
PHYSICAL REVIEW C VOLUME 38, NUMBER 5 NOVEMBER 1988

Nucleon-nucleon correlation effects on deeply inelastic lepton scattering in the region x ) 1
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Short-range nucleon-nucleon correlations are introduced into the convolution treatment of deeply
inelastic lepton-nucleus scattering. The nuclear momentum distribution is calculated using a
Jastrow-type wave function to lowest order in the cluster expansion. The excitation energy of 1p-2h

final states is included. This leads to smaller structure functions in the region x ) 1 than those

found by Akulinichev and Shlomo. The dependence of the nuclear structure function on Q is also

discussed for that region.

I. INTRODUCTION

The observation of significant nuclear dependence of
structure functions' [the European Muon Collaboration
(EMC) effect] has lead to continuing interest in deeply in-
elastic scattering (DIS) of leptons on nuclei. Various ex-
planations have been put forward, all of which can fit
the data for x & 1. However the region x ) 1 is also of in-
terest, and preliminary analyses of data from Bologna-
CERN-Dubna-Munich-Saclay (BCDMS) (Ref. 4) and
Stanford Linear Accelerator Center (SLAC) (Ref. 5) are
already available.

In the region x &1 the struck quark carries more
momentum than it could in a single nucleon. It has been
speculated that multiquark clusters could contribute
significantly in this region. However, scattering from a
pair of interacting nucleons will also contribute.

Proposed explanations of the EMC effect include
changes in the scale of nucleons, multiquark clusters, as
well as treatments in terms of conventional degrees of
freedom: ' nucleons, pions, and deltas. The latter are
usually implemented as a convolution of the free hadron
structure functions with the momentum distributions for
each type of hadron in the nucleus. ' Keeping only the
nucleon term in the convolution, the nuclear structure
function Fz" (x) has the form

F2"(x)= f dz f "(z)F2 (xlz), (1)

where Fz (x) is the free-nucleon structure function, and

f "(z) is the momentum distribution of nucleons in the
nucleus. The latter may be written as

groups have attempted to include effects from IVY corre-
lations in the nuclear rnomenturn distribution. ' ' Here
we use Jastrow-type wave functions to calculate the nu-
clear momentum distributions. The short-range correla-
tions in this wave function correspond to 2p-2h excita-
tions where the two excited nucleons can have rnornenta
well above the Fermi momentum. This gives the rnomen-
turn distribution a long tail, of the kind used in Refs. 19
and 20, and so leads to a larger structure function for
x ~ 1 than Fermi momentum alone would produce.

However, when the virtual photon in DIS is absorbed
by one of these nucleons it leaves the nucleus in a 1p-2h
state. The excitation energy for this Anal state must
come from the virtual photon. Like the separation ener-

gy in the EMC effect this tends to shift the momentum
distributions to smaller values of x, and so tends to de-
crease the structure function at large x.

Here we carry out a detailed calculation of the XN
correlation contribution to DIS for x g 1, in order to ex-
amine the relative importance of these effects (increased
momentum and greater excitation energy).

II. NUCLEON-NUCLEON CORRELATIONS

In previous calculations of the nucleon rnomenturn dis-
tribution an independent-particle wave function has been
used. The overlap functions are then just the occupied
single-particle wave functions; here we use a Fermi gas
model and so they are plane waves. The final states in
this case are lh states with separation energies (including
the rest mass of the struck nucleon} given by

f"(z)=g J d p~P (p)i 5 z
EA EA —1 p.n)

My

2

(2)

where P (p} is the single-nucleon overlap' between the
3-particle ground state and the ( A —1)-particle state a.
The vector n=q/v lies along the direction of the three-
momentum transfer and can be taken to be the unit vec-
tor q/ i q i

in the Bjorken limit, where we write the four-
momentum transfer as q =(v, q) (see Sec. III).

