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Relativistic and nonrelativistic analyses based on the impulse approximation
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Systematics of Dirac impulse approximation predictions for cross sections and spin observables in
elastic proton scattering by ' 0, Ca, and ' 'Pb at energies of 200, 500, and 800 MeV are presented.
The analysis is based on an optical potential constructed from complete sets of Lorentz-invariant
NN amplitudes. The NN amplitudes are determined from a relativistic meson exchange model of
the nuclear force. Comparisons are made with the original form of the Dirac impulse approxima-
tion, which is based on five Fermi terms to represent the NN interaction, and with the Schrodinger
form of the impulse approximation. For the Dirac analyses, there is implicit coupling to virtual
nucleon-antinucleon states. In order to illustrate these contributions, the Dirac equation is recast in

the form of the Schrodinger equation and the resulting Schrodinger potentials are separated into
"no-pair" and virtual-pair parts. The resulting virtual-pair part of the central potential is typically
25 MeV at the center of the nucleus for 200-800 MeV protons. A reasonable description of the ex-

perimental data is obtained over a broad energy range and over a wide variation of nuclear size
when the analysis is based on complete sets of Lorentz-invariant amplitudes.

I. INTRODUCTION

Over the past few years, a dynamical basis for the
Dirac optical potential has been developed using a rela-
tivistic description of nucleon-nucleon (NN) scattering
based on meson-exchange dynamics. '

Complete sets of
Lorentz-invariant nucleon-nucleon (NN) amplitudes '

are combined with the relativistic nuclear density to pre-
dict the Dirac optical potential using the impluse approx-
irnation. The generalized impulse approximation based
on the meson-exchange description of the nuclear force is
denoted as IA2 herein. This approach has no free param-
eters. It overcomes some theoretical shortcomings of the
original form of the Dirac impulse approximation, '

denoted IA1, which predicts the Dirac optical potential
from knowledge of positive-energy NN scattering data.

The original (IA1) form of the Dirac impulse approxi-
mation successfully predicts the spin observables in
proton-nucleus elastic scattering above about 300
MeV. ' However, the specification of the optical poten-
tial is incomplete due to reliance on five Fermi covariants
and associated amplitudes to extrapolate the NN scatter-
ing operator from the positive energy sector, where it is
determined by NN scattering experiments, to the full
Dirac space of two nucleons. Fermi covariants involve a
pseudoscalar term in the parametrization of on-shell in-
variants. This results in overly strong scalar and vector
components of the Dirac optical potential at low ener-
gies. Moreover, the predictions for nucleon-nucleus
scattering depend on the prediction of couplings involv-
ing negative-energy basis states of the free Dirac equa-
tion. "' These control the virtual-pair couplings but

they cannot be obtained unambiguously from the matrix
elements involving only positive-energy states.

The ambiguity of the IA1 approach is overcome in the
generalized impulse approximation, IA2, by adopting a
relativistic meson-exchange description of the nuclear
force' ' as the dynamical basis for extending the NN
data to all sectors of the Dirac space of two nucleons.
Pseudovector mN coupling and vertex cutoffs are incor-
porated to maintain sensible behavior at low energy and
at large momentum. The resulting meson-exchange mod-
el succeeds in explaining NN scattering observables from
0 to 1000 MeV and it provides a prediction for the
negative-energy couplings needed to construct the optical
potential. No other way of comparable sophistication ex-
ists to predict the required negative-energy couplings.
The meson-exchange model is based on an effective La-
grangian similar to ones conventionally used to calculate
meson-exchange currents in electromagnetic reactions.
Thus the IA2 approach unifies the theoretical description
of nucleon-nucleus scattering with that of NN scattering
and to a certain extent with that of meson-exchange
currents.

The NN interaction analysis involves coupled NN, Nb„
and hA integral equations with meson-exchange kernels.
These equations are solved using a quasipotential reduc-
tion of the coupled Bethe-Salpeter dynamics developed
by van Faassen and Tjon. ' A straightforward extension
is made to include negative-energy intermediate states,
and calculations are performed to determine a complete
set of NN helicity amplitudes for each proton energy of
interest. This analysis is performed in the center-of-mass
frame of two nucleons since that is the only practical
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frame for partial wave analysis. However, the optical po-
tential is needed in the nucleon-nucleus c.m. frame. It is
convenient to convert to a Lorentz-invariant description,
consisting of a sum of Lorentz-invariant amplitudes times
kinematical covariants, in order to obviate the boost
problem. The NN helicity amplitudes in the c.m. frame
are used to determine the Lorentz-invariant amplitudes
of the NN scattering operator.

