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Unified theory of yd =np, n d, mNN, and pp =ppy and the chiral bag model
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A unified theory of photopion reactions in two-nucleon systems (yd ~pn, m. 1, and m.NN) and NN

bremsstrahlung {NN~NNy) is presented. By exposing the two-body [BB,where B =N or b {1232)]
and three-body (~BBand yBB) unitarity, we derive a set of coupled integral equations to determine
the amplitudes for these reactions. These equations have the same kernel as the equations one gets
for the BB-~BBsystem. The two-body input amplitudes are the result of a coupled channel unitary
theory for mN~mN and pion photoproduction on a single baryon, within the framework of a gauge
and chirally invariant Lagrangian, which is obtained from the chiral bag model Lagrangian. The
renormalization due to the ~B interaction is incorporated in a consistent manner.

I. INTRODUCTION

Over the past ten years the N¹mNN equations'
have been developed into a unified theory for the reac-
tions NN~NN, hard and trd ~trd, NN at medium ener-
gies. ' This has allowed the analyses of a vast data
bank consisting of both the differential cross section and
polarization observables. The input to these equations
are the low energy m-N and N-N amplitudes. To improve
the results for N-N elastic scattering, some groups' '
have included heavy meson exchanges. There has been
great consistency in the results produced by the different
groups, even though the details of the numerical calcula-
tions and the treatment of the kinematics are quite
different. This has led to the situation where the present
discrepancy between theory and experiment will require
the introduction of either new physics in the form of
higher order pionic effects, " or new degrees of freedom
in the form of quarks. ' Before we proceed with the in-
troduction of explicit quark degrees of freedom into the
theoretical description of these reactions, we need to es-
tablish how far we can reduce the discrepancy between
theory and experiment within the framework of hadronic
degrees of freedom. At the same time we need to guaran-
tee that a theory based on the N¹.NN equations is con-
sistent with quantum chromodynamics (QCD), to the ex-
tent that the baryons (i.e., N, b, . . . ) are treated on equal
footing. This is achieved by the constraint on the cou-
pling of the meson to the baryons, as well as the corre-
sponding form factors, in such a way that both are con-
sistent with QCD.

Recently, Afnan and Blankleider' showed how to ex-
tend the N¹.NN equations so as to include all the
baryons on equal footing, with the coupling constants
and form factors determined from the quark structure of
the hadrons. This was achieved by considering a chiral
bag model' (e.g. , cloudy bag model' ) Lagrangian in
which the quarks are confined to the bag, and are coupled
to the pion in order to satisfy chiral symmetry. This La-
grangian, after expansion in the pion field, is projected
onto the space of baryons. In this way the quark degrees
of freedom are integrated out, in favor of the hadronic

degrees of freedom. However, the resultant Lagrangian
in terms of the hadronic degrees of freedom, has both the
coupling constants and form factors determined by the
bag model. In particular, the parameters of the bag mod-
el are the only free parameters in the Lagrangian and
these can be determined by the m.-N scattering data. The
inclusion of the electromagnetic coupling is achieved by
introducing the minimal coupling at the quark level as
was done previously by Kalberman and Eisenberg. ' In
this way the number of parameters in the Lagrangian are
not increased, and as we will show, the resultant theory
based on this Hamiltonian includes the contribution of
the exchange currents.

In a previous publication we extended the work of
Afnan and Pearce on the m.¹mm.N system, to formulate
a multichannel unitary theory of single pion photopro-
duction from a single baryon 8. Here, the baryon 8 in-
cludes not only the nucleon and b (1232},but may also in-

clude the Roper and strange baryons. Though, in princi-
ple, the theory is applicable to all types of interactions,
we took the gauge and chiral Lagrangian which is based
on the chiral bag model Lagrangian, ' as described
above. In that theory, we treat the baryons (the N, h,
Roper, . . . ) on equal footing as a three-quark state, and
ignored the antiquark contribution. In other
theories, ' the relation between the quark model and
the multiple scattering theories is not clear. In particu-
lar, it is not clear whether the coupling constants used in
these theories are bare or renormalized. In our previous
paper on pion photoproduction from a single baryon,
the renormalization was treated in a consistent manner.
We found that (a) In the Born term of the multiple
scattering series for the amplitude, the s-channel pole dia-
gram has bare vertices and bare coupling constants, while
the rest of the diagrams have dressed vertices that corre-
spond to the physical coupling constants. This result was
obtained by exposing the three-body (mvrB and yttB) uni-.
tarity cuts. (b} We were provided with an off-shell uni-

tary pion photoproduction amplitude. (c) The theory is
valid both below and above the pion production thresh-
old. (d) As previously stated, all the baryons were treated
on equal footing as three-quark states. (e) Finally, the re-
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normalization due to the mB interaction was treated self-
consistently.

We will employ the methods used previously to formu-
late pion photoproduction on a single nucleon, to give a
unified description of the reactions yd~pn, m. d, mNN,
and NN~NNy. By exposing the two-body [BB, where
B =N, A(1232), . . . ] and then the three-body (EBB and

EBB) unitarity cuts, we are able to derive a set of coupled
integral equations for the reactions under consideration.
These equations have the same kernel as the BB-m.BB
equations, ' suggesting that we can give a unified descrip-
tion of the above reactions as well as red ~~d, NN, +NN,
and NN~NN, ~d, m.NN. The input to these equations
are the two-body amplitudes for mN scattering ' and
pion photoproduction on a single nucleon. The new
feature of this formulation is the fact that both the renor-
malization and unitarity are treated consistently within
the framework of the Hamiltonian given in Sec. II, and at
the same time give a unified description of pion pho-
toproduction, photodisintegration of the deuteron, and
NN bremsstrahlung. By including the coupling to the
mNN channel, we are able to examine, in a consistent
manner, the role of the pion exchange current in these re-
actions. Finally, by commencing with a Hamiltonian
that is based on a chiral Lagrangian at the quark level,
the form factors for all vertices are related to each other,
and to the basic size of the baryon. What is not included,
apart from the antiquark contributions, are the effects of
any change in the size of the baryon in a two-baryon sys-
tem, and the possibility of baryons overlapping to the ex-
tent of allowing quarks to penetrate from one baryon to
the next. Such effects are most likely to be small in the
low to medium energy region, and could be treated at the
perturbation level.

Although there have been no previous attempts at such
a unification, there is a long history for each of the reac-
tions under consideration. Thus for yd ~vr d, one of the
first such calculations goes back to Zachariasen, who
used the classification of the diagrams that contribute to
the amplitude for this reaction, according to the number
of pions in intermediate states. This classification
method was generalized by Taylor, to use the last-cut-
lemma to derive integral equations that satisfy unitarity
within the framework of field theory. This method has
been used by the present authors and others to derive
integral equations for the ~B ~m B (Ref. 23)-, and
BB~~BB (Refs. 4, 5, and 17) systems.

More recently, Laget and his collaborators have cal-
culated the amplitude for yd~pn (Ref. 29), m d (Ref.
30), and vrNN (Ref. 31) in a nonunitary but consistent
manner. They examined the multiple scattering series for
these reactions and included those diagrams which have
singularities close to the physical region. In this way,
they hoped that all the reactions were treated on equal
footing and that the important contributions were includ-
ed. Thus for the photodisintegration of the deuteron,
Laget also included the meson exchange current contri-
butions which arise due to gauge invariance. He found
that meson exchange currents give a substantial contribu-
tion to the total cross section. This is in contrast to the
work of Arenhovel and collaborators who found that

meson exchange currents give a relatively small contribu-
tion to the cross section. This difference is due to the fact
that Laget included the meson exchange current dia-
grams by coupling the photon to the pion which is ex-
changed between the two nucleons in the multiple
scattering series. This approach is similar to ours, in
that we introduce the minimal electromagnetic coupling
at the quark level in the chiral Lagrangian, and after pro-
jection onto the baryon states, the meson exchange
current contribution is naturally incorporated as a result
of the photon coupling to the pion in the EBB part of the
Hilbert space. The advantage of our approach is that all
form factors are related to each other and to the size of
the hadron. A relativistic calculation of the photodisin-
tegration of the deuteron at higher energies has been car-
ried out by Ogawa et al. by taking into account the co-
variant Born amplitudes only, which includes the deute-
ron pole, the nucleon pole, and the isobar contribution.
In the above three calculations, ' ' the deuteron prop-
agator is taken to be elementary, i.e., the dissociation of
the deuteron is neglected. In all the above analyses, the
agreement with experiment is generally good for the cross
section. However, the recent TRIUMF measurements
of the analyzing power for H (n, y )d, at medium energies,
suggests that one need not include the isobar degrees of
freedom. This is surprising and may need further analy-
ses.