Most of these studies of DIS from nuclei have used an
independent-particle model of the nucleus, although two

kF
f,~(z)= g f d k5 z

s, f

M~+p /2M~+ V —p.n

M~

For the Fermi momenta we use phenomenological values

where V is the average single-particle potential. In the
usual way ' ' this gives a single-particle contribution
to the momentum distribution of the form
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which fit quasi-elastic electron scattering. '

To lowest order in the cluster expansion, correlations
introduce pieces in the wave function where a pair of nu-
cleons is excited into levels (k, l) above the Fermi sea
leaving holes in the levels (m, n). If the virtual photon is
absorbed by one of these nucleons the (A —1)-particle
nucleus is left in an excited state with separation energy

esep ~m + ~n Cl

where the single-particle energies are s =(M~
+m )' + V, etc. Note that the momenta of the corre-

lated nucleons can be comparable with the nucleon mass.
We have therefore used the relativistic expression for the
nucleon kinetic energy.

The correlation contribution to the momentum distri-
bution can be written as a sum of direct and exchange
terms

f„,(z)=f~;,(z)+f,„,„(z) .

The direct piece is given by the following nine-
dimensional integral:

fz;, (z)= g f d kd ld md n5(k+I —m —n)P(
~

k —m
~

) 8(kF —
~

m
~

)8(k~ —
~

n
~

)
s, t

&&8(
~

k
~

—kF)8( ~1~ —kF)5 z — (c. +e„—ei+k, )
1

where kF is the Fermi momentum and P(q) is the Fourier transform of the correlation function F(r) for nuclear matter.
The exchange term is similar, but with P[

~

k —m
~ ] replaced by P[

~

k —n
~
]P[

~

k —m
~
]. The implied sum over spin

and isospin is also different for the exchange term: for symmetric nuclear matter it gives a factor of 4 compared to the
direct term.

We adopt a parametrization of the radial correlation function F (r) used in the Jastrow-type calculations of Ref. 22.
These correlation functions were derived for simple potentials with hard core radii of r, =0.6 fm or r, =0.4 fm, which
fit the following low-energy NN data: the binding energy of the deuteron, the triplet n-p scattering length, the singlet
n-p scattering length, and the singlet n-p effective range. The correlation function for the NN potential OMY has the
form

0 for rgr,
F(r)= '

I 1 —exp[ p(r r, )]I [I+—y exp—[ p(r r, )]I fo——r r ) r, ,

where the hard-core radius is r, =0.6 fm, and different
sets of (p, y) are used for different Fermi momenta. It
satisfies the following normalization constraint:

f [F (r) —1][1—,'I (kF r)—]dr=0, (9)

where I (x)=3[ sin(x) —x cos(x)]/x . We also calculated
the single-nucleon momentum distribution for this corre-
lation function and checked that it gives reasonable
agreement with recent calculations of the nucleon
momentum distributions in nuclear matter.

The total distribution function f (z) should be normal-
ized to give the correct number of nucleons,

f dz f(z)= fdz[f, (z)+f„„(z))=A . (10)

We enforce this constraint by adjusting the normalization
of the single-particle piece f, (z).

F2"(X)

A

10

10

10

10

III. RESULTS AND DISCUSSION

In Eq. (7), the correlated distribution function is writ-
ten as a nine-dimensional integral in momentum space.
Three of the integrations can be performed analytically to
leave a six-dimensional nontrivial integral over a rather
complicated region in the remaining variables (the direct
term could be reduced further to a five-dimensional in-
tegral, but at the cost of further complicating the region
of integration). We have evaluated this numerically using
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FIG. 1. Nuclear structure functions as a function of x. The
solid and dash-dotted lines are our results for Q =50 GeV.
The dashed line shows the results of Akulinichev and Shlomo
(Ref. 20). For comparison, the dashed line shows the single-
particle result, without short-range correlations.
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two multidimensional integration techniques: the ad-
vanced Korobov-Conroy method and the iterative
Cronord-Gauss method. We have checked that these
methods agree within the requested accuracy (1 part in
10 ).

