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Azimuthal distributions in heavy ion collisions and the nuclear equation of state
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For near central collisions of Nb on Nb at a laboratory energy of 650 MeV per projectile nucleon
we calculate inclusive cross sections as a function of the azimuthal angle where this angle is mea-

sured from the reaction plane. The azimuthal dependence is strongly influenced by the nuclear
equation of state and is a useful quantity to measure.

I. INTRODUCTION

A major goal of heavy-ion collision experiments is to
extract information about the nuclear equation of state.
One needs to select observables which are influenced by
the nuclear equation of state as opposed to those
influenced mostly by kinematics, nucleon-nucleon
scattering cross sections, geometry, etc. Various observ-
ables have been proposed in the past, including pion pro-
duction, ' kaon production, flow angles, transverse mo-
menta, ' etc. A summary of the experimental situation
and details of models which attempt to calculate these
observables can be found in recent review articles. '

We also refer the reader to a recent update by
Danielewicz.

In this paper we examine azimuthal distributions as a
testing ground for the nuclear equation of state. The ex-
act meaning of azimuthal distribution is described in Sec.
II. Azimuthal distributions of charged particles have
been measured previously. ' An experiment to measure
such distributions for neutrons has been proposed" and
will be performed at the Bevalac in the near future. Here
we report on calculations of azimuthal distributions for
collisions of Nb on Nb. It is found that the anisotropy of
the azimuthal distributions depends quite strongly on the
equation of state used. We also investigate the depen-
dence of the azimuthal distribution on nucleon-nucleon
scattering cross sections and find it to be somewhat weak
although this may be particular to the example we chose
to work with. At the end we shall predict a value for the
maximum azimuthal anisotropy.

The fact that the azimuthal distribution is influenced
by the nuclear equation of state was pointed out in Ref. 2
(see Fig. 8.4 in that Reference). In calculational details
there are major differences between our approach and the
near analytical methods used in that paper.

II. AZIMUTHAL DISTRIBUTIONS

Consider a collision of two heavy ions. For nonzero
impact parameter b, the beam (z) direction and the line
joining the centers of the nuclei define the reaction plane.
This plane is, of course, known a priori in a simulation of

&(y, ) = g e(y, )&(y; —y, )co(vi )vi(i), (2.1)

where

e(y; ) = —sgn(y; )

and y, is the rapidity of particle i in the c.m. system, gives
the required estimate Pit. y, denotes a cut in c.m. rapidi-
ty and co(vi) is a weight factor chosen to minimize
dispersion in the reaction plane azimuth. ' The experi-
ment proposes to measure triple differential cross sections
of neutrons and, in particular, the angular dependence of
dtr/d(P —Pz). Although inclusive neutron cross sec-
tions are harder to measure than proton inclusive cross
sections, they were, nevertheless, measured successfully
in the past. '

The objective of this paper is to examine the sensitivity
of d o /d P to the nuclear equation of state (EOS). We
have performed calculations for Nb on Nb collisions at a
laboratory beam energy of 650 MeV/nucleon. The re-
sults are integrated over an impact parameter range

the collision; we choose it to coincide with the y =0 plane
and measure azimuthal angles with respect to it. Suppose
that before collision nucleus 1 (2) was moving in the posi-
tive (negative) z direction with its center at
x =b/2( b/2). —In the course of the reaction nucleons
from nucleus 1 (2) acquire a net momentum in the posi-
tive (negative) x direction (while maintaining overall
reflection symmetry about the reaction plane). This
property allows one to determine, experimentally, the re-
action plane in a given event. Since, however, not all
particles are identified and momentum analyzed, esti-
mates of the azimuthal angle of the reaction plane Pit
have a nonzero dispersion.

In the transverse rnomenturn method ' one defines for
each event a vector Q = g, co, pi(i) where i is the particle
index and co;=sgn(p, ); p(i) is the momentum in the
center-of-mass (c.m. ) system of the nuclei. The vector Q
then defines the estimated x direction.

