from a relativistic meson exchange model of
the nuclear force. Comparisons are made with the original form of the Dirac impulse approxima-
tion, which is based on five Fermi terms to represent the NN interaction, and with the Schrodinger
form of the impulse approximation. For the Dirac analyses, there is implicit coupling to virtual
nucleon-antinucleon states. In order to illustrate these contributions, the Dirac equation is recast in
the form of the Schridinger equation and the resulting Schrodinger potentials are separated into
“no-pair” and virtual-pair parts. The resulting virtual-pair part of the central potential is typically
25 MeV at the center of the nucleus for 200-800 MeV protons. A reasonable description of the ex-
perimental data is obtained over a broad energy range and over a wide variation of nuclear size
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when the analysis is based on complete sets of Lorentz-invariant amplitudes.

I. INTRODUCTION

Over the past few years, a dynamical basis for the
Dirac optical potential has been developed using a rela-
tivistic description of nucleon-nucleon (NN) scattering
based on meson-exchange dynamics.! =3 Complete sets of
Lorentz-invariant nucleon-nucleon (NN) amplitudes*>
are combined with the relativistic nuclear density to pre-
dict the Dirac optical potential using the impluse approx-
imation. The generalized impulse approximation® based
on the meson-exchange description of the nuclear force is
denoted as IA2 herein. This approach has no free param-
eters. It overcomes some theoretical shortcomings of the
original form of the Dirac impulse approximation,®’
denoted IA1, which predicts the Dirac optical potential
from knowledge of positive-energy NN scattering data.?

The original (IA1) form of the Dirac impulse approxi-
mation successfully predicts the spin observables in
proton-nucleus elastic scattering above about 300
MeV.> 1% However, the specification of the optical poten-
tial is incomplete due to reliance on five Fermi covariants
and associated amplitudes to extrapolate the NN scatter-
ing operator from the positive energy sector, where it is
determined by NN scattering experiments, to the full
Dirac space of two nucleons. Fermi covariants involve a
pseudoscalar term in the parametrization of on-shell in-
variants.” This results in overly strong scalar and vector
components of the Dirac optical potential at low ener-
gies. Moreover, the predictions for nucleon-nucleus
scattering depend on the prediction of couplings involv-
ing negative-energy basis states of the free Dirac equa-
tion.!"!2 These control the virtual-pair couplings but
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they cannot be obtained unambiguously from the matrix
elements involving only positive-energy states.

The ambiguity of the IA1 approach is overcome in the
generalized impulse approximation, IA2, by adopting a
relativistic meson-exchange description of the nuclear
force!*~15 as the dynamical basis for extending the NN
data to all sectors of the Dirac space of two nucleons.
Pseudovector N coupling and vertex cutoffs are incor-
porated to maintain sensible behavior at low energy and
at large momentum. The resulting meson-exchange mod-
el succeeds in explaining NN scattering observables from
0 to 1000 MeV and it provides a prediction for the
negative-energy couplings needed to construct the optical
potential. No other way of comparable sophistication ex-
ists to predict the required negative-energy couplings.
The meson-exchange model is based on an effective La-
grangian similar to ones conventionally used to calculate
meson-exchange currents in electromagnetic reactions.
Thus the IA2 approach unifies the theoretical description
of nucleon-nucleus scattering with that of NN scattering
and to a certain extent with that of meson-exchange
currents.

The NN interaction analysis involves coupled NN, NA,
and AA integral equations with meson-exchange kernels.
These equations are solved using a quasipotential reduc-
tion of the coupled Bethe-Salpeter dynamics developed
by van Faassen and Tjon.'* A straightforward extension
is made to include negative-energy intermediate states,*
and calculations are performed to determine a complete
set of NN helicity amplitudes for each proton energy of
interest. This analysis is performed in the center-of-mass
frame of two nucleons since that is the only practical
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frame for partial wave analysis. However, the optical po-
tential is needed in the nucleon-nucleus c.m. frame. It is
convenient to convert to a Lorentz-invariant description,
consisting of a sum of Lorentz-invariant amplitudes times
kinematical covariants, in order to obviate the boost
problem. The NN helicity amplitudes in the c.m. frame
are used to determine the Lorentz-invariant amplitudes
of the NN scattering operator.

Freedom exists in the choice of kinematical covariants
of the Lorentz-invariant representation. There are many
ways to choose a complete and linearly independent set.
The situation is analogous tu that for the choice of basis
functions with which to expand an arbitrary state vector
in quantum mechanics. Any basis set will do in principle
if it is complete. Symmetry and simplicity dictate the
choice for a given problem that is most appropriate. The
choice of kinematical covariants given in Ref. 5 incorpo-
rates Pauli exchange antisymmetry in a very simple
fashion. This is particularly useful for the separation of
direct and exchange contributions to the NN amplitude.
Kinematical covariants are symmetric or antisymmetric
with respect to exchange of the two nucleons. Conse-
quently the associated Lorentz-invariant amplitudes are
symmetric or antisymmetric with respect to interchange
of the Mandelstam arguments, ¢ and u. This interchange
is equivalent to 6— 7 —0, where 0 is the c.m. scattering
angle. Thus the exchange symmetry required by the Pau-
li principle is manifest in each amplitude rather than be-
ing spread over many amplitudes as is the case for other
choices of kinematical covariants in the literature.
Analytical fits to the NN amplitudes are given in Ref. 5 in
terms of Yukawa functions of ¢ (direct terms) and Yu-
kawa functions of u (exchange terms).