Freedom exists in the choice of kinematical covariants
of the Lorentz-invariant representation. There are many
ways to choose a complete and linearly independent set.
The situation is analogous to that for the choice of basis
functions with which to expand an arbitrary state vector
in quantum mechanics. Any basis set will do in principle
if it is complete. Symmetry and simplicity dictate the
choice for a given problem that is most appropriate. The
choice of kinematical covariants given in Ref. 5 incorpo-
rates Pauli exchange antisymmetry in a very simple
fashion. This is particularly useful for the separation of
direct and exchange contributions to the NN amplitude.
Kinematical covariants are symmetric or antisymmetric
with respect to exchange of the two nucleons. Conse-
quently the associated Lorentz-invariant amplitudes are
symmetric or antisymmetric with respect to interchange
of the Mandelstam arguments, t and u. This interchange
is equivalent to 8~m —8, where 8 is the c.m. scattering
angle. Thus the exchange symmetry required by the Pau-
li principle is manifest in each amplitude rather than be-
ing spread over many amplitudes as is the case for other
choices of kinematical covariants in the literature.
Analytical fits to the NN amplitudes are given in Ref. 5 in
terms of Yukawa functions of t (direct terms) and Yu-
kawa functions of u (exchange terms).

Using the complete sets of Lorentz-invariant ampli-
tudes, the Dirac optical potential is constructed as shown
in detail in Ref. 3. In this paper, systematic calculations
are presented based on that formalism. Comparisons are
made with the original form of the Dirac impulse approx-
imation and with the traditional Schrodinger impluse ap-
proximation. In Sec. II, the theoretical calculations are
outlined and some conventions used in the paper are
given. Section III presents potentials used in the Dirac
equation and also presents potentials for the Schrodinger
equation which produce equivalent scattering amplitudes.
The latter are separated into "no-pair" parts and virtual-
pair contributions. Results for elastic proton scattering
are compared with experimental data in Sec. IV. Various
refinements of the original impulse approximation have
been prescribed to incorporate pseudovector ~N cou-
pling. In Sec. V these are compared with the IA2
analysis which consistently embeds pseudovector cou-
pling. The role of numerically small tensor, scalar spin-
orbit, and vector spin-orbit potentials in the Dirac
analysis is considered in Sec. VI. A summary and
outlook are presented in Sec. VII.

H. DESCRIPTION QF THE CAI.CUI.ATIONS

The analysis of the Dirac optical potential is carried
out most naturally in momentum space. However, for
computational simplicity, a localized potential is used in

[Ey +iyV m —0(—r)]f(r)=0, (3)

where E=(k +m )' and k is the on-shell momentum
in the proton-nucleus c.m. frame. In general, the poten-
tial can contain eight terms. However, only six nonvan-
ishing terms are found in the analysis of Ref. 3. Two
terms, involving Dirac operators which are odd with
respect to time reversal, are found to be zero. Moreover,
a transformation eliminates a space-vector term. Thus
the potential, in its final form, contains five terms due to
the strong interaction. In addition, there are two elec-
tromagnetic terms as follows:

O,Az(r) =S(r )+y [V(r)+ Vc(r)] ia r[T(r)+—Tc(r))

The strong interaction potentials S, V, T, Szz, and VLz
are defined in Eqs. (4.16)—(4.21) of Ref. 3. The elec-
tromagnetic potentials, Vc and Tc, are determined by

f d r e'q'[Vc(r) —ia "rTC(r)]

y F&(q ) i a q—F2(q ) p,h(q),

where F
&

and F2 are proton form factors, ~ is the proton
anomalous magnetic moment, and p,h is the charge form
factor of the nucleus.

Calculations are also presented for the IA1 impulse ap-
proximation. In that case one has three terms due to the
strong interaction plus two electromagnetic terms as fol-
lows:

this paper to permit coordinate-space analysis. The po-
tential is developed from the momentum-space expres-
sion

0(p, q) = ——,'Tr2[l&(p, ——,'q p —q, +—,'q )p(q)],

where Q(p, ——,'q~p —q, + —,'q) is the Breit frame NN
scattering operator in the Dirac space of two nucleons
and p(q) is the relativistic nuclear density. Conventional-
ly, particle 2 is the target nucleon, and the trace is over
the Dirac indices of particle 2. This form of potential is
appropriate for closed-shell nuclei, for which the relativ-
istic nuclear density consists of scalar, vector, and tensor
components as follows:

0 a2q
p(q)=ps(q)+y~v(q) —PT(q) .

2m

Nuclear form factors, ps(q), pr(q), and pr(q), are deter-
mined from the relativistic Hartree wave functions of
Horowitz and Serot. ' Neutron-proton differences are in-
corporated by evaluating Eq. (1) twice, once with the
proton-proton amplitude, 4, together with the proton
density, pz, and once with the proton-neutron amplitude,4 „, together with the neutron density, P„. The two re-
sults are added to determine the optical potential.