Turning to pion photoproduction, i.e., yd~~ d, La-
zard et al. have included the single and double scatter-
ing terms under some kinematical assumptions, while
Bosted and Laget removed these assumptions and in-
cluded the leading terms exactly. On the other hand,
Handel et al. used the isobar model to give a unified
treatment of both yd ~md and md ~vrd, while Miyachi
et al. included the dibaryon term in a relativistic calcu-
lation. Finally, Laget ' has carried out the most exten-
sive study of the reaction yd ~vrNN.

For NN bremsstrahlung (pp ~ppy' and np ~npy )

there is an extensive history of calculations based mainly
on the N-N potential models, and they are always treated
separately from the other reactions considered above.
Some of the highlights of these calculations involve the
inclusion of the single and double scattering terms, by
Drechsel and Maximon, and the effect of the Coulomb
interaction on the N-N wave function, by Marker and Sig-
nell. More recently, Kamal and Szyjewicz ' have car-
ried out relativistic calculations based on the one-Boson
exchange model for the N-N interaction. This allowed
them to include explicitly the contribution of the 6 de-
grees of freedom and the meson exchange current due to
the m. , p, and co mesons.

In the present investigation, we have a unified formula-
tion of the reactions yd ~np, a d, m.NN, and NN~NNy
which is similar in spirit to the work of Laget. Howev-
er, the following differences should be noted: (i) We will
include the multiple scattering of the pions and baryons
to all orders in perturbation theory by deriving integral
equations for the relevant amplitudes. (ii) To maintain
consistency with QCD we commence with a chiral La-
grangian at the quark level and then project it onto the
Hilbert space of baryons. This will give us a parameter-
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—+m' +0
~m+N+N, ( l. la)

~N+N
~~+N +N,

m'+d —+y+8

~y+N+N,
N+N~N+N

(1.1b)

(l. lc)

—+m'+d

~m+N+N, (1.1d)

and

N+N y+d

~y+N+N . (l. le)

The reaction ~+d ~y +N +N will not be discussed in
this paper, but can easily be treated in a similar manner.
(v) With the advent of medium energy electromagnetic
probes, we can, in a consistent manner, include the
higher isobars in terms of their quark structure. Here,
the inclusion of three-body unitarity might be essential.
Finally, the advent of high precision data will require the
calculations to go beyond the first few orders in the mul-
tiple scattering series. This has not been done in the past
for many of the reactions.

The above formulation generates the N-N interaction
to the extent that it includes one pion exchange, and the
box diagram due to the two-pion exchange with the N-6
and h-b, intermediate states. To fully describe N-N
scattering we might need to go beyond the pion ex-
change, and include the heavy meson exchange. This can
be achieved in this formalism as was the case in the NN-
~NN equations, where heavy meson exchange was intro-
duced as a static potential. ' '

In Sec. II, we introduce the interactions and give a
summary of the two-body coupled equations, which were
derived in our previous papers ' and are to be used as
input to the present theory. To derive the coupled equa-
tions for the reactions in Eqs. (l. la), (l.lc), and (l. le), we
need the integral equations for the BB-~BB system. In
Sec. III, we present a summary of the results of Ref. 17
for the BB-EBBsystem, and the method used to expose
three-body unitarity. Sections IV and V are devoted
mainly to the derivation of the amplitudes for yd ~np,
NN~NNy, and yd~~ d and ~NN, and how they are

free form factor for all the vertices, in terms of the basic
size of the hadrons. (iii) We have a consistent description
of both (a) the renormalization of the propagators and
form factors, and (b) the inclusion of unitarity at the two-
and three-body levels. (iv) The integral equation for the
reaction under consideration has the same kernel as the
integral equation for the BB-~BBsystem. This will allow
us to give a unified description of the reactions,

y+Gf —+72 +p

related to the amplitudes for the reactions in Eqs. (l. lb)
and (l.ld). We then proceed in Sec. VI to derive the in-
tegral equations for the reactions in Eqs. (1.1aj, (1.1c),
and (l. le). Finally, in Sec. VII we discuss our final re-
sults.

II. THE TWO-BODY INTERACTIONS

To formulate our theory for the photodisintegration of
the deuteron, NN bremsstrahlung, and pion photopro-
duction off the deuteron, we need to define the Hamil-
tonian under consideration and set up the input for the
resulting equations. Although the derivation of the equa-
tions does not depend on the detailed form of the Hamil-
tonian, any numerical calculations will require the use of
a specific form for the interaction. Furthermore, the de-
tails of the derivation become more transparent if the
reader has a specific Hamiltonian at hand. Since one of
the ultimate aims of the present formulation is to main-
tain consistency with QCD, we will consider, as our start-
ing point, the chiral bag model Lagrangian. ' This
Lagrangian has the quarks confined to a finite volume,
and to maintain chiral symmetry, a pion field is coupled
to the quarks. ' In general, such Lagrangians are non-
linear in the pion field. To derive integral equations that
satisfy two- and three-body unitarity, we need a renor-
malizable Lagrangian at the baryon level. This can be
achieved if we expand the chiral Lagrangian, ' in powers
of the coupling constant, and keep terms up to order
g =(2f„),where f is the pion decay constant. The
resultant Lagrangian, often referred to as the cloudy bag
model (CBM), ' has been used extensively to describe
both s- (Ref. 42) and p-wave' ' vr Nscatterin-g. We in-
troduce the electromagnetic interaction by employing the
minimal coupling demanded by U(1) gauge symmetry
(i.e., d„~B„ieA„).T—his was used by Kalbermann and
Eisenberg ' to study the reaction yN ~~N within the
framework of the chiral bag model. Since we need to in-
clude the electromagnetic coupling to first order, we re-
tain only the terms in the Lagrangian of order g, g, e,
and eg, and discard the higher order terms in e, such as
the e, e g, e g, . . . terms, by expecting them to be negli-
gible. We also neglect the higher order terms in g such as
eg, g, . . . to make the final equations computationally
manageable. These higher order terms, however, can be
included in perturbation theory. The resulting total La-
grangian may be written as the sum,

L:LM&++L~ +L y +L& (2. 1)

L
qq n. +L

qq n. m +L ~vr~n. +L
qq y +L

qq ~y +L m. m y
(2.2)

where the explicit forms of the different terms in Lz were
given previously. We can now project this Lagrangian,
after quantization, onto the Hilbert space of the baryon
as was carried through for the CBM, ' ' to get an
effective Hamiltonian at the baryon level. We restrict our

where LM&+ is the Lagrangian for the MIT bag, and L
and L are the Lagrangians for the free pion and photon,
respectively. The interaction Lagrangian L~ consists of
the following six different couplings:
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present analysis for the baryon-equal-to-one system, to
the Hilbert space of one-, two-, and three-particle states
(i.e., I

8 &, I

nB.&, I yB &,
I

qrmB&. , and
I
yqrB &, where

I
8 & is the bare baryon which is composed of three

quarks). The effective Hamiltonian, H, can be expressed
in terms of the creation and annihilation operators in the
Pock space representation. The interaction part of 0 is
the sum of the twelve terms:

self-energy of the baryon and is given by

y(1) y(2)+f (1) f (2)t (2.7)

where g is the mB propagator and is given by g =d~d .
The one-particle irreducible m.BB form factors F"' and
~B amplitude t"', required to evaluate the full m.B ampli-
tude t' ' using Eq. (2.5), satisfy the equations,

Ht ——(8
I
H

I
8 qr & + (8 qr

I

H
I

8 qr & + ( qrqr
I
8

I
qrqr &

+&8 IH
I
8)'&+&8~1 H

I
87'&+&~~

I
@

I 7&

and

f(1) f(2)+f (2) t(1)

t(1) t(2)+ t(2) t(1)

(2.8)

(2.9)

+ &
I
H

I 7 &

+five Hermitian conjugate terms . (2.3)

For example, (Bqr
I
H

I By & may be related to the Ham-
iltonian, H, at the quark level by

&B~ IH
I
Br &

= g g J d q d k(m, aq I Hqq z I
n, 7(,k &

mn aA.

(2.4)

t (0) t (1)+f( I )td f(0)
0

t(1)+f (1)td f(1)

(2.5a)

(2.5b)

where t" and f" are the i-particle irreducible ampli-
tudes for mB~mB and B~m.B, respectively, while dz is
the dressed baryon propagator and is given in terms of
the bare baryon propagator d0, by the relation

d~ ' ——d0 ' —X'"=E—m' ' —X'" . (2.6)

Here m ' ' is the bare mass of the baryon a, and X"' is the

where B and a~q are the creation operators for the
quark and pion, respectively, while Ck is the annihilation
operator for the photon. In writing the above Hamiltoni-
an, we have truncated our interaction to avoid any direct
coupling between the single-particle state

I

8 & and the
three-particle state

I

Bn.qr & or
I
Bey&. This .was found

to be necessary so that our final equations would be com-
putationally viable. Finally, we note that the interaction
Hamiltonian Bz is not covariant due to the absence of
terms such as (8

I
8

I
Bqry & from Eq. (2.3).