In the proposed experiment" the reaction plane is to
be determined by measuring the transverse velocity of
charged particles, vi(i) The vecto.r'
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chosen with the above experiment in mind. " A multipli-
city gate allows one to choose the impact parameter
range in the experiment. Since projectile and targetlike
fragments have a net Aow in opposite x directions, it is
useful to choose one set or the other; for greater sensitivi-
ty to the EOS further cuts may be needed. This is dis-
cussed in Sec. III. With our choice of initial conditions
and cuts, the maximum do. /dP is at /=0' and the
minimum at /=180'. We call

(«/dP), „
(do/dP);„

(2.2)

to be the maximum azimuthal anisotropy. The quantity
% is related to transverse momenta, but gives some com-
plementary information as it relates p„ to

~ p» ~

(the aver-
age value (p» ) is of course zero) although it provides no
information about the magnitudes of p„and p individu-
ally. The in-plane transverse momentum experiments
give the magnitude ofp„, but say nothing about

~ p»
In the past it has been difficult to fold into theoretical

calculations the eft'ects of acceptance filters in transverse
momentum experiments. We do not foresee such
difficulties for the azimuthal distributions.

The effect on R of a finite rms dispersion APE of the
reaction plane may be estimated using a simple form for
the azimuthal nucleon inclusive cross section,

do =a +b cos(P —PR ) (2.3)

where a and b are suitably defined constants. Assuming a
Gaussian distribution for P~ with ( Pz ) =0', viz. ,

-O', /t2~~&„~')

hp„v 2n.
and —,'(m. /hPz ) » 1, we then obtain the estimate

—
~ (4(Yf}~ )a+be

est

a —be 2 R

(2.4)

(2.5}

which reduces A =(a +b)/(o b) if —the reaction plane is
exactly determined in each event. Typically, % is found
to be decreased by about 25%%uo for a dispersion of 35'. In
the following discussion we assume APE ——0' and choose

4 =o'

III. CHOICE OF CUTS IN THE SIMULATION

The calculations performed here use the Boltzmann-
Uheling-Uhlenbeck (BUU) formalism which is well docu-
mented. The time evolution of the Wigner function

f (r, p, t) in phase space is given by

"r}f 1

(2m)'
+v V,f —V„U V»f = —

6 Jd p2d p2.dQ u~2dQ

&& I[ffz(i —f i )(I —f2 ) —f i f2 (I —f}(1—f2)](2~)'fi'(p+p2 pl' P2')l (3.1)

where do&~/dA and u, 2 are the cross section (energy
dependent) and the relative velocity for the colliding nu-
cleons, respectively, and U is the mean-field potential.

In our numerical calculations, we use 60 test particles
per nucleon, a grid size of 1.5 fm and a time step of 0.3
fm/c. The impact parameter is averaged over the range
0.4R &b &0.8R, where the radius R of Nb is taken to
be 1.143' fm. The calculations were done in the c.m.
frame. Spectators are defined as particles moving with
0.79& (y/y ),

~

&1.11 (compare with Ref. 14) and in
the angular range 0 &8&5 (or 175'&8&180 ) and are
ignored. We next consider various laboratory frame rapi-
dity cuts, viz. , particles with (y/y»)„b &0.5 (these would
correspond to a11 participants with momenta p, & 0 in the
c.m. ) and (y/y»)&, b&0.75. We have also considered par-
ticipants in the forward direction with 0&,b & 10,
6j„b & 15, and 0&,b & 20'. Of all these choices the cut
(y/y» )„b& 0.75 is the most profitable in the sense that the
maximum azimuthal anisotropy

%=(der Id/)0/(der Id/)(so

is maximum. The ratio A depends on the equation of

state; the harder the equation of state, the higher is the
value of R.

IV. DEPENDENCE OF AZIMUTHAL DISTRIBUTIONS
ON THE EQUATION OF STATE

In this section we show results with three equations of
state. the first one is a soft EOS without any momentum
dependence used by Bertsch, Kruse, and Das Gupta
(BKD). ' Here the mean field is given by

' 7/6

U(p) = —356 +303 (MeV),
Po Po

(4.1)

U(p}= —124
Po

+70.5
Po

(MeV) . (4.2)

The third is a momentum dependent interaction used by
Gale, Bertsch, and Das Gupta' which we shall refer to
as the GBD parametrization

where po is the density of cold nuclear matter. The
second one is a hard EOS used by BKD for which