After localization to permit coordinate-space analysis,
the problem comes down to solving the Dirac equation,
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I
pi+p&=X, X2 A + iCa &.q + X&X2, (7)

2

where the omitted terms on the right side involve the spin
operator crz. (See Ref. 8 for details of the connection of
Pauli amplitudes to invariant amplitudes. } Only the A

and C Pauli terms contribute to the optical potential for a
closed-shell nucleus. Central and spin orbit potentials are
determined by

Nc(r)=(2n) f d q e 'q'A(q)p„, (q),

irNLs(r)=(2~) ' f d'q e ' 'qC(q)p„, (q),

(8)

(9)

where p„,(q) is the Fourier transform of the nonrelativis-
tic matter density. These potentials are used in the
Schrodinger equation with relativistic kinematics, e.g.,

k —p
2 2

Nc(r) NLs(r)cr L $—=0 .
E+m (10)

Here E+m replaces (A —1}/A times twice the reduced
mass of the Kerman, McManus, and Thaler (KMT) ap-
proach, ' where A is the number of nucleons in the target
nucleus. Other prescriptions for incorporating relativis-
tic kinematics are sometimes used, but they are essential-
ly equivalent to this one. Equation (10) is preferred be-
cause it has a natural correspondence with a "no-pair"
approach. As written, Eq. (10) omits electromagnetic
effects. When these are incorporated, Eq. (10) is
equivalent to solving the Dirac equation (3) with the po-
tential

ONRIA ( r)
1+yo

[Nc(r )+Nls(r)o" L]

+y V, (r) ia rTc(r) . . —

This follows because terms involving (1+y ) act only in
the equation for the upper component of the Dirac wave
function. When the Dirac equation with the potential of

, (r)=S(r}+y [V(r)+ V (r}]
—ia r[T(r)+ Tc(r)] .

The difference is that a complete set of NN amplitudes is
used in Eq. (1) to determine 0&Az, while the five Fermi
amplitudes are used to determine 0&~, . This difference
only affects the negative-energy couplings in the plane-
wave basis of Dirac states, i.e., the same NN amplitudes
are used in positive-energy states for IA1 and IA2.
Moreover, phenomenological phase shifts' are used to
construct the positive-energy amplitudes.

Comparisons of the relativistic impulse approximation
are made to the corresponding nonrelativistic impulse ap-
proximation which is denoted NRIA. NRIA calcula-
tions are usually based on solving the Schrodinger equa-
tion with relativistic kinematics using an optical potential
based on Pauli NN amplitudes, A and C, determined
from positive-energy matrix elements of the full NN
scattering operator, 4, as follows:

1Q'„, „,=A', +'(p', )A2+'(p2)iQAI+'(p, )A~2+'(p2),

where

(12)

A';+'(p) =(Epy; y, p+—m )/.(2m ),

and using p ~ =ps ——pz. ——p„, in Eq. (2). In the "no-pair"
analysis, one obtains a Dirac potential as in Eq. (4) and
this can then be converted to an equivalent Schrodinger
potential as shown in the Appendix. The resulting "no-
pair" Schrodinger potentials are only slightly different
from the usual nonrelativistic potentials of Eqs. (8) and
(9}. We find that the "no-pair" potential, determined us-
ing Eqs. (12) in Eq. (2), produces equivalent results for
proton scattering to those obtained using the usual NRIA
potential of Eqs. (8) and (9). Inconsequential differences
arise because momentum dependence in Dirac spinors,
e.g., Uz+'(pz) in Eq. (7), are treated a little differently in
the optical potential formalism of Ref. 3.

Eq. (11) is reduced to an equivalent Schrodinger equation,
omitting Coulomb effects, Eq. (10) is obtained. Compar-
ison of Eq. (11) with Eq. (4) shows that the NRIA
analysis may be performed by solving the Dirac equation
using the potential based on S= V= ,'N—c(r), SIs
= VL.s —— ,'N—

L,—s,and T=0 in Eq. (4).
Equivalent Schrodinger central and spin-orbit poten-

tials are defined such that the scattering is the same based
on the Dirac and Schrodinger equations. This is accom-
plished by writing the Dirac equation as coupled equa-
tions for the upper- and lower-component wave func-
tions, solving for the lower-component wave function,
and substituting the result into the equation for the
upper-component wave function. After some manipula-
tion one obtains a standard form Schrodinger equation.
The Appendix shows how the Dirac equation with five
terms in the potential as in (4) is manipulated to the
Schrodinger equation (10) with equivalent central and
spin-orbit potentials, Uc and ULS, in place of the non-
relativistic potentials.

Differences between the equivalent Schrodinger poten-
tials, Uc and ULs, derived from the full set of Dirac po-
tentials and the NRIA Schrodinger potentials, Nc and

NLs, of Eqs. (8) and (9), are due to inclusion of virtual-
pair effects in the Dirac analysis. The NRIA approach
corresponds to eliminating @11 virtual-pair effects by not
permitting any negative-energy couplings of the Dirac
potential with respect to the plane-wave basis of Dirac
states.

In this paper, the Schrodinger theory with relativistic
kinematics is defined as the "no-pair" theory obtained
from a relativistic theory by eliminating all negative-
energy couplings with respect to the plane-wave basis of
Dirac states. This definition clarifies exactly what we
mean by Schrodinger theory with relativistic kinematics.
By this definition, the NRIA optical potential is
equivalent to the "no-pair" Dirac potential which one ob-
tains by evaluating Eq. (1) using a positive-energy pro-
jected NN scattering operator, i.e.,



38 &6O ~Ca, AN& .NG OF PROTONS BYMASTIC SCATTER

III. DIRRAC PND EQUIVAL
SCHR&DINNGER P~TENTIALS

3.0

2.5—

2.0

2275

1h five-term opticae uation wit aConsider the Dirac eq
b ve this is obtained(4) As noted & o"eotentlal as in Eq
tical potential by use

P
f m an equation w ith a six-term op i

which absorbs a
rom

'
n transformation w

'

1- h
o a

r). In Figs.
ased on the genera ize

Ca
tion potentials base o

n scattering from am ', shown for proton
en-at energies 200, 500, and 800 e

ctor otentials decreases the sea a d ecto p1'1 d dow p, .e., e is rather itt e e e.

