
PHYSICAL REVIEW C VOLUME 38, NUMBER 5 NOVEMBER 1988

Description of inelastic scattering between heavy ions in the Glauber model
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The optical limit of the Glauber model is used for the description of inelastic processes in heavy-

ion reactions at intermediate energies. Different prescriptions are investigated to obtain the inelas-

tic scattering amplitude from the corresponding microscopic nucleon-nucleon amplitude. Besides
the standard one in which the target excitation is ascribed to a projectile-nucleon collision and con-
tributions from multiple-scattering processes are preliminarily summed to produce the elastic
projectile-nucleon amplitude, we suggest the alternative approach in whibh a single nucleon-nucleon

collision causes the inelastic transition. In all cases the formalism is modified to take into account
the deflection of the classical orbits due to the strong repulsive Coulomb field. Parameter-free pre-
dictions for the inelastic excitation, based on experimental nucleon-nucleon total cross sections and

standard densities, show a remarkable agreement with both experiment and distorted-wave Born ap-
proximation calculations.

I. INTRODUCTION

Experimental data for both elastic and inelastic col-
lisions between heavy ions at intermediate energies (i.e.,
E/A =30—100 MeV) have become available in the last
few years. ' They have been successfully described
within the standard approaches based on the opti-
cal model and distorted-wave Born approximation
(DWBA). In a recent paper the elastic scattering with
heavy projectiles (A &4) has been described within the
Glauber model, with proper modifications to take into ac-
count the defiection of the classical orbits due to the
strong repulsive Coulomb field. In this paper we discuss
the use of the Glauber model in the description of inelas-
tic channels, along a formalism previously used for light-
projectile induced reactions. ' Our aim is to show that,
as in the case of elastic scattering, all the dynamics of
the inelastic process between heavy ions are, also at these
intermediate energies, essentially governed by the
nucleon-nucleon collisions, the other necessary informa-
tion being given by the "static" nuclear densities and
transition densities.

A crucial and open point in the description of inelastic
processes within a nucleus-nucleus Glauber model is the
choice of the microscopic reaction mechanism responsi-
ble for the transition. In the fully microscopic approach
the contributions of multiple nucleon-nucleon collisions
are summed to all orders as in the elastic case, but only
one of the nucleon-nucleon collisions is assumed to cause
the transition to the inelastic channel (for example, in the

target), all the others being of elastic character. Within
this approach, nucleons in the projectile and in the target
are treated on the same footing, and the formalism is suit-
ed to be directly extended to mutual excitation processes,
or to processes which can be formally described as a mu-

tual excitation, as for example charge-exchange reactions.
An alternative approach makes use of two successive ap-
plications of the nucleon-nucleus scattering formalism.
The contributions of multiple nucleon-nucleon collisions
are first summed to all possible orders to give the elastic
amplitude for the collision of the projectile with a nu-

cleon of the target, to be then used for the nucleus-
nucleus inelastic scattering which is assumed to be in-
duced by a single projectile-nucleon collision. The two
approaches are derived and discussed in Sec. II.

Applications of the formalism are given in Sec. III.
The predictions of the model for the excitation of the first
2+ state in the ' C+ ' C reaction at 360 and 1016 MeV
are compared with both experimental data and DWBA
calculation. As an example of reactions involving heavily
charged systems, the excitation of the target 2+ state is
considered in the Ar + Pb reaction.

II. THE FORMALISM

A. Elastic scattering

A fruitful way of looking at the Glauber model for the
elastic scattering of composite systems is to derive it as
an approximation to the multiple-scattering theory
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developed by Golberger and Watson. It is in fact possi-
ble to show' that the latter leads to the former in the
high-energy limit under the assumptions of the eikonal
and closure approximations and neglecting rescattering
terms and off-shell effects. Under these hypotheses we
can, in fact, obtain the standard Glauber expression for
the elastic scattering amplitude between a projectile (P)
and a target ( T),

of the nucleon intrinsic coordinates on the impact param-
eter plane. The elementary profile y(b) is connected to
the nucleon-nucleon scattering amplitude in the form

y(b)= . fd'q e "'f~~(q),1

~' NN
(4)

where kNN is the nucleon-nucleon c.m. momentum.
Within this scheme, the optical limit of the model can

be obtained by replacing in each term in Eq. (3) the clo-
sure approximation by the assumption of retaining in
each intermediate completeness only the term corre-
sponding to the ground state of both target and projec-
tile. " This amounts to approximately the nth order
scattering term

r=l —g g[i —y(b r, —
&, )] (3)

i =1 j=1

in terms of the impact parameter b and the projections s
where n elementary profiles y appear, by the factorized
expression

r'"'=&a'colylc'e'&&4 eolyle e & &e eolyle e &=[A,(b)]"