Having defined our Hamiltonian in the space of
baryons and mesons, we now turn to the input for our
final three-body equations presented in the next section.
This input is the off-shell amplitude for the reactions
8 (qr, m. )B and 8 (y, n. )B, as predicted by the above Hamil-
tonian. In our previous paper, we derived integral
equations for these amplitudes by exposing the two-body
(qrB or yB) and three-body (qrqrB or qryB) unitarity cuts.
This was accomplished by using the last-cut-lemma, in-
troduced by Taylor, to derive integral equations in field
theory, by classifying diagrams according to their irredu-
cibility. The final amplitude for m.-N scattering is given
b 22, 23

t' '=v +vgt' ', (2.1 1)

with the potential v given by

U
—t(2)+f(2)td f(2)

0 (2.12)

The advantage of this latter procedure is its numerical
simplicity, since we need not calculate the off-shell ampli-
tude t "' as an intermediate step in our calculation off"'.

The potential U in Eq. (2.12) is illustrated diagrammati-
cally in Fig. 1. Here we see that the diagram which has
the s-channel pole, in Fig. 1(e) [the second term on the
right-hand side (rhs) of Eq. (2.12)], has bare vertices,
while the rest of the diagrams that arise from t' ', in Figs.
1(b), 1(c), and 1(d), have dressed vertices. This was first
pointed out by Pearce and Afnan. We also note that
the contact term t' ', in Fig. 1(a), gets dressed by the dia-
gram in Fig. 1(c).

In the above discussion, we have implicitly assumed
that the electromagnetic coupling is included to first or-
der only. As a result of this, we have no radiative correc-
tions to the mB amplitude.

We now turn to the amplitude for pion photoproduc-
tion on a single baryon, t ' '. This has been considered
previously in great detail. Here, we will only present a
brief summary of our results. Taking into consideration
the fact that t "and f"are the i-particle irreducible am-

Here, the structure of the two-particle irreducible ampli-
tudes, in terms of the interaction Hamiltonian Bt, re-
quires the exposure of the three-body unitarity cuts.
This procedure results in having X' '=0,
f' '=(8

I
8

I
Bqr &, and t' 'given by

t' '=t' '+ gf'"(i)d (i)dttu' 'd (j)d&.f'" (j),
IJ

(2.10)

where u ' are the Alt-Grassberger-Sandhas (AGS) am-
plitudes for the qtqrB system. In Eq. (2.10), f'"(i) is the
amplitude for the ith pion being absorbed by the baryon.
Finally, t' ' in Eq. (2.10) is the three-particle irreducible
amplitude which for the present Hamiltonian is given by
t")=(~8

I
8

I
~8).

Here we would like to point out that there is an alter-
native way of obtaining the mB amplitude t' ', other than
by using Eqs. (2.5)—(2.9). This involves writing the am-
plitude as a solution of a two-body equation of the
form,
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02 02

t (0) t (1)+f(1)td f (1)
B

f (1) f (2)+f(1) r (2)

t (1) t (2)+t(1) t (2)

(2.13)

(2.14)

(2.15)

(a)

I 01

(b)

and

f(1) d f(0) (2.16)

R A& h1

(c)

+ ~ ~ ~

In Eqs. (2.13)—(2.16), the amplitudes f'" and t(" are
given in Eqs. (2.8) and (2.9}, respectively. An alternative
way of writing the pion photoproduction amplitude, t ' ',

is in terms of the total vrB amplitude t' ', as

t ' '=U+t' 'gu

where

=(r"'g + I)U, (2.17)

(e)
U r (2)+f(2)td f (2.18)

FIG. 1. The diagrammatic representation of the lowest order
terms in the n.N potential v, given in Eq. (2.12).

plitudes for m.B~y B and B~~B, respectively, and the
fact that (in our classification of diagrams according to
their irreducibility) we count the photon on equal footing
with the pion, we have, to first order in the electromag-
netic coupling,

In this way, we have illustrated that the photoproduction
amplitude can be written as a distorted wave Born ampli-
tude, where ( t ' 'g + 1 ) is the distortion operator in the
~B channel. As before, with the Hamiltonian given in
Eq. (2.3), f ' '=(B H ~8y). On the other hand, the
determination of t ', in terms of the interaction Hamil-
tonian, requires the exposure of three-body unitarity and
results in

t ' '=t ' '+f (,
"d f " +f

'"deaf'"

+ g f'"(i)d (i)dau' 'd (1)d (2)f '"
I

+ g f")(i)d„(i)dzu( 'd (j )dzt ("(j)5.kd (k)d&f") (k),
ijk

(2.19)

where 5 &
——1 —5 („and u & are the AGS (Ref. 43) ampli-

tudes for the m.m.B system, which are two-particle irreduc-
ible, and where f"', f '", and t "' are given in Eqs. (2.8),
(2.14), and (2.15), respectively. The one-particle irreduc-
ible amplitude for tr~ym. ,f I,", required to calculate t ' '

using Eq. (2.19), is given in terms of the interaction Ham-
iltonian by (a) (b)

f b" f b
' ——( tr

~

H
~ y—tr ), (2.20)

while the amplitude for 2rn~y, f,",is given in terms of
the one-particle irreducible mm. amplitude t"'(3), as

(2.21)

(2.22)
(c) (d)

t"'(3)=t' '(3)[1+d„d„t'"(3)]
r'"(3)=(~~

~

H
~

sr~) .

(2.23)

(2.24) + ~ ~ ~

Finally, in Eq. (2. 19), t ' ' is the three-particle irreducible
~B~yB amplitude and is given in terms of the interac-
tion Hamiltonian by

(2.25}

(e)

FIG. 2. The diagrammatic representation for the lowest or-
der contribution to the effective operator for pion photoproduc-
tion on a single nucleon v. See Eqs. (2.18) and (2.19).
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In this way, we have determined the potential v re-
quired to calculate the pion photoproduction amplitude
off-shell. Considering the complexity of Eq. (2.19), it
might be appropriate to examine the content of the
lowest order contribution to v. This is illustrated in Fig.
2, where we observe that the diagram with the s-channel
pole, in Fig. 2(f) [the second term on the rhs of Eq.
(2.18)], has undressed vertices, while all vertices in t ' '

are dressed. the exception is the n~yn vertex, f 'b,
which gets no dressing though it is one-particle irreduc-
ible. This is due to the fact that in our analysis the elec-
tromagnetic interaction is included to first order only. Of
particular interest is the observation that the contact dia-
gram, corresponding to t ' ', in Fig. 2(a), gets dressed due
to the contributions such as those in Fig. 2(e). Thus, by
neglecting such terms, one can take the strength of the
contact diagram from experiment. This was done for the
z-N elastic scattering in the P11 channel with consider-
able success.

III. THE THREE-BODY EQUATIONS

The Hamiltonian defined in Eq. (2.3) of Sec. II, can be
defined, in principle, for baryon-number-greater-than-one
systems. This involves writing the Hamiltonian in Eq.
(2.3), in the Fock representation, and ignoring the anti-
baryon part of the spectrum. In this case, the resultant
Hamiltonian does not include all the degrees of freedom
allowed for in the original quark model Lagrangian. In
particular, we have neglected the possibility of six or
more quark bags, and the leakage of quarks from one bag
to the next. Also not included, is the possibility for a
change in the size of hadrons due to direct quark leakage.
However, the new feature of the resultant Hamiltonian is
that all baryons (i.e., N, E,R poer, . . . ) are treated on
equal footing in terms of their quark structure and the
coupling between the baryons and mesons is derived from
the underlying chiral Lagrangian in terms of the quark
degrees of freedom. In this way, the strength and form of
the coupling of the meson to the baryon is predetermined
by the quark Lagrangian in a consistent manner. When
the electr'omagnetic coupling is introduced via the
minimal coupling postulate at the quark level, the form
factors associated with the coupling of the meson and
photon to the baryon are related, via the size of the had-
rons which is determined by the bag radius. Finally, the
photons are coupled to both the mesons and baryons, and
thus the meson exchange currents are included in the
Hamiltonian in a natural way.

This Hamiltonian, for the baryon number-two system,
can in principle describe the reactions involving pion pro-
duction and absorption, i.e., BB~BB,m.d, EBB and
~d ~88,md, m.BB, where 8 =N, 6, Roper, . . . . ' If the
electromagnetic coupling is included to first order, we
can also describe the reactions yd ~88, m d, and m.BB,
as well as nucleon-nucleon bremsstrahlung, 88~88y.
For this Hamiltonian to actually give a good description
of NN bremsstrahlung, it is important that it also gives a
good description of N-N scattering. This will necessitate
the inclusion of other rnesons besides the pion. Such a
generalization is not contemplated at this stage, particu-

larly since there has been no numerical results for the
BB-~88 system using the equations in Ref. 17.

