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We investigate the European Muon Collaboration (EMC) effect in deuteron and three-body nu-
clei. The binding and the Fermi motion effects of nucleons are studied in detail. They reduce the
structure function ratios from unity by less than 5%. Roles of excess pion are also discussed in con-
nection with the momentum sum rule, which is violated by the binding effect.

I. INTRODUCTION

The European Muon Collaboration (EMC) effect! is
that the nuclear structure functions per nucleon are
significantly different from those of deuteron. It has at-
tracted much attention because it might imply that the
quark distribution in a nucleon is considerably distorted
inside nuclei.? Recently, Akulinichev and Birbrair et al.>
have presented a plausible explanation: The binding and
the Fermi motion of nucleons in nuclei give most of the
EMC effect. They failed, however, to reproduce its
dependence on the nuclear mass number A observed in
the SLAC experiment.* This is due to the saturation
property of middle and heavy nuclei that the averaged
value of separation energy is almost independent of A.
They also could not explain the behavior of the structure
function ratio at x $0.3.2 These are the main problems
in dispute on the EMC effect. A naive inclusion of the
binding effect of nucleons violates the energy-momentum
sum rule for the quark distributions. How to restore the
sum rule is another problem to be discussed. The most
likely candidate to do so is excess pion in nuclei. The
pion may contribute to the enhancement of the structure
function ratio at small x.

In order to check the conventional nuclear effect quan-
titatively and to explore a possibility of the other mecha-
nisms, we had best start with the light nuclei since their
structure is well understood. In this paper, we study the
EMC effect in deuteron and three-body nuclei, because
excellent wave functions for the nuclei are available. We
take the following conventional picture. Nuclei can be
well understood in terms of nucleons and, if needed,
meson degrees of freedom. Their properties do not
change inside nuclei. Hence, we start from a study on the
contributions of single nucleon: The binding and the Fer-
mi motion effects are considered on the same kinematical
basis. Next we include pion to restore the momentum
sum rule. If they cannot give a satisfactory explanation
of the EMC effect, then we will proceed to the other nu-
clear effects such as final-state interactions and/or addi-
tional mechanisms such as the Q2 rescaling® and the ex-
plicit appearance of quark degrees of freedom.

In the next section, the binding and the Fermi motion

38

effects are calculated by using realistic nuclear wave func-
tions. In Sec. IIT we discuss the role of excess pion as one
of the binding quanta. By requiring it to recover momen-
tum sum rule, which is violated by the binding effect, we
estimate pionic contributions. Section IV is devoted to
the summary and remarks. Unfortunately, there is no
conclusive experimental data on the EMC effect in deute-
ron and three-body nuclei. We hope that such experi-
ments are performed soon, especially for *He.

II. THE BINDING AND THE FERMI MOTION
EFFECTS

At first, we will study the binding and the Fermi
motion effects of nucleons in nuclei. We adopt the in-
coherent impulse approximation:*’ One nucleon with a
momentum p and separation energy € is knocked out off
the nucleus A4, and the spectator remains in the corre-
sponding excited state (4 —1)/ (see Fig. 1). Then, the
nuclear electromagnetic tensor is given by the convolu-
tion of the spectral function S (p) and the nucleon tensor:

W= fd“pS(p)%Wf;B with mv'=pq , (1)

where m is the nucleon mass, and ¢ =(v,q) is the momen-
tum transfer to the nucleus in the laboratory frame. The

A a-nf

FIG. 1. Single nucleon contribution to the nuclear deep-
inelastic scattering.
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nucleon tensor has the gauge invariant form:’
Wih=WY(—g.p+4,95/9%)
+ WY /m((pa—P9qa/9°Nps—Padp/q”)]

with two independent Lorentz-invariant functions W
and W?Y. The nuclear tensor has a similar expression. In
Eq. (1) we have introduced the factor v/v' to insure the
parton-number sum rule in the Bjorken limit® (see Sec.
III). The spectral function gives the four-momentum dis-
tribution of a nucleon in the nucleus:’