Within the independent particle model, the basic quantity
A,(b) can be expressed in terms of the nuclear densities in
the form

"(b)=fPo(rp)PQ(rT)l (b rp sT) drpdrT

fpo(q)po(q)fbi'(q)e '~' dq,
Kl NN

having assumed a single particle density normalized to
one and having defined as p o(q) and p o(q) the Fourier
transform of the nuclear densities. This "frozen-nucleus"
approximation leads to the well known optical-limit ex-
pression for the elastic scattering amplitude

foo(b)= f d b e' [1—[1—A,(b)]

excitation of the state
I

LM & gets in the Glauber model
the expression
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where 41~ is the nuclear wave function associated with
the state

I

LM &. The optical limit can now be obtained
by truncating each intermediate completeness to the sum
of only two terms,

I @o@o& & @o@o I +
I
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I

We will assume now all the diagonal terms associated
with both the ground and excited state are identical

~(b) = & @o@o
I y I

@o@o& = «'LM @o I y I
+LM@o &

d2b eia b[1 e' T P ]2'
and denote ELM(b) the nondiagonal terms
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B. Inelastic scattering

A similar approach can be applied to the description of
inelastic scattering processes. For simplicity we will con-
sider the case of target excitation, but the formalism can
easily be generalized to the case of projectile excitation,
or mutual excitation. The amplitude associated with the

Within the assumption of weak coupling to the excited
state, we will neglect now all the multiple scattering se-
quences where more than one nondiagonal term appears
connecting the ground and the excited state in the target.
This is, in spirit, equivalent to the first-order Born ap-
proximation in the standard scattering theory. In this
way we get the final expression for the inelastic scattering
amplitude

fLM o(b, )= ATAP f d b e' ELM(b)[1 —A(b)]2'
Expliciting the right-hand side of Eq. (11) in the momentum space, and defining

pL(q) =4nfdr [r jL(qr )pL(r).]

(12)

(13)
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in terms of the target transition density pLM(r ) = PL (r) YLM(P), we obtain

I LM(b) B~ LM dq qp0(q)fNN(q)p L(q)JM(qb)ik o

where
1/2

2L +1 [(L—M)!(L+M)!]'~ 1+(—1) +
BLM ——( —1)
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(14)
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Note that the coefficients BLM vanish for L+M odd. This leads to the final expression for the inelastic cross section

L
(do Id~)L —— g ~
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We remark that this approach corresponds to the assumption that a single nucleon-nucleon collision is responsible for
the transition to the excited state, all the other collisions being of elastic character and therefore only contributing to
generate the appropriate transmission coefficients. The approach displays the maximum symmetry between target and
projectile, and is therefore the more suited to be extended to the case of mutual excitation, or to processes that can be
formally described as mutual excitations, as for example charge-exchange reactions.

C. Semimicroscopic approach

An alternative and widely used approach to the description of inelastic scattering within the Glauber model is based
on the frozen-projectile approximation. This amounts to introduce an elementary nucleon-projectile profile and to as-
sume that the excitation of the target is produced by a single collision of a target nucleon with the whole projectile. In
this case the formalism derived for the nucleon-nucleus inelastic collisions' can be directly extended to describe the
nucleus-nucleus scattering in the form

fLMo(q)= AT f d b e' gIM(b)[1 —X(b)]2''

where

gLM(b) ~ BLM f qdq fNP(q)P L(q)JM(qb )
1 ~ 7

ikNP

and

(17)

(18)

X(b)= . f qdq fNP(q)p, (q)JO(qb)
EkNP

(19)

Both inelastic and elastic elements (18) and (19) are expressed in terms of the amplitude fNP(q) associated to the
nucleon-projectile elastic scattering. The inelastic cross section is then expressed in the form

L
(der Idea)L —— g kAT f db bJM(qb)gLM(b)[1 —X(b)]

M= —L

L

~
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Along the Glauber model, the nucleon-projectile am-
plitude fNP can in turn be expressed in terms of the
nucleon-nucleon scattering amplitude and the projectile
density in the form

~kNP P

fd2b iqb y ( 1) +11(n)
2~ n=]

(21)

where I o"' has the same structure as in Eq. (5), when one
of the colliding nuclei is a nucleon.