Using the complete sets of Lorentz-invariant ampli-
tudes, the Dirac optical potential is constructed as shown
in detail in Ref. 3. In this paper, systematic calculations
are presented based on that formalism. Comparisons are
made with the original form of the Dirac impulse approx-
imation and with the traditional Schrodinger impluse ap-
proximation. In Sec. II, the theoretical calculations are
outlined and some conventions used in the paper are
given. Section III presents potentials used in the Dirac
equation and also presents potentials for the Schrodinger
equation which produce equivalent scattering amplitudes.
The latter are separated into ‘“‘no-pair” parts and virtual-
pair contributions. Results for elastic proton scattering
are compared with experimental data in Sec. IV. Various
refinements of the original impulse approximation have
been prescribed to incorporate pseudovector wN cou-
pling. In Sec. V these are compared with the IA2
analysis which consistently embeds pseudovector cou-
pling. The role of numerically small tensor, scalar spin-
orbit, and vector spin-orbit potentials in the Dirac
analysis is considered in Sec. VI. A summary and
outlook are presented in Sec. VII.

II. DESCRIPTION OF THE CALCULATIONS

The analysis of the Dirac optical potential is carried
out most naturally in momentum space. However, for
computational simplicity, a localized potential is used in

2273

this paper to permit coordinate-space analysis. The po-
tential is developed from the momentum-space expres-
sion

O(p,q)=—1Tr)[M(p,—Lg—>p—g,+1g)p(Q)], (1

where ﬁ(p, —1q—p—q,+3q) is the Breit frame NN
scattering operator in the Dirac space of two nucleons
and p(q) is the relativistic nuclear density. Conventional-
ly, particle 2 is the target nucleon, and the trace is over
the Dirac indices of particle 2. This form of potential is
appropriate for closed-shell nuclei, for which the relativ-
istic nuclear density consists of scalar, vector, and tensor
componerits as follows:

%2

2 or(q) . )

— 0 _
Pla)=ps(@)+12pyiq)———

Nuclear form factors, ps(q), py(q), and py(q), are deter-
mined from the relativistic Hartree wave functions of
Horowitz and Serot.!® Neutron-proton differences are in-
corporated by evaluating Eq. (1) twice, once with the
proton-proton amplitude, ﬂpp, together with the proton
density, p,, and once with the proton-neutron amplitude,

n» together with the neutron density, 5,. The two re-
sults are added to determine the optical potential.

After localization to permit coordinate-space analysis,
the problem comes down to solving the Dirac equation,

[EY°+iyV—m —O(r)](r)=0, 3)

where E =(k?+m?)!/2 and k is the on-shell momentum
in the proton-nucleus c.m. frame. In general, the poten-
tial can contain eight terms. However, only six nonvan-
ishing terms are found in the analysis of Ref. 3. Two
terms, involving Dirac operators which are odd with
respect to time reversal, are found to be zero. Moreover,
a transformation eliminates a space-vector term. Thus
the potential, in its final form, contains five terms due to
the strong interaction. In addition, there are two elec-
tromagnetic terms as follows:

O1(0)=8(r)+ 7 V(1) + V()] —ia?[T(r)+ Te(r)]
—[Sis(rN+7°75(M]o-L . (4)

The strong interaction potentials S, ¥, T, S;g, and V¢
are defined in Eqgs. (4.16)-(4.21) of Ref. 3. The elec-
tromagnetic potentials, V- and T, are determined by

[ d’r e Ve —ia?Tc(n)]

=_22£ VOFt(qz)_iﬁ“'sz(qz) Pan(@),  (5)

where F,| and F, are proton form factors, « is the proton
anomalous magnetic moment, and p, is the charge form
factor of the nucleus.

Calculations are also presented for the IA1 impulse ap-
proximation. In that case one has three terms due to the
strong interaction plus two electromagnetic terms as fol-
lows:
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Oia (D) =SP4+ V(R + V()]
—iaP[T(r+Tc(n] . (6)

The difference is that a complete set of NN amplitudes is
used in Eq. (1) to determine ﬁ’IAZ, while the five Fermi
amplitudes are used to determine U,,. This difference
only affects the negative-energy couplings in the plane-
wave basis of Dirac states, i.e., the same NN amplitudes
are used in positive-energy states for IA1 and IA2.
Moreover, phenomenological phase shifts!’ are used to
construct the positive-energy amplitudes.