In order to describe the above reactions, satisfy two-
and three-body unitarity, and incorporate meson ex-
change currents, we need to take, for our Hilbert space,
the states

~
88),

~

EBB),and
~
yBB). In this basis, the

operators which give the amplitudes for the reactions un-
der consideration are the following:

(a) T'"' is the amplitude for BB~BB,
(b) F'"' is the amplitude for BB~nBB,
(c) F '"' is the amplitude for BB~yBB,
(d) M'"' is the amplitude for nBB~nBB,
(e) M '„"' is the amplitude for n.BB~yBB,
(I) M z"' is the amplitude for yBB~yBB

P(1)f P(2)f+ P(2)PG (1)y(1)
C C (3.1)

The BB~vrBB amplitude, F' ', can be written as the sum
of a connected and disconnected part as

p(2) —p(2)+ p(2)
d c (3.2)

where the subscript d labels the class of disconnected dia-
grams. The connected part of the 88~m.BB amplitude,
F,' ', is related to the AGS amplitudes for the EBB sys-
tem, U"', by"

In the above, the superscript n stands for the irreducibili-
ty of the diagrams that contribute to the corresponding
amplitude. Here we note that this notation is slightly
different from that used in Ref. 17. To get some of the
physical amplitudes under consideration, we may need to
take the right or left residue of the matrix element of the
above operators in our Hilbert space. For example, to
get the amplitude for np~yd, we take the right-hand
residue of F,"' at the deuteron pole, where the subscript c
denotes the connected part of the amplitude.

Although we will be considering reactions involving
photons later, we find it necessary to briefly summarize
the equations that describe the reactions in Eqs. (I.lb)
and (l.lc) in the BB-EBB system. ' This particularly is
the case, since the amplitudes for the photodisintegration
of the deuteron and pion photoproduction will be given,
in Secs. IV and V, in terms of the amplitude for the 88-
~BB system. For a detailed discussion of the BB-m.BB
equations, the reader is referred to the work of Afnan and
Blankleider, Ref. 17.

Let us consider the amplitude for the reactions
m88~88 as the sum of all the connected diagrams that
are one-particle irreducible, E,'" . These diagrams can be
divided into two classes: (i) Those with at least one pion
in every intermediate state (i.e., two-particle irreducible).
These we denote by F,' ' . (ii) Those diagrams not includ-
ed in (i), but contributing to the pion production ampli-
tude. These can be written, using the last-cut-lemma, as
F' ' G'"T"', where T'" is the 88~88 amplitude, and
G'" the BB propagator (i.e., G'"=dzds ). To keep the
particle label and operator structure, we have introduced
the direct product . ' ' We now can write the
m.88~88 amplitude as
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F(2) ~ F(2)( ~ )g(2)U(2)g(2)M(2)( )c ~ d ia d
ia

(3.3)

2

= g Fd"'(i) . (3 4)

On the other hand, the disconnected amplitude for
mBB~~BB,Md ', is related to the two-body subampli-
tudes by

with G' '=[d&dz]d, the EBB propagator. In Eq.
(3.3), Fd '(i} and Md '(a) are the 8~F8 vertex functions
and two-body amplitudes in the n.BB Hilbert space, re-
spectively. These in turn can be written in terms of the
amplitudes given in the last section. Thus, the discon-
nected amplitude for BB~m.BB,Fd"', is given by

Fd"' f'" ——"(I)d~ '(2)+dt's '(l)ef'" "(2)

these belong to the baryons 8. (ii) These resonances are
above the threshold for two pion production in N-N
scattering, and do not contribute substantially in the en-

ergy region of interest. (iii) The amplitudes T, ~ (i=1,2)
are not physical observables and are required only in con-
structing the amplitude for reactions with three-body
final states (i.e., EBB.~BB) In. fact, in constructing the
amplitude for ~BB~BB,we have to include the contri-
bution from the first term on the rhs of Eq. (3.6). (iv) Fi-
nally, there is no loss of generality or any approximation
in our integral equations, due to the exclusion of the con-
tribution to the residue at the quasiparticle pole from the
first term on the rhs of Eq. (3.6). The advantage gained
from this definition of T, z is that the resultant coupled
integral equations are written in terms of the dressed
form factor Fd" and two-body subamplitudes Md '. Us-

ing the AGS equations for the ~BB system, i.e.,

Md
' t'"(1)——(3dt) '(2)+d2) '(1) (3)t'"(2) +t"'(3) d

3

(3.5)
a=1

U(2' —5 g '2) —'+ 'V 5 M(2'( )g (2' U'2)
Al 4 ~ ky d yl

we can rewrite Eq. (3.7), as

(3.&)

Here, t"'(i), i=1,2, are the amplitudes for pion scatter-
ing off the ith baryon, and t"'(3) is the BB amplitude in
the EBB Hilbert space. In this section and throughout
the rest of this paper, we will use the labeling convention
where particles 1 and 2 are the baryons, while particle 3
is the pion. Furthermore, labels i,j, . . . (=1,2) refer to
the interactions of baryon i,j, . . . with the pion, while la-
bel 3 refers to the interaction of the two baryons. Finally,
a,P, . . . (=1,2,3) in the sums, run over all three parti-
cles.

By combining the results of Eqs. (3.1)—(3.3), we can
write the one-particle irreducible m.BB~BB amplitude,
F,"'t, as

F'"t=F' 'tg'"7'' +F( 't[1+g'"7' ']c d c

F(2)tG(1)T(1)
d

+ g Fd '(i)5;2G' 'Md '(l)G( )
T2 tt, , .

lA

(3.10)

where V~pE is the one-pion-exchange potential and is
given by the relation'

T2 tt
——+52.(Fd

' (t)(1+G'"Tt) 2)).
l

+ +52rMd '(y}G' 'Tr s, . (3.9)
y

where T~.z ——T"', is the BB amplitude. This equation
can be closed by deriving the equation for Tz.z, which is
given by'

Tg tt = VopE(1+. G Tg g).

+ y M' '(a)g'2)U' 'g' 'F' 't(i)[1+g')'7"'] ~opE g Fd (i}5(jg Fd (J)
IJ

(3.11)

(3.6)

—~ U(2)g(2)F(2)t(i)( 1+g() )T() )
) (3.7)

Taking the residue of the amplitude F,"' at the BBor m.B
poles, we get

In a similar way, we can write the equations for the BB-
m88 system with an initial state of nd or 8 (nB). ' Here,
we consider the connected one-particle irreducible ampli-
tude for m.BB~mBB, M,"'. By classifying the diagrams
that contribute to M,"' according to their irreducibility,
and making use of the last-cut-lemma, we get

where, A, = 1 or 2 corresponds to the 8 +(mB) channe. l,
while A. =3 corresponds to the m+(BB) channel. In tak-
ing the left-hand side (lhs) residue of Eq. (3.6), we have
neglected the contribution from the first term on the rhs
of the equation for A, =1 or 2, even though F' ' has a m.B
quasiparticle pole. This was motivated by the fact that (i)
The m.-B quasiparticle poles correspond to resonances
other than those described in terms of three quarks. In
other words, these quasiparticles do not include the
b, (1232), and possibly the Roper resonance, N(1440), as

M(1) M(2)+ I F(2)tG(1)F(1)
c c t. )c

M(2)+ tF(1)tg(1)F(2)]
C c (3.12)

M(2) ~ M(2)(a)g(2)U(2)g(2)M(2)(P)
c aP d

aP
(3.13)

allows us to write M,'" as

Making use of Eq. (3.6), the fact that Fd" Fd2', and that——
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~]]]—W F'2]t(1')g'1'7" ]F'2]( )+ M M]2](]2)g]2]U'2]g]2]M]2](P)c
LJ aP

+ y ~(2)( )g(2)U(2)g(2)F(2)t( ~ )(g(1)7 (1]+1)g(1)F2(.
)

aij

+ y F]2]t(])g]"(7]"g]"+1)F' '( ')G]2]U]2]g'2]~] ](P)d J jp
ij p

y M(2]( )g(2) U(2)g (2)F(2)t( .)g( 1 )( 7 (1]g(1)+ 1 )F2( .)G(2) U(2)g(2)~(2](P)
aij p

(3.14)

Taking the Ihs and rhs residues of Eq. (3.14), and neglect-
ing the contribution from the quasiparticle pole in Fd ',

we find

(3.15)

Here again we can justify neglecting the contribution to
the residue, from the pole in Fd ' and its adjoint, on the
ground that the corresponding amplitudes are not observ-
ables, and the above definition of T, j involves no loss of
generality. Making use of the AGS equations for the
EBBsystem, we can rewrite the above expression as

T~ p 5~13G' .' ——'+ + 5~(Fd ' (]')G" Ts ]3.
+ +5 Md] ](y)G] 'T (3.16)

+ y F(2)(])5 G(2)M(2)(y)g]2)T
ip

(3.17)

In Eqs. (3.9), (3.10), (3.16), and (3.17), we have a set of
coupled integral equations, first derived in Ref. 17, for
the BB-~BB system. These equations satisfy two- and
three-body unitarity, and give a good description of the
reactions in Eqs. (l. lb) and (l.ld) for the case where
B =N. ' ' We expect the extension to B =N, h will im-
prove the agreement with experiment.