Th
s in-orbit terms, Is r

as ag
rea .hima inary part ecr

E . (4) d o b i b-
ergy,

C', r& not shown in q.
ntersfth fsor e yb d b a transformation o t e w

the Dirac equation as

2.0—

1.5

0.5
l

1

0—

0 5

I I I I I I I0123'156789

y (fm)

l.5

1.0

0,5

-0.5—

I I I I I I I I I0123't S6789

(fm)

[C(r)lm](Ey +iyV m—

20-M
I I I I I I I I

8000—

-20

-'t0

-80

-100

200

180

160

110

120

100

80

or this potentia is
'

1 the nucleon mass,Th relevant scale for
'

pe
the other potentia s

''
1 in that its irnag-m. C(r) differs from e

ma nitude as t e ehe energy increases,
1 art varies from positive hp

1 ti
ac or

ood descriptions o
C b d 1500 and 800 MeV from ascattering at

Ca at 200, 500, and 800FIG. 2. The tensor potential for a a
h s the real part. TheThe left panel s owsMeV using the IA2. T

The solid line is 800
~ h .. .1

ima inary part. e
MeV, the das e
rig

h d line is 500 MeV, an e
MeV.

1 However, the scalarector, and tensor potentials on y.
t lower proton ener-

ve
are too large a

~ ~ ~

an vd vector potentia s
'

e of IA2 is to reme yd this situation.oj ~ o
o . hIA2 succeeds in t is o

'

h. ~ f S.h-.- f--"-he real part ocenter o
prox'ximately —490 e or

he vector potentia c
'

1 hanges from ap-p
proximately 410 MeV for IA1 to

d vector potentials aarets of both scalar an veimaginary par s o
g y.

b' ot t' 1 U Mi

utlines t e eri
al and spin-or it pog

U from the five-term Dirac poLS~
are se arate in od' to twopartsasfo-Schrodinger potentials a p

lows:

-120

-1't 0

-160

60

90

20

Uc =&c+Pc

ULs =&Ls+PLs

(13)

-180

-200

-220

-2'10

I I I I I I I I I123056789

0—
/j&-20—

200. i(
-'10 —-—

~5oo
800

I I II I I I I I123656789

y (fm) r (fm)

1 shows the scalar potentiaial for Ca at
Th h 1 ho
th 1 t nd

eV using the IA2. e r
the

'
1. The solid line is ethe vector potentia .

dashed line is the imaginary part.

are equivalent Schr" grodin er "no-pairC LS
otentials determin

'
ed as descn e

h NRIA potentials of
po
They are essentially the same as t e

nd P are virtua
'

t 1NN pair poten-
11 1

qs.
se e uations. Thus t e

CC

y q
the Schrodinger equa ion

d t obt d
h IA2 IA1 o oh

The new ingre
'

pair
e uation with theso q

aches, are the cen rarelativistic approac es,
1 nt Schrodinger equa-d P, of the equiva enterms, Pc an

tion.
air otentials and Fig.. 7 shows theFigu e6 ow t ep po" or nonrelativistic, potentia s or"no-pair, or



38E ANDJ A TJONN. OTTENSTTEIN S. J. WALLAC

2Q I I I I I I

2276

Q 2 I I I I Ineral these potentialsd 800 MeV. &n ge
p. The

gje$200& 500~
gular momentum, ~.re functions of r an d orbita ang

d Fi s. 6 and 7 showrather smooth, an ig .8 dependence is ra e
that the pair potentia s=0. One observes t a

he vary itt e1' 1 throughout this energyare q
is ualitative y i

P 1 bl 16' h hor m
' '

ations, such as Pau i
. Th b 1kofthy gasin energy.

e Schrodinger equiva endependence in the c ro i
th "no-pair termss as shown in ig.

na' '
r $A2 are su stan

'
b tially smaller thaPair potentials for

I.8O.O

l.6-0.2
l.4-0.4
1.2

i
�~500

200e -0.6
1.0

-0.8

~5oo
04

I I I I I
'I

0.0
I I I I-Q2012I I I I I I I I-l, 80123

(fm)
80060 =~

y- (fm)

ows the vector spin-orb' pit otentialFIG.
h IA2 Th i h800 MeV using t e

'
1 Th olid li is thet 1 in-orbit potentia

th
the scalar spin-

real part an d the dashed line is e

500~)

2oo ~

30 II

I I I I I I I I IT~l I I I I I I I100

'10050—

350

300-50

250-100

200-150

& iso

100

-200

-250

50-300

0—
IA2

-50 =

-100 — &g4 )