We have calculated structure functions for uniform nu-
clear matter with Fermi momenta of k+ ——220 MeV
(e„=32MeV) and kz ——260 MeV (e~z ——30 MeV). Ac-
cording to the work of Moniz et al. ' these correspond to
' C and Fe, respectively. The results are plotted in Fig.
1. We have used several different (Q -dependent) param-
etrizations of the free-nucleon structure function, to
check that our results and conclusions do not depend on
it. The curves in Fig. 1 are for the parameter set 1 of
Duke and Owens. For smaller values of x our structure
functions are in reasonable agreement with the observed
EMC ratio. '

In the region z & 1, the exchange term in f„,(z) has a
similar form to the direct term, and tends to decrease the
distribution by about 20%. It has a somewhat larger
effect for z &1, but there the correlated piece f„,(z) is
less important than the single-particle piece. The contri-
butions from high-momentum nucleons (

~

k
~

& Mz ) can
make the distribution f (z) nonzero for negative z. This
probably reflects the fact that we are not using a con-
sistent relativistic description of the nuclear wave func-
tion. If we calculate Fz" (x) only for physical values of x
(i.e., positive x) the negative-z region does not contribute
to the convolution in Eq. (1). In fact the tail of the nu-
cleon momentum distribution with z &0 is very small,
provided we use relativistic kinetic energies in Eqs.
(5)-(7); it contributes less than 2% of the normalization
integral (10).

We can compare our results with those of Akulinichev
and Shlomo for ' C, which are in good agreement with
the preliminary analysis from BCDMS. They calculated
the structure function including correlation effects, but
neglecting the excitation energies of the final 1p-2h states„
as well as the exchange term. This allowed them to write

f (z) directly in terms of the nucleon momentum distribu-
tion. We find that this approximation shifts the peak in

f„,(z) towards greater z by about bz =0.2. Such a shift
significantly increases the predicted structure function in
the region x & 1, as can be seen in Fig. 1. Our results are
about an order of magnitude less than those of Aku-
linechev and Shlomo for x =1.2, and this difference is
even greater for larger values of x. This indicates that
the effects of greater nucleon momenta due to correla-
tions tend to be cancelled by the greater excitation ener-
gies of the final states. Even so we do find significant
enhancement over the pure single-particle calculation in
this region, although the resulting structure function is
very small for x & 1.3.

We have also examined the Q dependence of the nu-
clear structure function for x & 1. In Fig. 2 we show the
effects of the standard (logarithmic) dependence due to
the quantum chromodynamics (QCD) evolution of the
nucleon structure function. In addition to this there are
kinematic effects' in the nuclear structure function
which become significant for small Q . The vector n in
Eq. (2) reduces to the unit vector q/~ q~ only in the
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FIG. 2. Dependence of the nuclear structure function on Q'.
We show results using the Q~-dependent nucleon structure
function for Q'= 10, 50, and 500 GeV~. We also show the effect
of the kinematic correction discussed in the text for Q =10
GeV .

Bjorken limit. For finite Q, the usual approximation
should be modified by multiplying the space component
of the momentum by a factor

' 1/2
Q2+v2

Yl=

' 1/2
4M2x 2

1+
Q2

We are grateful to J. M. Irvine and M. Modarres for
useful discussions.

In the scaling limit this reduces to unity, but for small Q
it can have important effects, especially at large x. Also
in Fig. 2 we show the effect of including it for Q =10
GeV . For higher values of Q it rapidly becomes unim-
portant.

If the preliminary analysis from BCDMS (Refs. 4 and
20) are confirmed by future experiments, our results
would suggest that the nucleons-only picture is
insuncient to explain DIS for x &1, and other objects
such as multiquark clusters may be present. However,
such a conclusion would be premature since there are
other mechanisms which may contribute. In particular
our calculations include only terms which can be written
as a convolution over free-nucleon structure functions.
We have thus neglected any interactions between the
slow-moving debris of the struck nucleon, as well as
quark exchanges between nucleons. Both correspond to
DIS from two (or more) interacting nucleons, and so may
give significant contributions in the region x & 1.
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