Comparisons of the relativistic impulse approximation
are made to the corresponding nonrelativistic impulse ap-
proximation which is denoted NRIA. NRIA calcula-
tions are usually based on solving the Schrodinger equa-
tion with relativistic kinematics using an optical potential
based on Pauli NN amplitudes, 4 and C, determined
from positive-energy matrix elements of the full NN
scattering operator, ﬁ, as follows:

7\ Pppa SH(py)Mu '\t (pubt ) (py)

o pi+p
=X} |4 +ico, q——"

+ X|X2, (7)

where the omitted terms on the right side involve the spin
operator o,. (See Ref. 8 for details of the connection of
Pauli amplitudes to invariant amplitudes.) Only the A4
and C Pauli terms contribute to the optical potential for a
closed-shell nucleus. Central and spin orbit potentials are
determined by

Ne(r)=2m~2 [dq e 97 4(q)p,(q) , (8)
itNs(r)=(2m) 72 [ d3q e ~'97qC(q)p,(q) , 9)

where p,,(g) is the Fourier transform of the nonrelativis-
tic matter density. These potentials are used in the
Schrodinger equation with relativistic kinematics, e.g.,

2 2
%—Nc(r)—NLs(r)a-L ¥=0. (10)

Here E +m replaces (A —1)/ A times twice the reduced
mass of the Kerman, McManus, and Thaler (KMT) ap-
proach,'® where 4 is the number of nucleons in the target
nucleus. Other prescriptions for incorporating relativis-
tic kinematics are sometimes used, but they are essential-
ly equivalent to this one. Equation (10) is preferred be-
cause it has a natural correspondence with a “no-pair”
approach. As written, Eq. (10) omits electromagnetic
effects. When these are incorporated, Eq. (10) is
equivalent to solving the Dirac equation (3) with the po-
tential

1+9°

2 [Nc(r)+NLs(r)U'L]

0NRIA( r)=

+yV (r)—ia®Tc(r) . (11)

This follows because terms involving (1+%°) act only in
the equation for the upper component of the Dirac wave
function. When the Dirac equation with the potential of
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Eq. (11) is reduced to an equivalent Schrodinger equation,
omitting Coulomb effects, Eq. (10) is obtained. Compar-
ison of Eq. (11) with Eq. (4) shows that the NRIA
analysis may be performed by solving the Dirac equation
using the potential based on S=V=1IN.(r), S
=V, s=—1N.s, and T=0in Eq. 4).

Equivalent Schrodinger central and spin-orbit poten-
tials are defined such that the scattering is the same based
on the Dirac and Schrodinger equations. This is accom-
plished by writing the Dirac equation as coupled equa-
tions for the upper- and lower-component wave func-
tions, solving for the lower-component wave function,
and substituting the result into the equation for the
upper-component wave function. After some manipula-
tion one obtains a standard form Schrodinger equation.
The Appendix shows how the Dirac equation with five
terms in the potential as in (4) is manipulated to the
Schrodinger equation (10) with equivalent central and
spin-orbit potentials, U- and Ug, in place of the non-
relativistic potentials.

Differences between the equivalent Schrodinger poten-
tials, Uc and Ug, derived from the full set of Dirac po-
tentials and the NRIA Schrodinger potentials, N- and
N;s, of Egs. (8) and (9), are due to inclusion of virtual-
pair effects in the Dirac analysis. The NRIA approach
corresponds to eliminating all virtual-pair effects by not
permitting any negative-energy couplings of the Dirac
potential with respect to the plane-wave basis of Dirac
states.

In this paper, the Schrodinger theory with relativistic
kinematics is defined as the “no-pair” theory obtained
from a relativistic theory by eliminating all negative-
energy couplings with respect to the plane-wave basis of
Dirac states. This definition clarifies exactly what we
mean by Schrodinger theory with relativistic kinematics.
By this definition, the NRIA optical potential is
equivalent to the “no-pair” Dirac potential which one ob-
tains by evaluating Eq. (1) using a positive-energy pro-
jected NN scattering operator, i.e.,

M AP PDAT (PP A (p)A (p) ,  (12)

no pair —

where
A(l‘f‘)(p):(Ep»y’o_’y"p-i-m )/(Zm) ’

and using py=pg=pr=p,, in Eq. (2). In the “no-pair”
analysis, one obtains a Dirac potential as in Eq. (4) and
this can then be converted to an equivalent Schrédinger
potential as shown in the Appendix. The resulting ‘“no-
pair” Schrodinger potentials are only slightly different
from the usual nonrelativistic potentials of Egs. (8) and
(9). We find that the “no-pair” potential, determined us-
ing Egs. (12) in Eq. (2), produces equivalent results for
proton scattering to those obtained using the usual NRIA
potential of Eqgs. (8) and (9). Inconsequential differences
arise because momentum dependence in Dirac spinors,
e.g., UyT)(p,) in Eq. (7), are treated a little differently in
the optical potential formalism of Ref. 3.