0123156789

-350

-'t00

-050I I I I I I I I I

g123I5678 I I I I012 36 56789
y- (fm)y- (fm)

ows the scalar potentia o1 for Ca atFIG.
IA2 and based on t e200 e

r otential for Ca at
art

pane s1 shows the vector po
the IA1. The so i i1'd line is the real parIA2 and based on t ethe

the imaginary part.and the dashed line is e
'

i -:m',
'

1 for Ca at 200, 500, and
h 1 d

ctor otentia or
the

F
800 MeV using the I . is e
dashed line is the imaginary part.

r ener ies. Figure 8.
ls at 200 MeV The "no-pair p-s ows

h D'ffand IA1 are t e satentia s
ials are due main y o

s the
1

IA2 1dovector mN coup ing
'



38 S 8& "O,~Ca, AND. . .ELASTIC SCATTERING OF PROTON 2277

I I I I I I I I

800
28 00

00

22

20

18

16

I 1 I I I I I I I

0.I5—

200
0.IO

0.05—

60

50

30

I I I I I I I I I o.4

0~ I IAI
I

I

pp
rq

P. l & i ' IA2

-0. I

O &2—

10— Q -o.o5

-O. IO

yl

800

500
800

20

10

-0.3

-0.4

80z-j-
200 ~

500
&I& I I I I I I

0 1 2 3 '} 5 6 7 8 9

-O. I5—
200

I I I I I I I I I0123%56789

0-
IAI

t0123'1 56789

-0.5

I I I I I I I I I0123't 56789

y (fm) Z' (fm)

r air otentials forCa e uivalent Schrodinger p
'

pFIG. 6. The a equi
eV. The left pane s ows1 hows the central poten-800, 500, and 200 Me

'
-orbit otential. The solidri ht anel shows the spin-or it po e

dashed line is the imaginary par .line is the real part and the das e ine
'

y (fm)(fm)
200 MeV proton scattering

h IA1 The solid lines show
air otentials for

ed on the IA2 and the
h t}1the real parts and the dasshed lines s ow e

'

metrization of the on-shell invariants in
0'

800 MeV are reduce in y ou

p
There is rather little energy depen ence o

10

-10

-20

/ / ]-30 — ~
g

200
-%0-

500g
/

-50 =

I

-60—
I

I

70 — I

/ soo
-80 —g

I I I I I I I I I

0 123't 56789

I I I I I I I I I

2000.2 q

O. I

0
-0. I

P -02—
2 -o~

~-0.4

+ -05
-0.6
-0.7
-0.8
-0.9

I I I I I I I I II-00123~56789

y (fm) Z (fm)

"no- air" poten-~Ca e uivalent Schrodinger -p
' "

he left anel shows the cen-
th i -o bit ot ntiari ht anel shows etral potential; the rig p
d h d line is the imagi-The solid line is the rea pe

' '
1 artandthe as e

nary part.

of Pauli-blocking effects19 in the
his based on multiplying ef,.„.h. ..l;tials b Pauli reduction ac

tt d thlated in nuclear ma e
lo 1-d

h 1 and vector reductio
to finite nuclei using a oca - en

'

d' ot t' 1 of th
e a lied the sca ar an

factors of Ref. 1 to the correspon ing po
arrive at an estima et of the Pauli-IA2 approach to arrive

Transforming the Pauli- oc e'-blocked scalar
1 S ho"dipo

'
ls to the equiva en c

find that there is medium mo i c

part of the -p
'

no- air potentia & near r=
' ' t' treatments, the en-se in nonrelativistic reasup g u

tire effect of Pauli bio
'

g eckin occurs in e
article will consider au

'
tent a s. A utu e

NN integral equations opo

k t' t of th P 1'-
his work, the very simp e oc in

ed to make an es ima
blocking effects and to compm are them wi

rms of the IA2 analysis.due to pair terms o
1 t Schrodinger poten-Figure 9 comp ares the equiva en c

(1) otentials U and UMeV for three cases: po
I' bl k' o tio s; (2) o-

IA2
'

h P 1i-b1o k
ithout Pauli- oc ing

C LSU based on IA wi
3) otentials Nc anp

otentials. Pauli oc in
'fi ly b h1 otential, Uc, signi canpo

e s in-orbit potentia. nc
f h 1s a lar er modification oterms produces a a g

ith increasing energyich does not fade away wi ntial, one w ic
This behavior is expected toin the 200—800 MeV range. is e

be general in nature.