S(p)=73 |é,(p)|%8[p°—E,(p)], 2)
f

where
- £ __2___2 =M —€ . —
E (p)=M,—-M/} _, 2M§_1 m—e;,—Tg,

and | ¢,(p)| 2 is the probability of finding a nucleon with
given momentum p and the spectator residue in the state
f. Furthermore, M , and M/, _, are masses of the target
and spectator nucleus, respectively. The separation ener-
gy is defined as ef=M£_1 +m —M,, and Ty is the
recoil energy. Here we adopt the nonrelativistic kinemat-
ics. The spectral function is normalized to the mass num-
ber A with respect to the four-momentum p. °

By comparing specific components on both sides of Eq.
(1) with the expressions of Wg’[g”‘, and by defining the
nuclear structure function per nucleon as FY(A4)
=vW;'/ A, we obtain

Fﬁv(x,Qz;A)Z%fd“pS(p)w—}gl 13}

h %
T g
. xFY(x,0%) , 3)
whnere
, 2mv' _ 2mv 1
@ 7 W= 2 — >
Qo Qo x
2 2
- , m-—
V:V_Tn_&_, QZE—(IZ,

and x is the Bjorken variable. We have chosen the third
axis as parallel to q. The off-shell structure function of
interacting nucleon is assumed to be the same as the on-
shell one with same Q2 and final-state mass. '!

For three-body nuclei, we use the spectral function
given by the Faddeev wave function calculated by the
Sendai group'? with the Reid soft-core (RSC) potential.
Then, ¢,(p) in Eq. (2) is given as

¢,(P)=V3(pf,p|¥;),

where |W;) is the ground-state wave function, and
| p,¥}) is the state where the interacting nucleon has a
relative momentum p to the correlated two-nucleon sub-
system. The suffix f specifies that the spectator is deute-
ron or in some scattering state. For ¢,(p), the charge
symmetry between *He and 3H is assumed. We fix the
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binding energies of the nuclei to the experimental values:
E,=—17.718 MeV for *He and —8.482 MeV for °H, be-
cause the separation energies play a crucial role to deter-
mine the structure function ratio.®> All results are calcu-
lated in the finite domain of the spectral function where
€,+E; <200 MeV and |p| <6.5 fm™". In this domain,
it is renormalized to 4 =3. In the case of deuteron, the
spectator is a single nucleon. Hence, the spectral func-
tion consists of only one term. For it, we use the momen-
tum distribution given by the same two-body potential as
the above. As the nucleon structure function, the analyt-
ic function of Gliick et al.!® is employed in the following
results.

In Fig. 2 we show the results for deuteron at Q2=5,
10, and 100 GeV2. We have defined the EMC effect of
deuteron by the structure function ratio to the free nu-
cleon (averaged over proton and neutron). The data
points, in the region of Q2520 GeV?, are taken from the
compilation by Bodek and Simon.'* Our results are com-
patible with the experiments. The reduction of the struc-
ture function is almost due to the recoil energy term in
Eq. (2) (see Table I).

Next, the results for *He are shown in Fig. 3. The
structure function ratios are corrected for the isoscalari-
ty:

FY(*He)
FY(d)

_ 3FY(He) F§+F @
T 2FE4+F! 2FN¥d)

For reference, the SLAC data* for *He (averaged over the
Q? region of 2< Q%< 15 GeV?) are shown in the figure.
The deviation of ratios from unity is at most 3% at
x $0.8. This is about one-third of the effect observed in
“He. In the figure, we also give the result for *H at
Q2=10 GeV?. The difference between *He and *H at the
same Q2 comes from the difference between proton and
neutron structure functions, which remains even after the
isoscalarity correction.

It should be noted that all results in the above are rath-
er insensitive to the nucleon structure function and the
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FIG. 2. Binding and Fermi motion effects in deuteron. The
experimental data are taken from the compilation of Ref. 14.
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FIG. 3. The same as Fig. 2, but for *He. The result for *H is
given at Q?=10 GeV2. For reference, the SLAC data (Ref. 4)
for “He are shown.

two-body potential to calculate the wave functions.