III. DIRAC AND EQUIVALENT
SCHRODINGER POTENTIALS

Consider the Dirac equation with a five-term optical
potential as in Eq. (4). As noted above, this is obtained
from an equation with a six-term optical potential by use
of a wave function transformation which absorbs a
space-vector term, C(r). In Figs. 1-4, the strong interac-
tion potentials based on the generalized impulse approxi-
mation, IA2, are shown for proton scattering from “°Ca
at energies 200, 500, and 800 MeV. Note that as the en-
ergy increases the scalar and vector potentials decrease
slowly, i.e., there is rather little energy dependence. This
is also true for spin-orbit terms, S, (r) and ¥V, 4(r), which
are much smaller in magnitude. The tensor term has a
real part that increases in magnitude with increasing en-
ergy; however, the imaginary part decreases. The space-
vector term, C(r), not shown in Eq. (4) due to being ab-
sorbed by a transformation of the wave function, enters
the Dirac equation as

[C(rY/mEy°+iyV—m) .

The relevant scale for this potential is the nucleon mass,
m. C(r) differs from the other potentials in that its imag-
inary part increases in magnitude as the energy increases,
while its real part varies from positive to negative. The
factor C(r)/m has a magnitude of about 0.05.

IA1 provides very good descriptions of proton elastic
scattering at 500 and 800 MeV from “°Ca based on scalar,

0 T T T T T T T

200

V (MeV)

FIG. 1. The left panel shows the scalar potential for *°Ca at
200, 500, and 800 MeV using the IA2. The right panel shows
the vector potential. The solid line is the real part and the
dashed line is the imaginary part.
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FIG. 2. The tensor potential for **Ca at 200, 500, and 800
MeV using the IA2. The left panel shows the real part. The
right panel shows the imaginary part. The solid line is 800
MeV, the dashed line is 500 MeV, and the dotted line is 200
MeV.

vector, and tensor potentials only. However, the scalar
and vector potentials are too large at lower proton ener-
gies.” One objective of IA2 is to remedy this situation.
As seen in Fig. 5, IA2 succeeds in this objective. At the
center of the nucleus, the real part of S changes from ap-
proximately —490 MeV for IA1 to —250 MeV for 1A2.
The real part of the vector potential changes from ap-
proximately 410 MeV for IA1 to 190 MeV for IA2. The
imaginary parts of both scalar and vector potentials are
reduced greatly.

The Appendix outlines the derivation of equivalent
Schrodinger central and spin-orbit potentials, U. and
Urs, from the five-term Dirac potential. These
Schrodinger potentials are separated into two parts as fol-
lows:

UCZNC+PC > (13)

Ups=Nis+Prs s (14)

where N and N, are equivalent Schrodinger “no-pair”
potentials determined as described following Eq. (12).
They are essentially the same as the NRIA potentials of
Egs. (8) and (9). P and P, are virtual NN pair poten-
tials defined by these equations. Thus the NRIA analysis
involves solving the Schrodinger equation with the *“no-
pair” potentials only. The new ingredients obtained by
solving the Dirac equation with the IA2, IA1, or other
relativistic approaches, are the central and spin-orbit
terms, P and P;g, of the equivalent Schrodinger equa-
tion.

Figure 6 shows the pair potentials and Fig. 7 shows the
“no-pair,” or nonrelativistic, potentials for *°Ca at ener-
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gies 200, 500, and 800 MeV. In general these potentials
are functions of r and orbital angular momentum, ¢. The
¢ dependence is rather smooth, and Figs. 6 and 7 show
results for £=0. One observes that the pair potentials
are quite large and they vary little throughout this energy
range. The situation is qualitatively different from that
for medium modifications, such as Pauli blocking, which
fade away with increasing energy. The bulk of the energy
dependence in the Schrodinger equivalent potentials is in
the “no-pair” terms as shown in Fig. 7.

Pair potentials for IA2 are substantially smaller than

A T
60
50
40
30

20

C (MeV)

10

FIG. 3. The space-vector potential for “’Ca at 200, 500, and
800 MeV using the IA2. The solid line is the real part and the
dashed line is the imaginary part.
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FIG. 4. The left panel shows the vector spin-orbit potential
for “*Ca at 200, 500, and 800 MeV using the IA2. The right
panel shows the scalar spin-orbit potential. The solid line is the
real part and the dashed line is the imaginary part.

for IA1 at 200 MeV and at lower energies. Figure 8.
shows the pair potentials at 200 MeV. The “no-pair” po-
tentials based on IA2 and IA1 are the same. Differences
in the pair potentials are due mainly to the use of pseu-
dovector wN coupling in the IA2 analysis versus the
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FIG. 5. The left panel shows the scalar potential for “’Ca at
200 MeV based on the IA2 and based on the IA1. The right
panel shows the vector potential for *°Ca at 200 MeV based on
the IA2 and based on the IA1l. The solid line is the real part
and the dashed line is the imaginary part.
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FIG. 6. The *°Ca equivalent Schrodinger pair potentials for
800, 500, and 200 MeV. The left panel shows the central poten-
tial; the right panel shows the spin-orbit potential. The solid
line is the real part and the dashed line is the imaginary part.