2278

-10
-12
-1%

—16

-18
-20—
-22

. OTTENSTEIN S J. WALLACE AN D J. A. TJON

O.y I I I I I I

o p ~ ~IA2

0 —~IA2 PB
IA2 NO PAIRS

38

10'

s ~~~tion ha
data 223 . s more osci

twee
In a three cases. T

cture than thea ory struc

ween IA2 and IA1
There is less d'ff

and the N
1 results than b t

I erence be-

RIA resu
n etween either o

S bst ti 1 d'ff

f h

are ob-

h significant imprprove-

-28 s

-0.8

IA2 NO PAIRS

10

-30 .— ~IA2
IA2 NO PAIRS

I I I I

2
I I I I I

3't 56789

y (fm)

~IA2 PB
IA2

I I I I I I I I123't 56789

P (fm)

5 10'—
K

2"
FIG.G. 9. The full e uiv

M V Th IA2 rves r b s d th
curves inclu

on t e impulse a
P 1' bl

Th lf p
s t e spin-orbit potentials

IV. ENERRGY AND TARG ET SURVEY

10

10 '—

102 I I I I I

II

0 5 10 15 ZO 25 30 35
I I I I

35 60 05 50

(deg)
In our calculations, two
'b h t 1 . Fo 208pb

s own in this apaper are based o„ t

d
'' f c aema

d ttr t d'n"t'" f
y an DeChar

or neutrons fi

H t F k
omparisons f

redictions f
th dif b t

1 1 h d'ff
d W fi d h
t' ll t" th

reaso esults for are

bt th

~ . g , only the

igures 10-18 sh p o on

'
erences

40 208

m ), dth NRIIA lt (dott dot ted line).

I.O

0.6—

0.2—

+ -o.z-
-0.6—

I 00

I.O,

0.6—

0.2—

-0.6—

—I.O0

(b)

I ~ I

I

I

) I

5 10 15 20

CA 200 MeV

I

IE I

I

25 30 35
I

00 't5 50

(deg)

I I
( I

I &I

5 10 15 200 25 30 35 '10 't5 50

A. ~Ca

For the cross s
rota

'
section, anal

(

i h IA2
'g

e . As is shown in F' .n Ig. 10, the

FIG. 10. The differeentlal cross sec
Q

h olid li h
h I 1 1 d h

he daataarefrom R f .
e dotteed line shows th

e s. 22 and 23.
st e



38 ELASTIC SCATTERING OF PROTONS BY ' 0, Ca, AND. . . 2279

ment over IA1 and NRIA. The sizable differences be-
tween the three calculations are attributable to virtual-
pair contributions as noted already.

Both IA1 and IA2 results provide a good description
of the data ' at 500 MeV as seen in Fig. 11. For the
cross section, the IA2 result is closest to the experimental

data; however, the IA1 result excels in reproducing the
first diffraction minimum. At larger angles, the IA2 re-
sult excels. The failure of the NRIA first was pointed
out in the analysis of these data at 500 MeV, particular-
ly with regard to the failure to predict the analyzing
power. For A ~, the IA1 result excels, especially over the
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FIG. 11. The differential cross section, analyzing power
(Ar), and spin rotation function (Q) for 500 MeV protons
scattering from Ca. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 24 and 25.

FIG. 12. The differential cross section, analyzing power
( A r ), and spin rotation function ( Q) for 800 Me V protons
scattering from Ca. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 10 and 20.
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first 17 deg or so. For larger angles, there is not much
difference between the three curves. For small scattering
angles, the IA2 result is much better than the NRIA re-
sult. For the Q observable, the IA1 result provides the
closest reproduction of the experimental data. The IA2

result is a significant improvement over the NRIA result
through about 10 deg, but it does not describe the data as
well as the IA1 result. This is apparently due to the
smaller scalar and vector potentials in the IA2 approach.

At 800 MeV, IA1, IA2, and NRIA results shown in
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FIG. 13. The differential cross section, analyzing power

(Ar), and spin rotation function (Q) for 800 MeV protons
scattering from Pb. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 26.

FIG. 14. The differential cross section, analyzing power
(Ar), and spin rotation function (Q) for 500 MeV protons
scattering from Pb. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 10 and 20.
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Fig. 12 are all quite similar. Each provides a good
description of the cross section' up to about 20 deg, and
each fails at larger angles. For spin observables A~ and

Q, the IA2 and IA1 results are very close to each other
and somewhat superior to the NRIA result.

g 208pb

As for Ca at 800 MeV, there is not much difference
between IA2, IA1, and NRIA results for Pb at 800
MeV, as shown in Fig. 13. Each describes the cross sec-
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FIG. 15. The differential cross section, analyzing power
(Ar), and spin rotation function (Q) for 200 MeV protons
scattering from Pb. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Refs. 28 (circles) and 29 (trian-
gles).

FIG. 16. The differential cross section, analyzing power
(Ar), and spin rotation function (Q) for SOO MeV protons
scattering from ' O. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 30.
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tion through about 20 deg, but each worsens at larger
angles. They are also quite close with regard to describ-
ing the A„and g data. Overall, there seem to be no
large differences.