To close this equation we need to write an equation for
T~.&. This can be achieved by considering the connected
one-particle irreducible amplitude for BB~mBB,F,'",
and taking the rhs residue at either the BBpole or the ~B
quasiparticle pole. The resultant equation is'

Ta p= VOFEG'''T. & &+ g Fd '(])5.;p

states, while the third reaction involves the production of
an isobar, and thus has a quasi-two-body final state. Here
we should note that under the substitution of N~B in
Eq. (4.1), where 8 =N, h, R. . . , the isobars (Bm ) in the
reaction (4.1c) will not include those baryons already in-
cluded in the set 8. The fourth reaction, Eq. (4.1d), in-
volves three-body final states, and its amplitude could be
written in terms of the amplitude for the reactions in Eqs.
(4.1b) and (4.1c).

Because all these reactions are initiated by a photon in-
cident on the deuteron, we expect to get a coupled set of
equations for the corresponding amplitudes (in particular
for the first three of these reactions). The advantage of a
coupled channel approach, in momentum space, is the
fact that we need not calculate the off-shell amplitudes
for these reactions. On the other hand, in a distorted-
wave Born approximation, we need the distorted-wave
functions in the initial and final states. These are given in
terms of the off-shell amplitude for the corresponding re-
actions. However, before we proceed to the derivation of
the coupled equations, we need to examine the contribu-
tion of three-body unitarity to the amplitude for each of
these reactions. We will then proceed in a later section to
derive coupled equations for the reactions in Eqs.
(4.1a)—(4.1c).

Let us first consider the photodistintegration of the
deuteron [Eq. (4.1a)]. To get the amplitude for this reac-
tion we need to consider the one-particle irreducible am-
plitude for the reaction BB~yBB, i.e., F,"'. The dia-
grams that contribute to this amplitude can be divided
into two classes: (i) Those diagrams that are two-particle
irreducible. The sum of these diagrams we denote by
F',2'. (ii) The diagrams that do not belong to (i). These
are two-particle reducible and can be written using the
last-cut-lemma as

y+d~N+N (4.1a)

IV. PHOTODISINTEGRATION OF THE DEUTERON

We would now like to consider all reactions that result
from the interaction of a real or virtual photon with the
deuteron, i.e.,

I 7 (])g(])F(2)
I I 7 (2)g]])F(])

I

Making use of the fact that F '"', the n-particle irreduc-
ible amplitude for BB~y BB, has a connected and
disconnected part, we can write F ',"as

~sr+ (NN)

~N +(Nm).
~~+N+X .

(4.1b)

(4.1c)

(4.1d)

The first two of these reactions involve two-body final

F (]) F (2)+
I 7 (2)g(1)F (1)

I + I 7 (2)g(1)F (1))

=F ' '+ {T' "G"'F ' 'I + I
7" G "]F] ]),

where the disconnected amplitude F d"' is given by

(4.2a)

(4.2b)
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Fd"' f——'" "(1)gds '(2)+ds '(I) f '" "(2)
2

= g Fd"'(i). (4.3)

M(n) t (n —1)(1)d —1(2)+d —1(1)t (n —1)(2}

2
= g M(„"'d(i) . (4.6)

F'"=[F„'"G")M"'j +tF")G 'M(
j

where

M'"' =d 't'" "(3),

(4.4)

(4.5)

and G ' ' =d d~d~, is the yBB propagator. The
vrBB~yBB amplitude, M'„', has a connected (M'„', )

and disconnected (M'„'d }part, with the latter given by

In Eq. (4.2), T'"' is the n-particle irreducible amplitude
for BB~BB.Having dressed our baryon propagators us-
ing the procedure in Ref. 17, the amplitude T'"' is con-
nected, and we therefore have dropped the subscript c in
Eq. (4.2). To further reduce Eq. (4.2) in terms of known
amplitudes, we need to examine the two-particle irreduc-
ible amplitude for BB~y BB,F ', '. If we restrict our
analysis to the Hamiltonian in Eq. (2.3), then the absence
of terms that change the number of bosons (i.e., pions
plus photons) by two or more, implies that there is no
direct coupling of the BB channel to either the y~BB
or m~BB channels. This means that F,' '=F,' '

=(BB
I
~

I
EBB &,

. and F,"'=F', =
=(BB ~8~ yBB). These matrix elements can only be
defined for the two-baryon system, and cannot be written
in terms of the matrix elements of Hl between the single
baryon states. Since our starting Hamiltonian in Eq. (2.3)
does not include such matrix elements, we have the result
that the three-particle irreducible amplitudes F,' ' and
F', ' are both zero. However, if we admit six-quark bag
states into our basis, then it is possible to couple both the
photon and pion to the quarks in this six-quark bag. In
this case we can calculate a nonzero value for both
(BB ~8~mBB) and (BB ~8~yBB) using the chiral
Lagrangian under consideration. For the present investi-
gation we will neglect the six-quark states and take the
three-particle irreducible amplitudes, F,' ' and F ', ', to be
zero. We should stress at this stage that the formalism
presented here does admit the introduction of six-quark
states, but we have chosen to neglect these states. One
can, at a later stage, include these six-quark states in per-
turbation theory. If we now include the electromagnetic
coupling to first order only, then M z

' ——M z 'd. With
these two restrictions and the application of the last-cut-
lemma, we can write the connected two-particle irreduc-
ible BB~yBBamplitude, F,' ', as

To get the structure of the connected two-particle irre-
ducible mBB~yBB amplitude, M '„'„we classify the dia-

grarns that contribute to this amp1itude into two classes:
(i) Those that are three-particle irreducible, which we
denote by M'„",. (ii) The diagrams not belonging to (i).
These are three-particle reducible and can be written us-

ing the last-cut-lemma as

tM(2)G(2)M(3)
j + (M(2)O (2)M(3)

j (4.7a)

[M' 'O' 'M 'j +IM'„'G 'Ms"j (4.7b)

M(3) + )M(3)O(2)M(2)
j

+IM(3)O(2)M(2)
j

(4.8b)

To proceed further, we need to examine the three-particle
irreducible amplitude M '„',. A classification of the
Feynman diagrams that contribute to this amplitude ac-
cording to their irreducibility, using the last-cut-lemma,
shows that this amplitude is related to the four-particle
irreducible amplitudes for EBB EBB and
~BB~ymBB. This coupling to the four-particle inter-
mediate state will introduce four-body unitarity, which
we do not want to include at this stage. In the absence of
four-body unitarity, we can consider M'„', as a three-
body type force, as was the case with M,' ' in the BB-m.BB
equations. ' In fact, one contribution to this effective
three-body interaction comes from the formation of a
six-quark bag. Although the amplitude can be included
in the formalism, we have chosen at this stage to con-
sistently neglect any contribution from either three-body
forces or the formation of six-quark bags.

To further simplify Eq. (4.8), we make use of the fact
that both M' ' and M'„' have a connected and discon-
nected part, with the connected part of M' ' given in
terms of the AGS (Ref. 43) amp11tudes U(.p) by Eq.
(3.13}.' This allows us to write Eq. (4.8a) as

We now can write the two-particle irreducible amplitude
for ~BB~yBBas

M' ' =M'„' + (M' 'O' 'M' 'j + IM' 'G ' 'M' 'j,
(4.8a)

M„''=M' 'G' 't' '(3)d '++M' '(i)G' t' '(3)d '+~ jM' '(a)G' 'M'„'d(i)j
7 1

+ y M(2)(~)G(2) U(2)O(2)M(2)(P)G(2)M(3) (i)
aPi

(4.9)

To get an expression for M '~', in terms of known quantities, we need to formally solve this equation. This is achieved
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by moving the erst term on the right-hand side of the equation to the left-hand side of the equation, and multiplying

from the right by

[1 g (2)r(2)(3)d —1]—1 1+g (2)M (2)
r

We then make use of the fact that

MBd(1+g MBd) MBd

to write Eq. (4.9) as

M (2) —y M (2) ((')g (2)M (2) + y M(2)(~)g(2)$ M (3)
( j)( I+g (2)M (2)

)
ai

+ y M(2)( )g(2)U(2)g(2)M(2)(P)g(2)M (3) (()( 1+g (2)M (2)
)

aPi

(4.10)

We now have to rearrange the multiple scattering series using the AGS equations for U'& in order to replace M '~ d by
M '„'d in Eq. (4.10). In this way we have replaced the Born amplitude for pion photoproduction on a single nucleon, by
the full amplitude for that process. This gives, after some algebra, an expression for the connected two-particle irreduc-
ible amplitude for ~BB~yBB,M '„'„in terms of known two-body subamplitudes as