pseudoscalar parametrization of the on-shell invariants in
the IA1 analysis. Real pair potentials at 200, 500, and
800 MeV are reduced in IA2 by about 60%, 50%, and
40%, respectively, when compared with IA1 results.
There is rather little energy dependence of the pair poten-

T rrrrr1r 1T

Nc (MeV)

B
567889

o

R
r (fm)

FIG. 7. The “Ca equivalent Schrodinger ‘“no-pair” poten-
tials for 800, 500, and 200 MeV. The left panel shows the cen-
tral potential; the right panel shows the spin-orbit potential.
The solid line is the real part and the dashed line is the imagi-
nary part.
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FIG. 8. The pair potentials for 200 MeV proton scattering
from “°Ca based on the IA2 and the IA1. The solid lines show
the real parts and the dashed lines show the imaginary parts.

tial in IA2.

A recent analysis of Pauli-blocking effects!® in the
Dirac approach is based on multiplying the scalar and
vector potentials by Pauli reduction factors. The Pauli
factors are calculated in nuclear matter and they are ex-
trapolated to finite nuclei using a local-density approxi-
mation. We have applied the scalar and vector reduction
factors of Ref. 19 to the corresponding potentials of the
IA2 approach to arrive at an estimate of the Pauli-
blocking effect. Transforming the Pauli-blocked scalar
and vector potentials to the equivalent Schrodinger equa-
tion, we find that there is medium modification of the
central pair potential, P, but scarcely any effect on N,
N, g, or P;g outside of a slight reduction of the imaginary
part of the no-pair potential N near r=0. This is
surprising because in nonrelativistic treatments, the en-
tire effect of Pauli blocking occurs in the “no-pair” po-
tentials. A future article will consider Pauli blocking
based upon the NN integral equations of the IA2 ap-
proach. In this work, the very simple blocking factors of
Ref. 19 are employed to make an estimate of the Pauli-
blocking effects and to compare them with the correction
due to pair terms of the IA2 analysis.

Figure 9 compares the equivalent Schrodinger poten-
tials at 200 MeV for three cases: (1) potentials U and U
based on IA2 without Pauli-blocking corrections; (2) po-
tentials Us and U;g based on IA2 with Pauli-blocking
corrections; and (3) potentials Nc and N, g, the “no-pair”
or nonrelativistic potentials. Pauli blocking is seen to de-
crease the central potential, U, significantly but to have
little effect on the spin-orbit potential. Inclusion of pair
terms produces a larger modification of the central poten-
tial, one which does not fade away with increasing energy
in the 200-800 MeV range. This behavior is expected to
be general in nature.
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FIG. 9. The full equivalent Schrédinger potentials at 200 —~
MeV. The IA2 curves are based on the impulse approximation, ?
the IA2PB curves include Pauli blocking, and “no-pair” curves b "
omit virtual pair contributions. The left panel shows central po- 107 =
tentials and the right panel shows the spin-orbit potentials.
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IV. ENERGY AND TARGET SURVEY 19 (d e g)
In our calculations, two sets of densities are used to de-
scribe the target nuclei. For 2®Pb and “°Ca, all the re- (b)
sults shown in this paper are based on the relativistic 1.0 ) - T
Hartree densities of Ref. 16. Similar results are obtained u ‘ 7
using the densities of Ref. 20 which are matter vector 061 7]
densities for protons fitted to the experimental charge 0_2:
densities and matter vector densities for neutrons fitted to > F I
the Gogny and DeCharge Hartree-Fock-Bogoliubov neu- < -0.2F | | Nl x
tron densities.”’ Comparisons of the two densities are C v Vo L
based on using the predictions of the relativistic Hartree ‘0'6: ‘\ ’i VY \ /L
model to constrain the differences between scalar and -0 — 5% \26 =35 5536 45 %0
vector densities and similarly the differences between ten-
sor and vector densities. We find that proton scattering 1.0 CA 200 Me¥
results are essentially the same for either density set for u
calcium and lead. However, a significant improvement of oer
the cross section is obtained by using the densities of Ref. o2k
20 for oxygen. For this reason all our results for %0 are -
based on the densities of Ref. 20. In general, only the o2t
cross sections display much sensitivity to the differences —oek
between the two densities. L
Figures 10-18 show the proton scattering observables -1.0g

for “Ca, 208Pb, and %0 at 200, 500, and 800 MeV. Each
figure shows the IA2 result (solid line), the IA1 result
(dashed line), and the NRIA result (dotted line).

A. “Ca

For the cross section, analyzing power ( Ay), and spin
rotation parameter (Q), there is a significant improve-
ment with IA2 at 200 MeV. As is shown in Fig. 10, the

0 (deg)

FIG. 10. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 200 MeV protons
scattering from “°Ca. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 22 and 23.



ment over IA1 and NRIA. The sizable differences be-
tween the three calculations are attributable to virtual-
pair contributions as noted already.