Before closing this section, we will compare the above
results with an estimation of the shell model. It is in-
structive to make clear what we have done with the real-
istic wave functions, though the single-particle model has
little meaning for deuteron and *He. In the shell model,
final states of the spectator nucleus are limited to one-
hole states. Hence, we calculate the spectral function of
3He in the following way. For proton knock-out process,
the spectator is deuteron: The spectator energy is
€,=E;—E,, where E, is the binding energy of deuteron.
For neutron knock-out process, we take €,=E; because
the spectator of two protons has no bound state. More-
over, the ¢ (p) is taken to be a harmonic oscillator wave
function with oscillator length b =1.97 fm, which repro-
duce the experimental value of charge RMS radius. '’
For deuteron, the separation energy is €,=E, and we
take b =2.116 fm.'®

The structure function ratio of He to deuteron at
Q2=10 GeV? is shown in Fig. 4. The result is quite simi-
lar to the one given by the realistic wave functions. In
particular, they are almost identical for x £0.6. The
reason why the difference is so small is as follows. If we
take the large-Q? limit [see Eq. (5)] and neglect the tiny
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effect of the Fermi motion for small x, the nuclear struc-
ture function Eq. (3) can be well approximated as

(e)+(Tx) 3
ox
where (e) and ( Ty ) are the expectation values of the

separation energy and recoil energy per nucleon, respec-
tively, such as

(€)
(Tg)

FY(x, 4)=F%(x)— —F¥(x),

= [dpsp

Therefore, the deviation of the ratio from unity is propor-
tional to the difference of {€) +{ Ty ) between *He and
deuteron. In Table I we give the values of {€), (Tg)
and their sums for the nuclei with the realistic and har-
monic oscillator wave functions. We can see that the
values of {€)+( Ty ) play a decisive role in the binding
effect on the EMC effect. Our realistic wave function of
3He certainly includes some amplitudes where the specta-
tor is in the higher-excited states. Accordingly, the value
of (€) is larger than that of the shell model. But, finally,
the difference of (€)+( Ty ) between *He and deuteron
by the realistic wave functions is almost equal to that by
the harmonic oscillator ones. This is due to the effect of
recoil terms.

At large x, the Fermi motion effect becomes also im-
portant. High-momentum components of wave functions
contribute to the structure function in a complicated
way: The binding effect reduces it through the recoil
term, while the Fermi motion effect increases it by smear-
ing over a wide range of x. A little faster rising of the ra-
tio in Fig. 4 is a result of this competition.

III. RESTORATION OF THE MOMENTUM SUM RULE
AND PIONIC CONTRIBUTION

Next, we will study roles of pion in connection with the
momentum sum rule. In the Bjorken limit, the nuclear
structure function given by Eq. (3) is reduced to the con-
volution form:

M /m
FY(x;4)= f .

dz fy(2)FY(x /2), (5

where z is the light-cone momentum fraction of the nu-
cleus carried by a nucleon, and its distribution fy(z) is
given as

o)== [dpS(p)s

0 3
% z—P——L‘. (©)

TABLE 1. Values of {€) and Ty ) of deuteron and *He with the realistic (RSC) and harmonic oscil-

lator (HO) wave functions (in units of MeV).

(€) (Tg) (e)+{Tx)
D (RSC) 2.225 11.05 13.28
SHe (Faddeev + RSC) 11.35 6.324 17.67
difference 4.394
D (HO) 2.225 2.605 4.830
3He (HO) 6.235 2.674 8.909
difference 4.079




2248
T T T 7 T
lolo - -
a
Z N
L
~
o 1.00
I \/
om
Z N
L
0.90 + Q2= 10 GeV? -
1 A i N L " 1

0.00 0.20 0.40 0.60 0.80
X

FIG. 4. Shell-model estimation of the EMC effect for *He
0*=10GeV2
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From this equation, we obtain
M 4 /m

fo dz fa(z)=1 (7a)
and

M, /m (e)+(Tg)
[ dzsz(z)z<z>N=1——f——;-—“L—. (7b)

Equation (7a) insures the parton-number sum rule. How-
ever, Eq. (7b) means that the momentum sum rule is
violated:

E,
Am ’

where E , is the binding energy of the nucleus. This re-
mark leads us to introduce quanta responsible for the nu-
clear binding. They are expected to carry a momentum
fraction 7:

M,
(z)N¢ —1+ (8)

=" 9)
K m
where (V') is the potential energy per nucleon. Includ-
ing this fraction, we can recover the momentum sum
rule:

(z) 14 L (10)
V4 N+7]— + Am .

Among these quanta, we should first study roles of
pion field in nuclei. In the remains of this section, we
simply estimate its contributions to the structure func-
tions of deuteron and *He.