The predictions for the inelastic cross section obtained
from the two approaches summarized in formulas (16)

kNP ~p
fNp('q ) A pp 0(q)fNN(q»k

(22)

and replacing it in Eqs. (18) and (19), it is immediate to
regain from Eq. (20) the expression previously obtained in
the fully microscopic approach. It is important to note
however that this does not mean that the microscopic ap-
proach must be viewed as a first-order approximation to

and (20) are compared in a few examples in Sec. III. We
note that keeping only first-order collisions in Eq. (21),
i.e., assuming
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the semimicroscopic approach, as it could appear from
the above derivation. In fact, the two methods are de-

duced from different assumptions about the mechanism
of the reaction and there is no a priori physical argument
to state which of them is more suitable to describe the in-

elastic excitation process.

D. Modification due to the deflection
of the trajectory by the Coulomb field

As apparent in the formalism, a basic assumption of
the Glauber model is the description of the relative
motion in terms of a straight line trajectory. Density and
transition density overlaps (6) and (11) are in fact evalu-
ated along straight lines associated with each impact pa-
rameter b. In the case of Gaussian shape for densities
and elementary profiles, this leads to the additional bonus

I

kb ' —rl + [r/2 +k 2b 2 ] ~ ~2 (23)

g being the Sommerfeld parameter. Therefore formulas
(16) and (20) have to be rewritten in the form

of analytical expressions. This straight-line assumption
faces obvious limitations in the case of heavily charged
systems at relatively low bombarding energies, a situation
in which the distortion effects of the Coulomb field can
by no means be neglected. As suggested in a previous pa-
per on heavy-ion elastic scattering, a simple although
effective way of incorporating the focussing effect of the
Coulomb field, without altering the simplicity of the
straight-line model, is to evaluate all overlaps associated
with a given impact parameter b using an effective impact
parameter b'. This parameter b' corresponds to the dis-
tance of closest approach along pure Coulomb trajectory,
and is related to b through

L

(dcrldQ)L —— g kATA~ f db bJ~(bb)pl~[b'(b)]e
M= —L

(do/dQ)1 —— g kAT J db bJM(qb)gLM[b'(b)]e
M= —L

(24)

(25)

where the function b'(b) is obtained from (23).
In the case of heavy-ion reactions, which are mainly

governed by the grazing collisions, this recipe leads to the
correct grazing angular momentum, otherwise overes-
timated in the pure straight-line approach. The correct
grazing angular momentum is in turn the necessary in-
gredient to obtain angular distributions which display the
correct period of oscillation for diffractive-type reactions
or the correct grazing angle for bell-shaped reactions.
Examples of the efFect of this correction on the inelastic
scattering cross sections in both cases are given in Figs. 5
and 6.

—r /a
po(r)=pa(0)e ' (i =P, T), (27)

(28)

also for heavy systems like Ar and Pb. In these cases
the Gaussian functions have been adjusted' to reproduce
the corresponding Fermi densities on the nuclear surface,
in the assumption that only this region will be important
for grazing collisions. With these choices the elastic
phase shift A,(b) in (16) gets the simple analytic expression

III. APPLICATIONS

This section is devoted to the application of the forrnal-
ism displayed in the previous section to a number of
heavy-ion inelastic scattering collisions. In all the cases
considered, the elastic scattering process has already been
successfully described ' within the Glauber model, and
this is a further element for not treating as adjustable pa-
rameters the quantities defining the nucleon-nucleon in-
teraction and the nuclear densities. Also in this case,
therefore, we will assume an isotropic nucleon-nucleon
scattering amplitude

where the density overlap Q(b) is given by

2+ T
(29)

Simplifications also occur for the nondiagonal matrix
elements. In the case of collective states described within
the Tassie model, the transition density PL(r) and its
transform p I (q) assume the form

&NN+ i

4m
kNN~NN ~ (26)

where o.
NN and uNN are the total nucleon-nucleon cross

section and the ratio of real to imaginary part of the for-
ward nucleon-nucleon scattering amplitude. Both have
to be evaluated at the corresponding energy of the micro-
scopic collision, and have been taken from the nucleon-
nucleon experimental data. Similarly, we have assumed a
Gaussian form for the nuclear densities

and

pl. , dPO(r)
pl (r)=

V 2L+ 1 dr
(30)

(31)T( 2
Po PL 3/2 T I (q a&)/4—
V2L 1 2
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TABLE I. Values of the parameters associated with the nucleon-nucleon scattering amplitude and
with the projectile and target densities for the different reactions.