Both IA1 and IA2 results provide a good description
of the data?®?> at 500 MeV as seen in Fig. 11. For the
cross section, the IA2 result is closest to the experimental

(0) I I

10t T
CA 500 MeV

10% -

102

10" +
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10°

g
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1072 | | | | ]
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Szt
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FIG. 11. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 500 MeV protons
scattering from “°Ca. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 24 and 25.

38 ELASTIC SCATTERING OF PROTONS BY !0,%Ca, AND . ..

2279

data; however, the IA1 result excels in reproducing the
first diffraction minimum. At larger angles, the IA2 re-
sult excels. The failure of the NRIA first was pointed
out?® in the analysis of these data at 500 MeV, particular-
ly with regard to the failure to predict the analyzing
power. For Ay, the IA1 result excels, especially over the
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FIG. 12. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 800 MeV protons
scattering from “’Ca. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 10 and 20.
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first 17 deg or so. For larger angles, there is not much
difference between the three curves. For small scattering
angles, the IA2 result is much better than the NRIA re-
sult. For the Q observable, the IA1 result provides the
closest reproduction of the experimental data. The IA2
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FIG. 13. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 800 MeV protons
scattering from 2Pb. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 26.
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result is a significant improvement over the NRIA result
through about 10 deg, but it does not describe the data as
well as the IA1 result. This is apparently due to the
smaller scalar and vector potentials in the IA2 approach.
At 800 MeV, IA1, IA2, and NRIA results shown in
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FIG. 14. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 500 MeV protons
scattering from 2®Pb. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 10 and 20.
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Fig. 12 are all quite similar. Each provides a good
description of the cross section'® up to about 20 deg, and
each fails at larger angles. For spin observables 4y and
0,% the IA2 and IA1 results are very close to each other
and somewhat superior to the NRIA result.
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FIG. 15. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 200 MeV protons
scattering from 2%Pb. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 28 (circles) and 29 (trian-
gles).
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As for **Ca at 800 MeV, there is not much difference
between 1A2, IA1, and NRIA results for 2%Pb at 800
MeV, as shown in Fig. 13. Each describes the cross sec-
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FIG. 16. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 800 MeV protons
scattering from 0. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 30.
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tion?® through about 20 deg, but each worsens at larger
angles. They are also quite close with regard to describ-
ing the Ay and Q data. Overall, there seem to be no
large differences.

Sharper differences occur at 500 MeV, as shown in Fig.
14. The NRIA result is clearly worse than either the IA2
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FIG. 17. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 500 MeV protons
scattering from '°0. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 31.
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or IA1 result. For the cross section the IA2 prediction is
best after about 20 deg, but the IA1 prediction is closer
to experiment!®2° at smaller angles. Again this is due to
the smaller scalar and vector potentials. The comparison
with A, data in Fig. 14 provides the most notable
discrepancy between the IA2 calculation and spin observ-
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FIG. 18. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 200 MeV protons
scattering from '®O. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 32.



able data over the spectrum of energies and targets con-
sidered in this paper. Notably the IA2 description of the
data is still an improvement over the NRIA result. As
we show in a separate article, the inclusion of vacuum po-
larization corrections is capable of removing the
discrepancy of the IA2 analysis with these data.?’ The
IA1 result excels in fitting the A4, data precisely through
about 26 deg. For the whole range of Q data, the IA1 re-
sult is very good.

At 200 MeV the story is similar to that for 4Ca, as
may be seen in Fig. 15. The cross section calculations
display too much oscillatory structure compared to the
data.?®? The IA2 result reproduces the 4y and Q data
extremely well through about 27 deg, but then begins to
fail. The IA1 result for 4y fails to describe the minimum
at about 17 deg, but is reasonably close to the data else-
where. The NRIA result for A, describes that
minimum, but does not do as well elsewhere. The three
calculations of spin observable Q are quite different, and
IA2 provides the best agreement with the data.

C. %0

At 800 MeV, again the IA1, IA2 , and NRIA results
reproduce the cross section data’® comparably well as
shown in Fig. 16. For Ay, IA2 and IA1 results are quite
similar through about 12 deg. The NRIA result misses
the first minimum of A4y, but after about 12 deg com-
pares favorably with the data. All three calculations de-
scribe Q data well through about 12 deg and then they
begin to fail, with NRIA providing perhaps the best
reproduction of the data.

At 500 MeV there are smaller differences between the
three impulse approximation results as shown in Fig. 17.
Each provides a decent description of the data.’! The
NRIA result for the cross section has a minimum that is
too deep but otherwise is as good as the others.

There is too much structure in the cross section at 200
MeYV for all calculations, as seen in Fig. 18. The IA2 and
NRIA results look very similar here, and both describe
the data® better than does the IA1 result. As was the
case for the other targets, the IA2 result for 4y is very
good here, while the NRIA result for 4y is poor. The
IA1 result misses the first minimum of A4y, but succeeds
elsewhere. Q data are not available, but they could prove
interesting, as the three theoretical predictions have some
significant differences.