Following Eq. (5), the pionic contribution is assumed
to be given by

M, /m

sFY(x; )= [ " dz f (2)F3(x /2) . (11)

The pion structure function F7(x) has been observed in
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the experiment of J /¢y and dimuon productlons We use
the analytic function given by Owens'” (his second set).
The momentum distribution f,(z) is constructed as fol-
lows. In a free-nucleon case, the contribution of pion
cloud is given by Eq. (11) amd”"lg

2
t) Wlth t0=m z >
o (t+4+m? 1—2z

(12)

where —t is the four-momentum squared of pion, and g
(=13.5) is the coupling constant. The form factor F(z)
at the 7NN vertex is taken as

N(g
Sl 1617'

t+m?

2
T

F(t)=exp | —A

m

The cutoff parameter A plays the most substantial role.
When the nucleon is embedded in a nucleus, several
modifications such as the polarization of nuclear medium
occur. They may be expressed by an effective change of
A. In deuteron and three-body nuclei, this change is ex-
pected to be small. Then, f#(z) is given as

fA)=fNz;a=a0)—fNz;0)

ar¥z)
== A
2
_ 3&2 _1_ t0+m1r
=1er AAz 5 EXP —Z}L_—_——mf,
to+m?2
+1Ei —2A°—ZH, (13)
mTT
where
—t
— [Tart—.
z t
We take AA (> 0) so that
MA/m
fo dzzfAz2)=nq,, (14)

where the momentum fraction of pion 7, is determined
by the momentum balance Eq. (10): Our wave functions
give 11,=0.0130 for deuteron and 0.0155 for *He.

The results with and without the pionic contributions
at Q?=10 GeV? are shown in Figs. 5 and 6. We have
taken A=0.026,'° but our results are insensitive to the
value of A. We can see that the pionic correction is at
most a few percent effective and that it is limited to the
region of x £0.4. In particular, it is very small in *He,
because the pionic contributions to the structure func-
tions of deuteron and *He cancel each other out in the ra-
tio.

In our estimation, excess pion in the nuclei gives a
slight enhancement of the structure function ratios at
small x. However, recent experimental data?® show a
complicated structure in the region of x $0.3, namely, a
small enhancement around x =0.15 and a reduction near
x =0. This behavior might imply that the nuclear sha-
dowing?! works at small x. Hence, detailed information
on the nuclei studied here, especially at small x, becomes
more and more important to investigate the mechanism.
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FIG. 5. Pionic effect in deuteron. The solid and dashed lines
show the results without and with the pionic contribution, re-
spectively.

IV. SUMMARY AND REMARKS

We have carefully evaluated the binding and the Fermi
motion effects of nucleons on the EMC effect in deuteron
and three-body nuclei by using their realistic wave func-
tions. The result for deuteron is compatible with the
present data. The results for *He and *H show about half
of the effect observed in “He. We also have studied the
roles of pion. Although it is important to restore the
momentum sum rule, its effect is fairly small. Until now,
there is no experimental data to be compared with our re-
sults for *He. We hope that such experiment is per-
formed soon.

In this paper, we have corrected the structure function
ratios for the isoscalarity such as in Eq. (4). The results
are almost independent of the used nucleon structure
function. However, experiments give uncorrected ratios
as FY(d)/F% and FY(*He)/FY(d) because we cannot
directly measure the neutron structure function. There-
fore, we need to reduce the ambiguity due to the isos-
calarity correction, that is, the uncertainty in the ratio of
neutron structure function to proton one. The large er-
rors of deuteron data in Fig. 2 just come out from it. For

0.00 0.20 0.40 0.60 0.80 1.00
X

FIG. 6. The same as Fig. 5, but for *He. The SLAC data
(Ref. 4) for *“He are shown for comparison.

this reduction, we invoke neutrino and antineutrino
scattering experiments. Moreover, we had better mea-
sure both the ratios of *He and *H to deuteron.

Finally, we would like to stress that few-body nuclei
are very suited to investigate the origin of the EMC
effect. We believe that our results are useful for this
study. Of course, further investigations remain to be
done. For example, the other nuclear effects such as
final-state interactions, off shellness of nucleon structure
function, and relativistic effect will contribute to the nu-
clear structure function. And, the Drell-Yan process22
and nuclear structure functions beyond x =1 (Ref. 23)
should be also explored. It seems premature to discuss
the explicit quark degrees of freedom in the EMC effect.
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