' C+ ' C, Ei b
——360 MeV

C + C Elab 1016 MeV' Ar+' 'Pb, E,» ——1760 MeV

&ww

(fm )

19.6
6.1

12.5

0.87
1.0
0.93

po(0)
(fm )

0.0248
0.0248
0.01645

ap
(fm)

1.935
1.935
2.52

po(0)
(fm )

0.0248
0.0248
0.01245

ay.

(fm)

1.935
1.935
3.45

Ref.

13
13
14

The integral in (14) can, in general, only be expressed in terms of transcendent functions in the form

I [(M+L+2)/2] 2 +'b M+L+2 b2

I (M+1) [(&2 +& 2) L+M+ 2] 2
' ' g2+g2 (32)

in terms of the gamma function I (z) and of the Kummer's confluent hypergeometric function M(a, b, z). The constant
SLM is defined as

BLM pLPO(0) p 3 3 aT
~LM = 2fNN k

PO(0)aT~P~
ik 2L+ 1

(33)

In the case of multipolarity L =2, however, this formula reduces to the simple analytic expression

LM T P 3 p PO( )~L 2
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~ PO(0»
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PL=2, M=O( )= fNN 2 2 2
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i(t2y +&p )

(34)
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As an application of the model we have considered the
inelastic scattering of ' C + ' C (2+; 4.4 MeV) at 360 and
1016 MeV. All the parameters for the nucleon-nucleon
scattering and the ' C densities [crNN, aNN, po(0), a] are
taken as in Ref. 13 and are given in Table I. We remind
that these parameters give a good description of the cor-
responding elastic scattering heavy-ion data. ' The cal-
culated inelastic cross sections are compared in Figs. 1

and 3 with the results of a DWBA calculation (solid line),
whose optical parameters are given in Table II and also
give a good account of the elastic data. Both prescrip-
tions for the nucleon-projectile amplitude were used: the
dashed line corresponds to the microscopic result given

by formula (24), while the dotted line refers to the semim-
icroscopic formula (25). For a better internal comparison
between the different approaches, we have used for each

energy in all cases the same value of the dynamic defor-
mation parameter pL, chosen by normalizing to the data
the first maximum of the DWBA angular distribution.
For the comparison with the experimental data,
displayed in Figs. 2 and 4, we have instead felt free to
normalize separately the different curves, by using slight-
ly different values of pL (0.70 and 0.50 in the case of the
Glauber model at the two energies and 0.93 and 0.715 in
the corresponding DWBA calculation). Coulomb excita-
tion was not taken into account in all cases, and this may
be partly responsible for the value of pL not exactly equal
to the one obtained in the collective model from the ex-
perimental 8 (E2) value.

In all cases, the angular distributions are in good agree-
ment with both the experimental data and the DWBA
calculations. This agreement is particularly remarkable

TABLE II. Values of the parameters defining the optical potential

V iS'
r —r, ( A,'"+A p") r —r~( W~"+ Wp")

1+e 1+e
av

used in the DWBA calculations for the different reactions.

' C+ "C, Ei,b ——360 MeV
' C+ ' C, E„b——1016 MeV
Ar+ '"Pb, Et„——1760 MeV

120.0
120.0
73.36

rv

0.79
0.71
1.179

av

0.70
0.84
0.63

47.5
34.02
65.1

0.92
0.96
1.179

0.72
0.69
0.63

Ref.
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FIG. 1. Angular distribution for the inelastic excitation of
the 2+ state at 4.4 MeV in the ' C+ ' C reaction at 360 MeV.
Experimental data are taken from Ref. 3. The solid line is the
prediction of the DWBA calculation, performed with the opti-
cal parameters given in Table II. The dashed and the dotted
curves are the results of the Glauber model, obtained according
to Eqs. (24) and (25), respectively. The parameters for the
nucleon-nucleon scattering amplitude and for the nuclear densi-

ties are given in Table I. The collective model has been used to
describe the excited state, with a value pL

——0.93 in all the calcu-
lations. Only nuclear excitation has been taken into account.

Oc.m.