,
2
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7/6

U(p, p)= —144 ~ +203.3
Po Po

75 &3 f(r p)8 p 2
po p —(p)1+

~ ~

(y/y, )i.~ » "t~

Po
(MeV),

I p —(p)
A

(4.3)

b

where A=1.5pF '. The three equations of state give
compression moduli X=200 MeV, 380 MeV, and 215
MeV, respectively. The angular distribution da/1$ for
the three cases are shown in Figs. 1, 2, and 3. The values
of the maximum anisotropy R are shown in Table I. The
BKD soft equation of state gives % =2.0; the BKD hard
EOS gives %=4.3, and the GBD parametrization gives
%=5.2. The value of R is sufficiently different for the
soft and the hard equations of state that A is a useful
quantity to measure. Not unexpectedly, the momentum
dependent GBD parametrization gives a high value of R
despite a compression modulus which is nearly the same
as that of the BKD soft equation of state. We shall have
more to say about momentum dependent interactions
later. In Fig. 4, we show the azimuthal distribution ob-
tained by imposing a cut in the laboratory angle as op-
posed to a cut in rapidity.

It is necessary to ascertain how sensitive this azimuthal
anisotropy is with respect to nucleon-nucleon cross sec-
tions. Figures 1 through 4 show the results of calcula-
tions using free nucleon-nucleon cross sections o.~z. In-
medium corrections will alter these values. Some of this,
of course, is taken into account by the Pauli blocking in
the BUU formalism. Bertsch et al. ' have considered the
effects of reducing the cross sections. More recently,

I
I

I

(y/y, )„b ) 0.75

0
0 60 120

(deg)
180

FIG. 2. Same as in Fig. 1, but for the hard BKD interaction.

Bertsch et al. ' have argued that inelastic cross sections
should increase with increasing density. We have not
changed the cross sections for each of the three equations
of states; for the BKD soft EOS we used om, z/o zz ——1.7
(both for elastic and inelastic). The results are shown in
Fig. 5. The ratio % changed from 2.0 to 3.0 which is still
less than 4.3 (the value for the BKD hard EOS with free
nucleon-nucleon cross sections} or 5.2 (the value for the
momentum dependent GBD parametrization with free
nucleon-nucleon cross sections). We have also performed
a calculation with GBD parameters, but with

o,z/cr ztv ——0.5 (again both elastic and inelastic). The ra-
tio R changed from 5.2 to 4.8. These results are summa-
rized in Table I. Thus, in spite of uncertainties in the
values of "correct" cross sections, azimuthal anisotro-
pies, at least in this particular case, are useful to gain in-
formation about the nuclear equation of state. The cross
section o for nucleons emitted with (y/y )~,~)0.75 is

~ ~ ~

6 ~
~

I
I

I

(y/y, )I b

b ~ ~

0
0 60 120

$ (deg )

180

FIG. 1. The azimuthal differential cross section for nucleons,
integrated over the impact parameter range 0.4R (b & 0.8R, for
Nb + Nb collisions at El,&/A =650 MeV. A soft BKD interac-
tion is used. The cut in rapidity is displayed.

0
0

I I I

60 120

(deg }

180

FIG. 3. Same as in Fig. 1, but for the momentum dependent
GBD interaction.
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TABLE I. Summary of results for Nb on Nb at E„b/A =650 MeV, averaged over an impact param-
eter range of 0.4R (b(0.8R, where R is the radius of Nb. Column two gives the compression
modulus K for the various equations of state. cr&-&. and o. ,d refer to the free (Ref. 8) and the in-medium
nucleon-nucleon scattering cross sections, respectively. %' and cr are the maximum azimuthal anisotro-

py and total nucleon cross section, respectively, for particles with lab rapidity y )0.75y~. The mid-

rapidity slope OF, the average in-plane transverse momentum (p„) and the maximum flow angle 0,„
are also given.

EOS

BKD
BKD
BKD
GBD
GBD

This work
This work

(MeV)

380
200
200
215
215
215
380

~med

~NN

1.0
1.0
1.7
1.0
0.5
1.0
1.0

4.3
2.0
3.0
5.2
4.8
4.3
7.4

(barns)

21
21
18
21
25
21
21

(Me V/c)

180
140
200
210
150
200
240

(Me V/c)

68
47
69
80
64
73
92

~max

14'
70

18'
16'
11'
15'
18'

also given in Table I. It is affected only by a change in
the nucleon-nucleon scattering cross section.