M (2) g M (2) (()g (2)M (2) + g M(2)( )g(2)U(2)g(2)M (2) (()( 1+g (2)M (2)
) (4.11)

Making use of the above result in Eq. (4.4), we get for the BB~yBBamplitude, F,' ', the result that

F (2) g F(3)(()g(2)$ M (2) (j)+ g F (3)(()g (2)M (2) + g F(3)(2)g(2)M (2) (J)g (2)M 2

lJ I IJ

+ y F(3)((')g(2)M(2)((2)g(2) U(2)g(2)M (2)
(j)( 1+g (2)M (2)

)
iaj

(4.12)

We now need to replace the three-particle irreducible amplitudes, Fd ' and F d ', by the corresponding two-particle irre-
ducible amplitudes, and in this way dress the basic vertices for photon and pion absorption. This again is achieved by
regrouping the expression on the right-hand side of Eq. (4.12) using the AGS equation, and making use of Eqs. (2.8) and
(2.14). The resultant expression for the connected two-particle irreducible BB~yBBamplitude, F ', ', is given in terms
of the AGS amplitudes U'

p as

F (2) W F (2)(()g (2)M (2) + W F(2)(()g(2)U(2)g(2)M (2)
(

~ )(1+g (2)M (2)
)c ~ d Bd ~ d l ij ~,d J B,d

l IJ

(4.13)

With this result we now can write the connected one-particle irreducible amplitude for BB~yBBgiven in Eq. (4.2) as

F (1) ~ T{1)g(l)F(2)())+ ~ ( T(1)g(1)+1)F(2)(()g (2)M (2)l d l B,d

+ y (T(()g())+ 1)F(2)(()g(2)U(2)g(2)M (2)
( ')(1+g (2)M (2)

) (4.14)

To write the physical amplitude for the photodisintegra-
tion of the deuteron (i.e., np~yd), we need to take the
rhs residue of the above equation at the deuteron pole.
To determine the rhs residue of F ',"at the deuteron pole,
we need to expose this pole explicitly. This can be
achieved by noting that M Bd

——d 'r(" "(3), and that
t"'(3) has the deuteron pole. In other words, we can
write M z d schematically as

I qd ) =dB(1)dB(2)
I yd ) (4.16)

yd)= &&., I TB;d —
I fd) (4.17)

The amplitude for np~yd can now be written, by taking
the rhs residue at the deuteron pole, as

M B d ——dy 'r"'(3)

E+, + 0 ~ ~ (4.15)

'F (2)+ ~ F(2)(()g(2)U(2)g(2)M (2)
( )

EJ

IJ

(4.18)

where ed is the binding energy of the deuteron. Here,

I pd ) is the deuteron form factor and is related to the
deuteron wave function

I fd ) by the relation

In Eq. (4.17), 7„ is the spin-isospin wave function for the
final two baryons.

To get the multiple scattering series for the photodisin-
tegration amplitude, all we need to do is to use the AGS
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equations [Eq. (3.8)] for U,
' ' in Eq. (4.18). In fact, the

lowest order contribution to TB.d results from taking

U,
' )=5, G( ' in Eq. (4.18), which gives

T~ q--. (T"'G "+1) {a) {b)

X F q '+ g Fq '(()G' '6,,M'„'q(g) . (4.19)
FIG. 4. The decomposition of the dressed EBB vertex in the

lowest order contribution to BB~yd as given in Fig. 3(a).

This expression is presented diagrammatically in Fig. 3.
Comparing the contributions to our amplitude for
np~yd with those of Laget, we find that the diagrams
in Fig. 3 are basically the same as those included in
Laget's work with one difference being the diagram cor-
responding to the deuteron current, coupling directly to
the photon. This diagram is not included in our theory,
since the deuteron is treated as a composite particle.
Here, we also note that the diagrams in Fig. 3 do not in-
clude any direct coupling of the photon to the pion. This
coupling is included in the amplitude for ~N~yN. In
other words, if the t-channel meson pole terms are includ-
ed in the pion photoproduction amplitude on a single nu-
cleon, then the meson exchange currents are automatical-
ly included in the deuteron photodisintegration ampli-
tude. As the philosophy of these calculations involves
the determination of the amplitudes on a single nucleon
first, then the inclusion of a t-channel meson pole term in
pion photoproduction on a single nucleon should predict
the contribution of the meson exchange current in the
deuteron photodisintegration. Also, the vertices for pion
production, Fz '(i) in Eq. (4.19), are dressed and their
form is predetermined by n Nscatte-ring (e.g. , in the P»
channel for B =N). These in turn are determined by the
chiral bag model Lagrangian: in particular, the bag (or
the nucleon) size. A careful comparison of our results
with those of Laget reveals that our form factors for both
pion and photon absorption include all of the pionic
dressing required to satisfy two- and three-body unitarity.
In other words, we have a quantum field theory, while
Laget is using an effective Lagrangian at the tree level.
This in effect means that in Fig. 3(a) we include the pro-
cess whereby the photon produces a pion via the pion
photoproduction amplitude, and this pion is absorbed by
that same nucleon. [See Fig. 4(b).] The amplitude for
this process, illustrated in Fig. 4(b), should be compared
to the amplitude resulting from the diagram in Fig. 5(a),
where the pion is absorbed by the other nucleon and is a

part of the contribution to the total amplitude from the
diagram in Fig. 3(c). More important is the fact that we

include all of the higher order multiple scattering effects.
In this way we satisfy unitarity at the two- and three-
body levels. Finally, our starting point being the chiral
bag model, allows us to treat the nucleon, b(1232), and
higher mass isobars, on equal footing, thus maintaining
some consistency with QCD. More interesting, is the
fact that at a later stage we can examine a nonstandard
mechanism such as the six-quark formation within the
framework of our theory.

A proper treatment of NN bremsstrahlung will require
a theory that gives a good description of the N-N interac-
tion, and therefore may require the inclusion of the heavy
meson exchange. The present Hamiltonian does not gen-
erate such heavy meson exchanges because we have not
included the coupling of such mesons to the quarks.
However, we can include the exchange of heavy mesons
in the form introduced in the NN-vrNN equations, '

which gives a good description of N-N scattering at medi-
um energies. In our present formulation we have not at-
ternpted to include the Coulomb interaction for proton-
proton bremsstrahlung because we feel that the inclusion
of the heavy meson exchange is more important. (We
also note that Marker and Signell estimated the
Coulomb effect on the cross section 5 —10 %.) Here, we
consider NN bremsstrahlung because the amplitude for
this reaction is related to the amplitude for the photo-
disintegration of the deuteron. To illustrate this, we note
that the NN bremsstrahlung amplitude (yBB~BB),F,"',
is given by the adjoint of Eq. (4.14), i.e.,

F (1)f' ~ F (2)t($)G(1)T(1)
d

+ y~' ' G' )F( )t(()(1+G")T(")

+ y (M (z) G (2)+1)M (2)t(j)G(2)U(&)G(2)P(2)t( ')
B,d A, d ~

V d

X ( 1+G( 1 )T(1)) (4.20)

A careful examination of the first two terms on the rhs of

(b)

(4) (bj

+ ~ ~ ~

FIG. 3. The diagrammatic representation of Eq. (4.19).
Here, we have included the lowest order contribution to the am-
plitude for BB~yd.

FIG. 5. The decomposition of the dressed yBB vertex in the
diagram given in Fig. 3(c).
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Eq. (4.20) reveals that (i) the initial and final N N-interac-
tions are not the same, to the extent that the initial N-N
interaction T"' is generated by the BB-EBB equations
and includes coupling to the b, (1232) as well as including
the one-pion exchange diagram explicitly. On the other
hand, the final N-N interaction comes via
M I) d d~——'t"'(3) as an input amplitude. To make the
two consistent will be a constraint to be imposed on the
equations. (ii} The coupling of the photon to the nucleon
involves the dressed vertex F d ', which includes the cou-
pling of the photon to the pion as illustrated in Fig. 6.
These pionic corrections are normally not included in NN
bremsstrahlung calculations. (iii) We can write the am-
plitudes for yNN~NN and np~yd in terms of the am-
plitude for the reaction BB~n.BB.

Finally, we need to eliminate the AGS amplitudes,
U'&, from the expressions for the photodistintegration
amplitude in Eq. (4.18) and for the NN bremsstrahlung
amplitude in Eq. (4.20). At the same time we would like
to illustrate the relation between these two amplitudes.
Making use of the fact that the disconnected one-particle
irreducible amplitude for yBB~BB,F d", is equal to the
corresponding two-particle irreducible amplitude F d ',
we can write

F(1)t F (1)f F (1)t
d +

(M (2) g (2)+ 1)
'F (2)t+ W M '2' (1')G(2)U.'. 'F' )t '(1+g"'7"')

d ~ A, d v d
V

(4.21)

On the other hand, the photodistintegration amplitude in
Eq. (4.18}can be written in terms of the amplitudes Ta)„.
given by the adjoint of Eq. (3.7), and Ta 21 as.