V. COMPARISON OF IA2 WITH VARIATIONS OF IA1
BASED ON PSEUDOVECTOR 7N COUPLING

For quite some time it has been recognized that the
IA1 potential fails at low energy due to implicit inclusion
of pseudoscalar 7N coupling.? It is a fair question to ask
whether just changing the pseudoscalar wN coupling to
pseudovector coupling is an adequate repair as opposed
to doing the full IA2 analysis. In principle the answer is
no, because the virtual pair contributions to the optical
potential are not well defined unless a complete set of NN
amplitudes is used in the construction. However, results
of Murdock and Horowitz for proton scattering!® are
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quite good using a pseudovector covariant in place of the
pseudoscalar covariant of IA1l and including Pauli-
blocking corrections. This prescription does not elimi-
nate the ambiguity in pair potentials because all NN am-
plitudes are fixed from positive-energy matrix elements,
but it does cast the very large one-pion exchange contri-
bution into a sensible form.

Several different methods exist for changing from pseu-
doscalar to pseudovector covariants. Two methods are
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FIG. 19. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 200 MeV protons
scattering from “°Ca. The solid line shows the IA1 result, the
dashed line shows the IA1PV result, and the dotted line shows
the IA1PV1 result.
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described in Ref. 2 and we refer to them collectively as
IA1PV1 since they produce essentially equivalent results.
A more direct method is to subtract the pseudoscalar
one-pion exchange amplitude from the NN amplitude of
IA1 and then replace it with a pseudovector one-pion ex-
change amplitude. This procedure affects only the real
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FIG. 20. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 200 MeV protons
scattering from 2%Pb. The solid line shows the IA1 result, the
dashed line shows the IA1PV result, and the dotted line shows
the IA1PV result.
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parts of the amplitudes and it is called IA1PV. It gives
more satisfactory results in comparison with the full IA2
analysis than the prescription of Ref. 2. For “°Ca, we find
that the two prescriptions, IA1PV and IA1PV1, yield
comparable results as shown in Fig. 19. This figure
shows the IA1 result (solid line), the IA1PV1 result
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FIG. 21. The differential cross section, analyzing power
(Ay), and spin rotation function (Q) for 200 MeV protons
scattering from *“°Ca. The solid line shows the IA2 result, the
dashed line shows the IA1PV result, and the dotted line shows
the Horowitz result (Ref. 33).



(dashed line), and the IA1PV result (dotted line) for calci-
um at 200 MeV. Both prescriptions for changing to
pseudovector coupling improve upon the IA1 results, and
we find that this is true at higher energies also. However,
for 28Pb, there is a surprise. As seen in Fig. 20, the
IA1PV1 prescription fails to produce reasonable cross
sections or spin observables. While for “°Ca the pseu-
dovector prescriptions produce similar results, for 2°Pb
they differ greatly. This is caused by differences in imagi-
nary parts of isovector amplitudes which average out in
%0Ca, but which are quite large for N5#Z nuclei such as
lead. The IA1PV1 prescription does transform the real
one-pion exchange interaction correctly, but it also
changes the imaginary parts of some amplitudes. We find
that it fails at all three energies for 2°®Pb. This example
shows that the ambiguity in changing from pseudoscalar
to pseudovector coupling can be substantial.

Another prescription for implementing pseudovector
coupling has been suggested by Horowitz.’> Figure 21
compares the IA2 result (solid line), with the IA1PV
prescription (dashed line) and the Horowitz prescription
(dotted line) for “’Ca at 200 MeV. There is considerable
sensitivity of proton scattering observables to various
ways of extending the NN amplitudes to the full Dirac
space of two nucleons. Similar results are obtained for
28pp at 200 MeV.

VI. ROLE OF THE SMALL POTENTIALS

Compared to the S and ¥ potentials, the T, S, g, and
V.5 potential of Eq. (4) are quite small. Therefore one
may question whether these potentials are really needed.
For “Ca at 800 MeV, omission of either 7, or both S,
and Vg, causes the results for 4, and Q to change
dramatically, even though the cross section is essentially
unchanged. This is shown in Fig. 22. If all three of the
small potentials are omitted, there is a smaller effect.
Thus some cancellation of the effects of the small poten-
tials may be inferred at 800 MeV. At 500 and 200 MeV
the corresponding changes are not as dramatic with
respect to omitting T or both S, and Vg, but omitting
all three does make a considerable difference. Similar re-
sults are found for %0 and 2°°Pb targets.

Although Dirac potentials T(r), S;(r), and V,5(r) are
each small in magnitude, they contribute significantly to
the spin-orbit potential of the equivalent Schrodinger
equation. Figure 23 shows that the equivalent
Schrédinger spin-orbit potential for *°Ca at 500 MeV is
changed significantly by omission of these small poten-
tials. However, we find that the equivalent central poten-
tial is virtually unchanged. Thus the small potentials, T,
S,s, and V5 of the generalized impulse approximation
can be significant to the analysis of spin observables.