In Table I, we also show results of other measures of
flow, viz. , the mid-rapidity slope OF of in-plane transverse
momenta (p„(y/yz)) curves, average in-plane trans-
verse momenta (p„) for particles with p„&0 in the c.m. ,
and the maximum of a Jacobi-weighted flow angle distri-
bution from sphericity analyses in the c.m. system, O,„.

At the end we would like to quote a predicted value for
the ratio W. Since the momentum dependence of the nu-
clear potential is an established fact, we shall use a
momentum dependent potential. However, we shall use a
more complicated version than the GBD pararnetriza-
tion. The next section explains why.

V. MOMENTUM DEPENDENCE
OF THE EQUATION OF STATE

The GBD parametrization of Eq. (4.3) is simple and
adequate provided local equilibrium exists. A recent pa-
per' compares U(p, p) as given by Eq. (4.3) with the
U(p, p) derived from the Gogny interaction. The com-
parison was done for nuclear rnatter at relevant values of
p and at zero and 50 MeV temperatures. The numerical
values of the potentials are close enough so that the GBD
parametrization does an adequate job in most situations.

On closer scrutiny it can be deduced that the two in-
teractions can give quite different results under extreme
nonequilibrium situations. Such an extreme nonequilibri-
um situation will exist for a short time in the early histo-
ry of a "hit" when the two heavy ions begin to inter-

6—
8),b ( 15

4 DD
0

D ~
D

~ ~

b

~ ~

0
0

I l I

60 120

(deg )

180

FIG. 4. Azimuthal cross section for participants emitted
within a forward cone of 15 in the laboratory frame, with soft
(open squares) and hard (solid squares) BKD interactions.

0
0

I l I

60 120

(deg )

180

FIG. 5. Same as in Fig. 1, but with the in-medium cross sec-
tion a factor of 1.7 larger than the free space value.
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penetrate and sufficient number of collisions have not yet

taken place to degrade the originally directed motion of

the.two nuclei.
In determinantal theories the exchange terms give rise

to a potential energy density

~ ~ ~ ~ e

0 P

I~'P~'P'f (r P)f (r P')g (
l P P l

)
Po

g3 g3 ~ f (r P)f (r P')dplp
Po 1+ p —p

(5.1)

FIG. 6. The two colliding ions as seen in momentum space.
8 is the angle between the momentum p of a nucleon inside the
target and —Po, where Po is the relative momentum.

where in the last step we have assumed a Yukawa form
for V(

~

r —r'
~

). The Gogny interaction uses a sum of
two Gaussians, thus

(1+[(p—p') /A]')
—a,. (p —p')

would be replaced by g; e ',i=1,2. The exact
functional form of V(

~
r —r'

~
) is not crucial so long as

the parameters are chosen to fit the binding energy, the
compression modulus, the optical potential, etc. We shall
stay with the functional form

(1+[(p—p') IA]')

in the same Fermi sphere although the contribution from
the other Fermi sphere is small. The net result for large
Po is that U2 becomes less attractive than U& while both
give comparable values in the local equilibrium situation.
This is shown in Figs. 7 and 8. We have also verified that
both U, and U2 are consistent with results obtained us-

ing the Gogny interaction when local equilibrium pre-
vails.

We have therefore opted to choose a potential energy
density which is given by

A 8 p+'
V(p)= —~+

2 Po 0+1 po

as, for our purpose, it is easier to work with. The poten-
tial U, (p, p) deduced from V'" [Eq. (5.1)] is easily seen to
be

C ~3 ~3, f(r, p)f(r P )
6f p8p

Po p —p1+
(5.4)

C'
Ui(p p)=2 Jd p'

Po

f (r, p')
'2

This leads to a potential

This is to be compared with the potential Uz(p, p) used in

GBD,

U2(p, p)= —f1 p
p-(p)1+

60

40—

I
'

I

p

1+C 2

+
(5.3)

0

The two potentials U, (p, p) and Uz(p, p) can give
significantly different results in the following physical sit-
uation. Consider two large nuclei which overlap in
configuration space but which are disjoint in momentum
space (see Fig. 6). One nucleus has nucleon momenta up
to p+ centered around Po/2 and the other around
—Po/2. A typical value of Po is 0.8 GeV/c. The poten-
tial Uz(p, p) depends on the deviation of p from the aver-
age value; this average value is zero. Thus