T11 d
——(Ta 21G"'+. l )F d

'. + g Ta (G' 'M'q'd(1) ..

(4.22)

Needless to say, the physical amplitude for both reactions
are the connected parts of the amplitudes in Eqs. (4.21)
and (4.22). In these two equations we have written both
the photodisintegration and NN brernsstrahlung ampli-
tudes in terms of the amplitudes that we get from the

+ e

+ ~ ~ ~

FIG. 6. The decomposition of the dressed yBB vertex as

present in NN bremsstrahlung.

BB-~BB equations. ' In this way we have reduced the
evaluation of these amplitudes to integrals over the half-
off-shell amplitudes which we get from the BB-~BBequa-
tions.

V. PHOTOPRODUCTION OF PIONS
OFF THE DEUTERON

M (1) M (2) + (F(1)fG(1)F(2) )
A, c A, c jc

M (2) + tF(2)tg(1)F (1)
jA, c c

(5.1a)

(5.1b)

Making use of Eqs. (3.3), (4.11), and (4.21), we can write
the connected part of the one-particle irreducible ampli-
tude for mBB~yBB,M '„"„as

Having completed our analysis of the photodisintegra-
tion of the deuteron and NN bremsstrahlung, we turn our
attention to pion photoproduction [i.e., the reactions
given in Eq. (4.1b)—(4.1d)]. In this way we will have the
appropriate expressions to derive a set of coupled equa-
tions for the reactions given in Eq. (4.1).

To get the amplitudes for pion photoproduction, we
need to examine the one-particle irreducible amplitude
for the reaction mBB~yBB,M'A", . The diagrams that
contribute to this amplitude can be divided into two
groups: (i) Those that are two-particle irreducible, which
we denote by M(z), . (ii) The diagrams that are two-
particle reducible. These can be written, using the last-
cut-lemma, as

IF(1)tg(1)p(2)
j

IF(2)tg(1)p(1)
j

We now can write

M (1) ~ '1+ ~ M(2)(~)g(2)U(2)g(2) '

IM (2) (1)+F(2)t(1)g())7 jg (2)M (2)
ai A, d d B;d B,d

a

+ y M(2)((2)g(2)U(2)g( )[M (2) (1')+P(2)t(1')G())T j+ tF(2)tg( )T
j

ai
(5.2)

Since our initial state is y+d, we need to take the rhs residue of M 'z', at the deuteron pole. Making use of Eq. (4.15}
for M Bd and the fact that M'„'d does not have a deuteron pole, we find that the only nonzero contribution to the
n.BB~yd amplitude, comes from the first term on the rhs of Eq. (5.2), i.e.,

T(~gg~yd)= y 1+ y M' '(~)g' 'U' .'g' ' (M' (1'}+p'( t(1')G'"7
d j ~ yd ) .

a
(5.3)

To get the amplitude for the reaction m d~yd, we have to take the lhs residue of T(nNN~yd) at the deuteron pole.
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The only nonzero contribution to this residue comes from Md '(3), which can be written schematically as

M' '(3)=d„'r'"(3)

E +ed
(5.4)

Making use of the definition of the deuteron wave function as given in Eq. (4.16), we can write the amplitude for
7T d+—Qd, as

T(~'d yd)=&1(d
I g U3'G"'IM'&'d(0+Fd" (i)G"'T& dI I gd)

(5.5)

with

T3 d= g .U3~t G {M A d(l)+Fd ' (i)G"'Ta d]. (5.6a)

U~z~+ ~~ U' IG' 'F' 't(i)G'"T . G'2'M ~~'
( ')+ ~~ U'. 'G' 'F' 't(i)(1+G~ "T )G"'F '2'

3i ~ 3i d ~ B j Ad J ~ 3i d B;B d

(5.6b)

eluded all of the diagrams that he included, with the add-
ed constraint that our results must be consistent with the
corresponding results on a single nucleon. In addition,
we can treat the nucleon and higher mass isobars on
equal footing. Finally, all our vertices are dressed and
give the correct coupling constant.

We now turn to the reaction N(mN)~yd. To get this
amplitude, we need to take the lhs residue of Eq. (5.3) at
the quasiparticle (B') pole in the m.B amplitude. Since
this pole is at a complex energy, the corresponding ampli-
tude is not an observable. However, we need to consider
this amplitude in order to get a closed set of coupled
equations for the reactions given in Eq. (4.1). Assuming
the m.B amplitude has a quasiparticle pole, we can write
M' '(i) as

T3 d= g T, )G.' 'M'„'d. (J)+T38G "F
J

(5.7)

This result gives us the m photoproduction amplitude in
a form that includes the multiple scattering of the pion,
off the two nucleons, to all orders. It also includes the
contribution due to true absorption (i.e.,
yd~BB~n d). Making use of the BB-~BB equations
in Eq. (5.7), we can derive a multiple scattering series for
the amplitude T3.d. This series is of the form,

To get the result of Eq. (5.6b) from Eq. (5.6a), we have
made use of Eq. (4.22) for Ta d. To further .simplify this
result, we make use of Eqs. (3.7) and (3.15), for T s and.
T .13, respectively. This gives us an expression for the
amplitude for the photoproduction of m, in terms of the
amplitudes we get from the BB-~BBequations, T .I3 and
Ta p~ 1.e

T3 d g M 'q'd+ g Fd '(i)G"'F d '(J)
iJ

+ y M~~~(i)G~2~$. .M 't2~
(j)+

lJ

(5.8)

+ ~ ~ ~

This result can be compared with the work of Laget,
who considered the lowest terms in the multiple scatter-
ing series. Here, the two-body amplitudes are consistent
with pion elastic scattering and photoproduction on a
single nucleon, while the propagators and vertices are
dressed to give the physical coupling constants and
masses. Furthermore, the fact that the photon is coupled
to both the baryon and meson at the single baryon level,
implies that meson exchange currents are included. This
is illustrated in Fig. 7, where we have given a diagram-
matic representation of the amplitude for pion photopro-
duction in Fig. 7(a), and the decomposition of the first
term on the rhs of Eq. (5.8), in Fig. 7(b). A comparison of
this result with those of Laget indicates that we have in-

(a)

+ ~ ~ ~

FIG. 7. (a) The lowest order contribution to the amplitude
for pion photoproduction. (b) The lowest order diagrams that
contribute to the amplitude for pion photoproduction as a result
of including the coupling of the photon to the pion in the arnpli-
tude for photoproduction at the one nucleon level.



226 M. ARAKI AND I. R. AFNAN 38

Md (i )= g 5JdB '(j)t "'( i )

J

E —eB

l g l
= +5,jdB '(j) + I ~ ~

(5.9)

EBBsystem, as

T, d
——. P T; ,G.' 'M '„'d(J)+ Ti BG. "'F

d
' .

J
(5.15}

We now can combine Eqs. (5.7) and (5.15) into a single
equation of the form

where e + is the complex energy at which the mB ampli-

tude t"'(i) has a pole corresponding to the quasi-particle
B . This quasi-particle pole is also present in the ampli-
tudes M '„'d(i) and Fd ' (i) since

M „d(()=M'd d(l)+Md '(i)G' 'M „'d(i), (5.10)

F(2)'t(i) F(3)t(i)+M(2)(t)G(2)F(3)t(() (5.1 1)

With the above results, we can now take the lhs residue
of Eq. (5.3), to get the amplitude for 8 (nB)~yd to be

T[B(mB)~yd]:(g, (i—)
~
T,' d~ fd ),. (5.12)

Since the amplitude for 8 (mB)~yd is not an observable,
we can take advantage of working with T;.d rather than
T,'.d to simplify the final set of coupled equations. Here,
we should stress the point that working with T;.d instead
of T,'.d is not an approximation but a matter of conveni-
ence. Making use of Eqs. (3.7), (3.15), and (4.22), we can
rewrite Eq. (5.14) in terms of the amplitudes for the 88-

with

T,'.d ™„'d(i)+Fd' (i)G"'TBd.
+ g O' 'G' '(M' ' (j)+F' ' (j)G "T . j .

J

(5.13)

To get the final equations in terms of two-particle irre-
ducible amplitudes, (i.e., renormalized vertices, and two-
body scattering amplitudes), we need to redefine T; dto.
include only the last term on the rhs of Eq. (5.13), i.e., re-
place T .d by T;.d, where

Ti;d = y Uij G (M d, d(J)+Fd (J}G TB;d )
J

(5.14)

Ta d
——.Q Ta JG' .'M'„'d(J)+Ta BG". 'Fd'.