VII. SUMMARY AND OUTLOOK

Interesting results for proton-nucleus scattering have
emerged from the Dirac approach based on relativistic
NN amplitudes. The original form of the Dirac impulse
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approximation, called IA1, provides a direct connection
of the large scalar and vector potentials to NN ampli-
tudes. Moreover, successful descriptions of spin observ-
ables in proton scattering are obtained at energies above
about 300 MeV. These features persist in the generalized
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FIG. 22. The differential cross section, analyzing power
(A4y), and spin rotation function (Q) for 800 MeV protons
scattering from *“*Ca. The solid line shows the IA2 result, the
dashed line shows the IA2 result omitting both S, and V.s po-
tentials, and the dotted line shows the IA2 result omitting the T
potential.
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FIG. 23. The *Ca equivalent Schrédinger spin-orbit poten-
tial for 500 MeV including all Dirac potentials and including
just the S, V, and C potentials

impulse approximation, called IA2, and they are brought
under control within the context of meson-exchange
models of the nuclear force. For several years the prob-
lem has been to establish dynamical control over the
virtual-pair contributions which enter implicity when one
solves the Dirac equation. As shown in Sec. II, the pair
potentials remain large, about 25 meV, throughout the
200-800 MeV energy range, and this is in contrast to
Pauli-blocking corrections to the NN interaction. IA2
achieves control over them by basing the Dirac optical
potential on a complete set of NN amplitudes determined
from a meson-exchange model of the nuclear force. Pseu-
dovector mN coupling is incorporated consistently and
vertex cutoffs are used to regulate high-momentum be-
havior. The model used provides a qualitative descrip-
tion of the NN amplitudes over a broad energy region,
and this constraint is adopted to avoid a large class of
ambiguities (but not all ambiguity) in the construction of
the Dirac optical potential from NN amplitudes.
Prescriptions for incorporating pseudovector wN cou-
pling in a simpler manner>* produce significantly
different results.

Overall, the generalized impulse approximation
succeeds in describing a large body of proton scattering
data using meson couplings determined from the analysis
of NN scattering. Particularly at lower proton energies it
provides significant improvement over the original im-
pulse approximation. Most important, a dynamical basis
for the virtual-pair contributions is established. IA2
unifies the analysis of proton optical potentials with the
analysis of the NN interaction, and to a certain extent
with the analysis of meson-exchange corrections, since
these also are commonly calculated from a similar
meson-exchange dynamics.
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APPENDIX

Equivalent Schrodinger central and spin-orbit potentials can be defined such that the scattering is the same based on
the Dirac and Schrodinger equations. In general the equivalent Schrodinger potentials depend on r (radius), ¢ (orbital
angular momentum), and E (energy). Consider the Dirac equation with a five-term optical potential of Egs. (3) and (4)

without the two electromagnetic terms. Expand #(r) into partial waves using normalized spin-angular functions
Y7 (7).
s

i0,G 4 (r) ]Y;;(?’ : (A1)

Expand the Dirac equation into coupled equations for the upper- and lower-component wave functions, F(r) and G (r),
as follows:

(E—m —8(r)— V() +[S.5(r)+ VLS(r>]K}F_id€—+§G—T(r)G=o : (A2)
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—ioc? %F——iF—T(r)F+[E+m+§(r)—I7(r)]G+[I7LS(r)—§LS(r)]EG =0. (A3)
r o r
where
k=,0,+1)=C(+1)—3, (A4)
k=,,+D-20(f+1)—1%, (A5)
and
7:2{,‘—/ . (A6)
We can rewrite these as
4 K Flo=w(roF, (A7)
dr r
d = _
————-T|F=-Q(r,K)G , (A8)
dr r
where
W(r,K) E m — S V+[SLS +VLs(r)]K 5 (A9)
Q(r,K)=E+m+S—V+[V,5(r)=S5(nk. (A10)

Equation (A8) may be solved for the lower-component wave function, G (r), and the result substituted into Eq. (A7) to
obtain a nonlocal form of the Schrodinger equation.

d2
—F
dar *

dF Fl_fxl) dT 4, Rk

r? dr r

1.dQ
T Q dr

LdQ
Qd

T|F=—QWF . (A11)

If we make the substitution F(r)=r"'Q!/2¢(r), then the term involving dF /dr is eliminated. Finally dividing by
r ~1Q /2 produces a Schrédinger equation for ¢,

r

where E2—m?=k?, and the Schrodinger potential U is given by

2

d?Q

11d% 3[1do| [1do||x+t1 1d0~ dT o, k-«
20 dr2 4| Q dr Q dr r ] Q dr dr "+ r S (Al3)
where

A=E4+m4+85-V (A14)
and

B—E-m—5-7. (A15)

In order to split U into central and spin-orbit terms, define



2288 N. OTTENSTEIN, S. J. WALLACE, AND J. A. TION 38

<

Ulk=¢,k=—¢-2)

and

U

Ulk=—¢—1,k=¢—1).

If

Then the central potential is

Ue= 2?—111 Ust 2/f+1 U- (A1
and the spin-orbit potential is
Ups= v.-v_ (A17)
26 +1

Numerical results for £ =0 states are given in Sec. II.
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