~ p —(p)
~

=Po/2 is large and hence the magnitude of
Uz(p, p) is considerably weakened. If instead one uses
U, (p, p ), the nucleon whose momentum is in the first
Fermi sphere gets significant contributions from nucleons

—40
0

I

0.8
I

1.6
e (rad)

I

2.4 3.2

FIG. 7. The single particle potential felt by a nucleon inside
one of two separate Fermi fluids overlapping in coordinate
space. 8 is defined in Fig. 6. Results are shown for different
values of nucleons momentum p (with pF '-=263 MeV/c) for the
GBD interaction (dashed curves) and the interaction in Eq. (5.5)
of the present work (solid curves).
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U(p, p)= A
Po

+2C fd'p
Po

Po

f (r, p')

p —p
A

(5.5)

The advantage of this functional form for momentum
dependence is that for cold nuclear matter [f(r, p)
=(4/h )0(PF —p)] the integrals appearing in Eqs. (5.4)
and (5.5) have closed analytical expressions although they
are not simple. For completeness we write down the ex-
pressions.

d pd p

P —P
A

32~2 4, , A 2pF
pF A —', — arctan

3 2pF

A2 3 A2 1 A4 4pF
2+ 2+ 4 +

16pF 16 pF 64 pF
(5.6)

d p' 3 PF+A P(—P+PF) +A 2PF P +PF
ln + —2 arctan

2p A (p —pF )2+ A2 A A
1+

P —PF—arctan
A

(5.7)

There are five constants in Eq. (5.4); these are found by
requiring that E/A = —16 MeV, po ——0.16 fm, X=215
MeV, U(po, p =0)= —75 MeV, and U[po, p~/(2m) =300
MeV]=0. Their values are then A = —110.44 MeV,
B= 140.9 MeV, C = —64.95 MeV, 0.= 1.24 and
A=1.58pF ', and yield an effective mass m*=0.67m.
With these parameters the new potential of Eq. (5.5) be-
comes repulsive for cold nuclear rnatter at normal density
for kinetic energy E greater than 300 MeV. For much
higher kinetic energies, the potential reaches an asymp-
totic value of 30.5 MeV. These features are id accord
with optical model potential fits to nucleon-nucleus
scattering. In contrast, the GBD potential gives an
asymptotic value of —1.34 MeV while the Gogny poten-
tial gives —8.2 MeV. Thus at high energies the potential

20

in Eq. (5.5) is more repulsive than either the Gogny or
the GBD potentials. On the other hand, for reasons ex-
plained earlier, this potential can be more attractive than
GBD in nonequilibrium situations (see Figs. 7 and 8).
Thus it is not obvious how the observables will change
compared to the GBD results shown in Fig. 3. The angu-
lar distribution calculated with the new momentum
dependent interaction Eq. (5.5} is shown in Fig. 9. We
find the peak to valley ratio R to be 4.3 (see Table I). We
have checked that the GBD results of Ref. 16 (for Nb on
Nb at E~,b/A =400 MeV with 0 & b & 3 fm) change very
little if the new interaction Eq. (5.5) is used.

We have also performed a calculation with a hard
equation of state using the momentum dependence in Eq.
(5.5). We use K=380 MeV; the parameters for Eq. (5.5)
now are A = —5.89 MeV, B=36.21 MeV, C= —64.91
MeV, o. =2.45 and A=1.58p„' '. This leads to a very
large value of A =7.4 (see Table I).

0 =
(y/y, )l b

—20— p /2(0)

0

—40
0

I

0.8
I )

1.6
e (rad)

FIG. 8. Same as in Fig. 7, but for the Gogny interaction
(dashed curves) and the interaction in Eq. (5.5) of the present
work (solid curves).

0
0

I ) I

60 120

(deg }

180

FIG. 9. Same as in Fig. 1, but with the momentum dependent
interaction in Eq. (5.5) of the present work.
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A recent calculation includes momentum dependence
from the Gogny interaction ' which is suitable for both
equilibrium and nonequilibrium situations. The only
shortcoming may be that the Gogny potential does not
turn repulsive at high momentum, a feature that is
demanded by optical model potential fits to nucleon-
nucleus scattering.

not by the equation of state. Preliminary calculations
done here and elsewhere indicate that do /d (cos8) in

the forward direction (8=20') may be such an observ-
able.
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