Sharper differences occur at 500 MeV, as shown in Fig.
14. The NRIA result is clearly worse than either the IA2

or IA1 result. For the cross section the IA2 prediction is
best after about 20 deg, but the IA1 prediction is closer
to experiment' ' at smaller angles. Again this is due to
the smaller scalar and vector potentials. The comparison
with Az data in Fig. 14 provides the most notable
discrepancy between the IA2 calculation and spin observ-

104
I

0 500 MeV

10 10

10'—
K

W 10
N

10'

10 10'—

10 '— 10-'—

10
0 5 10 15 20 25 30 35 }0

2 I I I I I I I I I

0 5 10 15 20 25 30 35 10 '15 50

I.O
(b)

I.O
(bj

0.6— 0.6—

0.2—

+ -o.z-
-0.6—

—I.O

I.O

0.6—

5 10

0 500 MeV
I I

15 20 25 30 35 '}0

0.2—

+ -o.z-
-0.6—

—I.00

I.O

0.6—

I I I I

5 10 15 20
0 200 MeV

I I I I

I I I I I

25 30 35 %0 '}5 50

0.2—

(:t'-o.z—

0.2—

-0.6—

—I.O
10 15 20 25 30 35 }0

(deg)

-0.6—

—1.00
I I I I XI' I I I

5 10 15 20 25 30 35 90 '}5 50

(deg)

FIG. 17. The differential cross section, analyzing power
(A„), and spin rotation function (Q) for 500 MeV protons
scattering from ' O. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 31.

FIG. 18. The differential cross section, analyzing power
(A„), and spin rotation function (Q) for 200 MeV protons
scattering from ' O. The solid line shows the IA2 result, the
dashed line shows the IA1 result, and the dotted line shows the
NRIA result. The data are from Ref. 32.
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able data over the spectrum of energies and targets con-
sidered in this paper. Notably the IA2 description of the
data is still an improvement over the NRIA result. As
we show in a separate article, the inclusion of vacuum po-
larization corrections is capable of removing the
discrepancy of the IA2 analysis with these data. The
IA1 result excels in fitting the Az data precisely through
about 26 deg. For the whole range of Q data, the EA1 re-
sult is very good.

At 200 MeV the story is similar to that for Ca, as
may be seen in Fig. 15. The cross section calculations
display too much oscillatory structure compared to the
data. ' The EA2 result reproduces the Ar and Q data
extremely well through about 27 deg, but then begins to
fail. The IA1 result for A z fails to describe the minimum
at about 17 deg, but is reasonably close to the data else-
where. The NRIA result for A z describes that
minimum, but does not do as well elsewhere. The three
calculations of spin observable Q are quite different, and
IA2 provides the best agreement with the data.

16O

At 800 MeV, again the IA1, IA2, and NRIA results
reproduce the cross section data comparably well as
shown in Fig. 16. For A z, IA2 and IA1 results are quite
similar through about 12 deg. The NRIA result misses
the first minimum of Az, but after about 12 deg corn-
pares favorably with the data. All three calculations de-
scribe Q data well through about 12 deg and then they
begin to fail, with NRIA providing perhaps the best
reproduction of the data.

At 500 MeV there are smaller differences between the
three impulse approximation results as shown in Fig. 17.
Each provides a decent description of the data. ' The
NRIA result for the cross section has a minimum that is
too deep but otherwise is as good as the others.

There is too much structure in the cross section at 200
MeV for all calculations, as seen in Fig. 18. The IA2 and
NRIA results look very similar here, and both describe
the data better than does the IA1 result. As was the
case for the other targets, the IA2 result for Az is very
good here, while the NRIA result for Az is poor. The
IA1 result misses the first minimum of Az, but succeeds
elsewhere. Q data are not available, but they could prove
interesting, as the three theoretical predictions have some
significant differences.
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quite good using a pseudovector covariant in place of the
pseudoscalar covariant of IA1 and including Pauli-
blocking corrections. This prescription does not elimi-
nate the ambiguity in pair potentials because all NN am-
plitudes are fixed from positive-energy matrix elements,
but it does cast the very large one-pion exchange contri-
bution into a sensible form.

Several different methods exist for changing from pseu-
doscalar to pseudovector covariants. Two methods are

V. COMPARISON OF IA2 WITH VARIATIONS OF IA1
BASED ON PSEUDOVECTOR mN COUPLING

For quite some time it has been recognized that the
IA1 potential fails at low energy due to implicit inclusion
of pseudoscalar mN coupling. It is a fair question to ask
whether just changing the pseudoscalar ~X coupling to
pseudovector coupling is an adequate repair as opposed
to doing the full IA2 analysis. In principle the answer is
no, because the virtual pair contributions to the optical
potential are not well defined unless a complete set of XN
amplitudes is used in the construction. However, results
of Murdock and Horowitz for proton scattering' are
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FIG. 19. The differential cross section, analyzing power

(A„), and spin rotation function (Q) for 200 MeV protons
scattering from Ca. The solid line shows the IA1 result, the
dashed line shows the IA1PV result, and the dotted line shows
the IA1PV1 result.
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(dashed line), and the IA1PV result (dotted line) for calci-
um at 200 MeV. Both prescriptions for changing to
pseudovector coupling improve upon the IA1 results, and
we find that this is true at higher energies also. However,
for Pb, there is a surprise. As seen in Fi.g. 20, the
IA1PV1 prescription fails to produce reasonable cross
sections or spin observables. While for Ca the pseu-
dovector prescriptions produce similar results, for Pb
they differ greatly. This is caused by differences in imagi-
nary parts of isovector amplitudes which average out in

Ca, but which are quite large for N&Z nuclei such as
lead. The IA1PV1 prescription does transform the real
one-pion exchange interaction correctly, but it also
changes the imaginary parts of some amplitudes. We find
that it fails at all three energies for Pb. This example
shows that the ambiguity in changing from pseudoscalar
to pseudovector coupling can be substantial.