J

(5.16)

This equation describes the reaction for pion photopro-
duction as a distorted-wave matrix element, which in-
cludes the effect of the pion multiple scattering, through
the amplitudes one gets from the BB-EBBequations. The
above form for the pion photoproduction amplitude is
convenient for calculating the lowest order contribution,
in the multiple scattering series to the amplitude. In Sec.
VI, we show how one can calculate these amplitudes
from a set of coupled integral equations that satisfy two-
and three-body unitarity. The three-body final-state pho-
toproduction amplitude (i.e., nBB~yd) is given in Eq.
(5.3), and can be written in terms of the amplitudes given
in Eqs. (5.7) and (5.13}.

VI. COUPLED BB-EBB-yBBEQUATIONS

In the above discussion, we concentrated our effort on
deriving explicit expressions for the amplitudes corre-
sponding to the reactions in Eq. (4.1). Although the
forms of these expressions, as given in Eqs. (4.22) and
(5.16), are convenient for expansion as a multiple scatter-
ing series or as distorted-wave matrix elements, neither of
these forms are the most convenient for numerical com-
putation. In this section we derive a set of coupled equa-
tions for these amplitudes. Here, we find that the resul-
tant integral equations, which satisfy two- and three-body
unitarity and have the form of the Faddeev equations,
have the same kernel as the BB-~BBequation derived in
Sec. III. This implies that one can get the cross section
for pion-deuteron elastic scattering, photoproduction of
pions, and photodisintegration of the deuteron, from the
same set of equations. The success of such a program
would be a major unification in our understanding of
these reactions.

Making use of Eqs. (3.10) and (3.17), for TB Band TB.;, .

respectively, in Eq. (4.22), we get

TB.d Fd + QFd (i)——5iG M d d(j)+ VopEG (TB BG +1)Fd + g. TB; G M d d(i)
IJ I

+ Q F(2)(i)5 G(2)M(2)((x)G(2) T G(1)F (2)+ + T G(2)M (2)
( )t 7

ia
(6.1)

Using Eqs. (4.22) and (5.16), we can write the above as

TB;d F d + g Fd ( }5ijG M A, d(J)+ VOPE B;d + Q Fd ( }5iaG Md (+)G Ta d (6.2)

To close the equations we need to get an equation for T d. This is achieved by. using Eqs. (3.16) and (3.9) for the ampli-
tudes T ~and T B, respective. ly, in Eq.. (5.16) to get
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T .~ ——+5~~M'q'g(J)+ +5~ Fq. ' (j)G'" (T~ qG. "+1)F~ '+ g Ts ;G' 'M'„'q(i)
J I

+ +5~rM~ '(y)G' ' g Tr &G.
' 'M'„'„(g)+T~ sG. '"Fq '

r J

(6.3)

Making use of the definition of the amplitudes Tri zan. d Tr &as. given in Eqs. (4.22) and (5.16), respectively, we can
write the second integral equation as

T~ ~
——+5~,M'~'~(i)+ g 5~;F~ ' (&)G'"Tii ~+ +5~rM~ '(l')G' 'Ti,

I r
(6.4)

NN~yNN. The formulation is based on a Hamiltonian
resulting from the projection of the chiral bag model La-
grangian (e.g. , cloudy bag model' ) onto the space of
baryons. Although the derivation of the integral equa-
tions does not depend on a detailed form of the Lagrang-
ian we have employed, there are four basic assumptions
used in formulating the problem: (i) The chiral bag mod-
el Lagrangian is expanded in powers of the pion coupling
constant, and only the terms up to order g =(2f )

' are
included. This is basically the approximation used in
deriving the cloudy bag model. ' This leads to a La-
grangian that has only the terms that are linear and
quadratic in the pion field. This truncated Lagrangian
has been used with great success for S- and P-wave m-N

scattering. (ii) The coupling to the electromagnetic field

is introduced at the quark level by requiring the Lagrang-
ian to have U(l) gauge symmetry (i.e., B&~r)& ieA„). —
This coupling of the electromagnetic field to the quark
and pion is included to first order only. (iii) The resultant
Lagrangian is projected onto the space of baryons. In
this way, our Hamiltonian has only baryons, mesons, and
photons with the vertices for the coupling of the baryons
to the mesons and photons, determined by the chiral bag
model. The corresponding form factors are then related
to the size of the baryons. This procedure removes the
possibility of having two overlapping bags or the forma-
tion of six-quark bags. The contribution of six-quark
bags can, in principle, be included in the present formula-
tion by expanding our Hilbert space to include such six-
quark states, then using perturbation theory to determine
their contribution as discussed in Secs. IV and V. We
have also excluded the possible change in the size or
shape of the bags corresponding to the two baryons. (iv)
To satisfy two- and three-body unitarity, we have includ-
ed in our Hilbert space, the states

~

BB ),
~

EBB ), and

~ y88 ) . To truncate our coupled integral equations to
the above Hilbert space, we have neglected the coupling
between the states that differ by more than two bosons,
where the boson can be either a pion or photon.

Within the above framework we have derived a set of
coupled integral equations that give a unified formulation
for all of the reactions in Eq. (1). In addition, the final
equations have the following distinctive features: (a)
There are no free parameters, to the extent that all of the
parameters of the chiral bag model Lagrangian are fixed
at the single baryon level. This has been discussed previ-
ously for the m.-N system ' and for pion photoproduc-
tion on a single nucleon. (b) The renormalization of
both the propagators and vertices is handled in a con-
sistent manner with unitarity. In other words, the renor-

VII. CONCLUSION

In the present paper, we have presented a unified
description of the reactions, y d ~np, m. d, m NN and

In Eqs. (6.2) and (6.4) we have a set of coupled integral
equations for the amplitudes for the photodisintegration
of the deuteron, and pion photoproduction. These equa-
tions which satisfy two- and three-body unitarity (as far
as the strong interactions are concerned) include the
threshold for pion production, and can give a good
description of these reactions at medium energies, where
the b(1232) dominates. The input to these equations are
the dressed EBB and yBB vertices as well as the nonpole
n.B~n.B and yB~~B amplitudes. These amplitudes
can be constructed to fit the data for these reactions. If
we make use of the chiral Lagrangian given in Eq. (2.1),
in conjunction with our previous results for the m.B~mB
(Refs. 23 and 25) and yB +mB, th—en the only free pa-
rameters in the theory are those associated with the
chiral Lagrangian (e.g. , the bag radius, the bare masses,
and the bare coupling constants). In this case, a compar-
ison of the results of a calculation based on these equa-
tions with experiment, could be used to justify the intro-
duction of explicit quark degrees of freedom into the
theory. This could partially be accomplished within the
present formulation by taking into account, in perturba-
tion theory, the three-particle irreducible amplitudes F,'3',

F ', ', M,' ', and M '„'„which are to be determined by our
model for the six-quark bag.

If we compare Eqs. (6.2) and (6.4) with the BBnBB-
equations [e.g., Eqs. (3.16) and (3.17) for md~md and
md ~EN], we find that the kernel of the two sets of equa-
tions are identical. This means that we can give a unified
description of all the reactions in Eq. (1). In fact, we can
get the cross section for all of the above reactions with
two-body final states, from a single set of integral equa-
tions. At present we have a detailed analysis of the reac-
tions in Eqs. (l.lb) and (l. ld) within the framework of
the NN-mNN equations. This analysis has had consider-
able success in describing a large set of data covering
both differential cross section and polarization observ-
ables. ' ' There are also indications that the inclusion of
some of the mechanisms included in the BB-~BBequa-
tions, by treating the N apd 6 on equal footing, ' ' im-
proves the agreement between theory and experiment.
Thus, an extension of the present analysis based on the
NN-m. NN equation, to the BB-m.BBequations, with the in-
clusion of the reactions in Eq. (l.la), could be very
promising.
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malization of the coupling constants and the calculation
of the amplitudes are carried out to the same order. (c)
The nucleon and 5(1232) are treated on equal footing as
three-quark states. Therefore, the backward-going pion
contribution to 88~88 (where 8 =N, b ), which is lack-
ing in the NN-n. NN theories, ' is now included. In ad-
dition, one can extend the equations to include higher
mass isobars [e.g. , the Roper N(1440)] in terms of their
quark structure. This has already been accomplished for
the n. Nsy-stem. ' (d) The present theory can be ap-
plied above the threshold for pion production, since
three-body unitarity is satisfied. (e) By treating the N and
6 on equal footing and introducing the electromagnetic
coupling at the quark level, we have included both the
isobar current and the pion exchange current without any

ambiguity. This is particularly relevant for the reactions
yd~~pn, for which these currents have been the subject of
recent controversy. (f) The question of dibaryon reso-
nances is still being investigated in both NN~NN and
yd ~pn reactions. The present formulation considers
both of these reactions in a unified manner. (g) Finally, a
consistent discrepancy between experiment and the re-
sults of calculations based on the equations presented
above, could be considered as possible evidence for the
need to introduce explicit quark degrees of freedom into
the description of these reactions.
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