FIG. 3. Angular distribution for the inelastic excitation of
the 2+ state at 4.4 MeV in the ' C + ' C reaction at 1016 MeV.
Experimental data are taken from Ref. 3. The solid line is the
prediction of the DWBA calculation, performed with the opti-
cal parameters given in Table II. The dashed and the dotted
curves are the results of the Glauber model, obtained according
to Eqs. (24) and (25), respectively. The parameters for the
nucleon-nucleon scattering amplitude and for the nuclear densi-

ties are given in Table I. The collective model has been used to
describe the excited state, with a value PL ——0.715 in all the cal-
culations. Only nuclear excitation has been taken into account.
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FIG. 2. Angular distribution for the inelastic excitation of
the 2+ state at 4.4 MeV in the ' C+ ' C reaction at 360 MeV.
Experimental data are taken from Ref. 3. The solid line is the
prediction of the DWBA calculation, while the dashed line is

the result of the Glauber model, obtained according to Eq. (24).
The two curves have been separately normalized to the first

peak, by using the values PI ——0.93 and 0.70, respectively. For
other details cf. caption to Fig. 1.

FIG. 4. Angular distribution for the inelastic excitation of
the 2+ state at 4.4 MeV in the ' C + ' C reaction at 1016 MeV.
Experimental data are taken from Ref. 3. The solid line is the
prediction of the DWBA calculation, while the dashed line is
the result of the Glauber model, obtained according to Eq. (24).
The two curves have been separately normalized to the first

peak, by using the values pl. ——0.715 and 0.50, respectively. For
other details cf. caption to Fig. 3.
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FIG. 5. Comparison of angular distributions obtained in the
Glauber model for the inelastic excitation of the 2+ state at 4.4
MeV in the ' C+ ' C reaction at 360 MeV. The two curves
have been obtained with (solid line) and without (dashed line)
the correction for the Coulomb deflection [Eq. (23)]. In both
cases the value pl =0.70 has been used. For other details cf.
caption to Fig. 1.

FIG. 6. Angular distribution for the inelastic excitation of
the 2 state at 4. 1 MeV in the Ar+ 'Pb reaction at 1760
MeV. The solid line is the prediction of the DWBA calculation,
while the dashed and dotted lines are the results of the full mi-
croscopic Glauber model, obtained with and without the correc-
tion for the Coulomb deflection, respectively. In all cases the
value PL ——0.055 has been used. For the parameters entering in
the DWBA and Glauber calculations cf. Tables II and I, respec-
tively.

in the forward-angle region where the Glauber approxi-
mation is expected to work better. The difference be-
tween the microscopic and sernirnicroscopic approaches
is mainly in magnitude, so that the differential cross sec-
tion of the second approach could be obtained from the
first using a scaling factor which, in the spirit of Ref. 15,
may be related to the effective number of nucleons parti-
cipating in the nucleon-projectile collision. To better ap-
preciate the quality of the fits, it is important to remind
that the angular distributions calculated in the Glauber
model are parameter-free predictions, only based on the
experimental nucleon-nucleon data and the deformation
parameter pI .

The importance of the correction due to the distortion
of the trajectory due to the Coulomb field is put into evi-

dence by Fig. 5, where the predictions of the model with
and without the correction are compared for the case of
the lowest incident energy. No difference is, on the other
hand, appreciable at the higher energy. The effect is, in

fact, basically dependent on the value of the Sommerfeld
parameter q, and therefore obviously expected to vanish
in the high-energy limit.

We have up to now considered only inelastic processes
in reactions involving relatively light ions, namely

' C.
As an example involving heavier systems, we consider
now a model case associated with the excitation, through

the nuclear field, of a 2+ state in the Ar+ Pb reac-
tion at 1760 MeV. At variance with the previous cases
characterized by diffractive angular distributions, this re-
action is associated with a rather smooth bell-shaped an-
gular distribution peaked around the grazing angle. It
may also be worthwhile noticing that, due to the bom-
barding energy and the size of the colliding nuclei, the
standard DWBA approach already involves a rather
cumbersome calculation with a large number of partial
waves (ls =600).

Angular distributions obtained within the DWBA
(solid line) and the Glauber model (dashed line) are com-
pared in Fig. 6. For the former we have used the optical
parameters given in Table II and obtained by fitting the
elastic angular distribution. For the latter we have used
the parameters associated with the nucleon-nucleon
scattering amplitude and with the projectile and target
densities given in Table I, also previously successfully
used to describe within the Glauber model the elastic
scattering. In both cases the value pl ——0.055 has been
used for the dynamical deformation parameter. The
agreement between the DWBA and the Glauber calcula-
tion is rather fair, for both absolute magnitude and angu-
lar distribution. Note in particular the improvement
originating from the shift in the grazing angle, due to the
Coulomb correction.
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