Another prescription for implementing pseudovector
coupling has been suggested by Horowitz. Figure 21
compares the IA2 result (solid line), with the IA1PV
prescription (dashed line) and the Horowitz prescription
(dotted line) for Ca at 200 MeV. There is considerable
sensitivity of proton scattering observables to various
ways of extending the NN amplitudes to the full Dirac
space of two nucleons. Similar results are obtained for

Pb at 200 MeV.

10'

0 MeV

10'

2"
10

10 '—

approximation, called IA1, provides a direct connection
of the large scalar and vector potentials to NN ampli-
tudes. Moreover, successful descriptions of spin observ-
ables in proton scattering are obtained at energies above
about 300 MeV. These features persist in the generalized

VI. ROLE OF THE SMALL POTENTIALS

Compared to the S and V potentials, the T, SLS, and
VLs potential of Eq. (4) are quite small. Therefore one
may question whether these potentials are really needed.
For Ca at 800 MeV, omission of either T, or both Sis
and VLs, causes the results for A„and Q to change
dramatically, even though the cross section is essentially
unchanged. This is shown in Fig. 22. If all three of the
small potentials are omitted, there is a smaller effect.
Thus some cancellation of the effects of the small poten-
tials may be inferred at 800 MeV. At 500 and 200 MeV
the corresponding changes are not as dramatic with
respect to omitting T or both SLS and VLs, but omitting
all three does make a considerable difference. Similar re-
sults are found for ' 0 and Pb targets.

Although Dirac potentials T(r), SLs(r), and Vts(r) are
each small in magnitude, they contribute significantly to
the spin-orbit potential of the equivalent Schrodinger
equation. Figure 23 shows that the equivalent
Schrodinger spin-orbit potential for Ca at 500 MeV is
changed significantly by omission of these small poten-
tials. However, we find that the equivalent central poten-
tial is virtually unchanged. Thus the small potentials, T,
SLz, and VIS of the generalized impulse approximation
can be significant to the analysis of spin observables.
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VII. SUMMARY AND OUTLOOK

Interesting results for proton-nucleus scattering have
emerged from the Dirac approach based on relativistic
NN amplitudes. The original form of the Dirac impulse

FIG. 22. The differential cross section, analyzing power
(A&, ), and spin rotation function (Q) for 800 MeV protons
scattering from Ca. The solid line shows the IA2 result, the
dashed line shows the IA2 result omitting both SLS and VLS po-
tentials, and the dotted line shows the IA2 result omitting the T
potential.
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—io"."r ——F —T(r)F+[E+m+S(r) —V(r)]G+[VLz(r) S—Lz(r)]KG =0 .
df r

(A3)

where

x =~'(~'+1) —E(8+1)——,', (A4)

rc=~ (~ +'1') —7(&+1)——,', (A5)

and

F'=2~' —8 . (A6)

We can rewrite these as

——+ T G = W(r, z)F, (A7)

———T F= Q(r, z)G—,
I"

(Ag)

where

W( r, K) =E—p1 —S—V+ [SLs(r)+ VLs(r)]+ (A9)

Q(r, K) =E+m +S—V+ [ VL&(r) SLz(r)]i . — (A 10)

Equation (A8) may be solved for the lower-component wave function, G(r), and the result substituted into Eq. (A7) to
obtain a nonlocal form of the Schrodinger equation.

d 1 dg 2 dF 1 dg aF+ —— +— + — —+T—
dr Q dr r dr Q dr r

T+ TF— QWF
r2 dr r

(Al 1)

If we make the substitution F(r)=r 'Q'~ P(r), then the term involving dF/dr is eliminated. Finally dividing by
r 'Q'~ produces a Schrodinger equation for P,

d 2P

c&
P= —[k2 —(E+I )U]P, (A12)

where E —m =k, and the Schrodinger potential U is given by

(E+m)U= —[(E—m)(S —V) —((E+m)(S+ V) —S +V ]—[A(SLs+ VLsbc+8(VLs —SLs)x+(V ls —S isbc~]

'2
1 1 d Q 3 1 dg 1 dg
2 Q dr2 4 Q dr Q dr

T— —T+ T1 dQ — dT
Q dr dr r

(A13)

where

A =E+m+S —V

and

B=E—m —S—V .

(A14)

(A15)

In order to split U into central and spin-orbit terms, define
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and

U+—:U(tc= 8, t7= —8—2) 8+1
28+1 + 28+1

and the spin-orbit potential is

(A16)

U =—U(a. = —8 —l, t7=8 —1) .

Then the central potential is

(A17)
U+ —U

UI.s =
28+1

Numerical results for 8 =0 states are given in Sec. II.
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