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Transfer reactions for the *°Ti + °°Zr system below the Coulomb barrier
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The analysis of quasielastic cross section data for the *°Zr projectile plus *°Ti target system shows
that the probability for *°Ti(**Zr, *Ti)*'Zr, 1n-transfer reaction near the barrier is much larger than
estimates based on semiclassical theory. The probability for **Ti(**Zr,*'V)®®Y, 1p-transfer reaction,
on the other hand, agrees with the same theory. The internuclear distance where the ln-transfer
probability first deviates from tunneling predictions coincides with the threshold of the fusion bar-
rier distribution deduced from the experimental fusion cross sections of the *°Ti+°°Zr system, sug-
gesting a common mechanism for the large enhancement of 1n-transfer and fusion cross sections.

Transfer reactions between heavy nuclei at near-barrier
energies are well described by semiclassical theories in
which the reactions are assumed to occur on classically
prescribed orbits; examples can be found in Refs. 1 and 2
for collisions between light and medium nuclei, in Refs. 3
and 4 for medium and medium nuclei, and in Ref. 5 for
very heavy nuclei. A simple and clear picture emerges
from these examples: At energies below and near the
barrier, nucleon-transfer reactions proceed via the tun-
neling of valence nucleons between the interacting nuclei
on the classical orbit, but the tunneling evolves into a
grazing reaction as the energy exceeds the interaction
barrier.

Cross sections for a number of element (Z)- and mass
(M)-identified ejectiles resulting from the *°Zr-beam bom-
bardment of *°Ti were measured for four bombarding en-
ergies in the 274-303-MeV range and lab angles ranging
from 8° to 23° with 2° and 3° steps. The traditional role of
target and projectile was reversed in this study in order to
measure cross sections for large c.m. angles. Target and
targetlike particles ejected from thin (30 and 70 pg/cm?)
targets were detected by a position-sensitive gas-filled-
detector system® placed at the focal plane of the Oak
Ridge National Laboratory (ORNL) split-pole spectrom-
eter. The Z of ejectiles was identified from the energy (E)
and energy-loss (AE) data while the M identification was
made from the E and magnetic rigidity (Bp) data. Fig-
ure 1 illustrates typical Z and M resolutions. An Si(Au)
detector placed at a fixed angle (42°) provided relative as
well as absolute normalization factors. (Elastic scattering
was assumed to be pure Rutherford at this angle.) A sin-
gle peak with a low-energy tail dominates all observed
target-ejectile (°°Ti) focal-plane spectra. The ‘“elastic”
peak broadens and its tail becomes more extensive with
increasing angle (at given energy) and with increasing en-
ergy (at given angle), indicating the contribution to the
peak from numerous but weak inelastic excitations. The
resolution ( ~ 1.8 MeV) was not sufficient to resolve indi-
vidual peaks. A peak (or bump) broader than the resolu-
tion dominates the transfer-ejectile (**Ti and 3!V) spectra,
indicating that numerous transitions contribute to the
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transfer peak also. Energy-integrated differential cross
sections for “°Ti, °Ti, and °'V ejectiles were obtained
from the focal-plane spectra for the dominant charge
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FIG. 1. A AE vs E and a Z-gated E vs Bp map. The curved
lines show the positions of three prominent ejectile elements
(Z =22, 23, and 24) on the AE vs E map and of M =*Ti, “Ti,
and *°Ti (Z =22) isotopes on the g =19-20 portion of the Z-
gated E vs Bp map.
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TABLE I. Cross-section ratios. Statistical errors are shown in parentheses. do/dog,m values are

subject to +15% uncertainty.

Elab (MeV) olab (deg) daqe/dakuth doln/doqe (%) dO’]p/dO'qe (%)
8 0.85(0.018) 0.7(0.5) 0.3(0.3)

10 0.89(0.029)

274 12 0.92(0.019)
14 0.94(0.020)
23 1.00(0.012)*
10 0.81(0.018) 1.16(0.24) 1.04(0.22)
12 0.84(0.017) 1.29(0.24) 0.99(0.18)

283 14 0.87(0.017) 1.08(0.15) 0.89(0.12)
16 0.88(0.011) 0.84(0.12) 0.66(0.09)
18 0.92(0.013) 0.88(0.15) 0.48(0.08)
20 0.95(0.012) 0.94(0.15) 0.42(0.07)
10 0.41(0.019) 4.40(0.88) 6.20(1.24)
12 0.47(0.016) 4.69(0.69) 4.94(0.73)

293 14 0.34(0.017) 4.55(1.11) 3.71(0.91)
16 0.38(0.013) 4.72(0.77) 3.93(0.64)
18 0.46(0.017) 3.42(0.65) 3.54(0.67)
20 0.55(0.020) 3.65(0.72) 2.85(0.56)
14 0.10(0.004) 5.91(0.92) 7.12(1.11)
17 0.14(0.005) 7.77(1.00) 6.43(0.83)

303 20 0.21(0.004) 5.56(0.46) 6.25(0.52)
23 0.28(0.004) 6.89(0.34) 6.21(0.31)

?Quasielastic cross section is assumed to be Rutherford.

states ¢ =18, 19, and 20. The absolute values of the
differential cross sections can be obtained from the cross-
section ratios given in Table I.

Among the many versions of semiclassical theory in
the literature,>>7~2 that of von Oertzen et al.? is fol-
lowed in this paper. Briefly, a quasielastic reaction
occurs on the classically prescribed orbit with a probabil-
ity P that is particular to the reaction. Thus the
differential cross section for a particular channel i is

(do);=P(do)e=P;(1—p,)do) , (1)

where 3P, =1, (do), and (do), are quasielastic and
theoretical (e.g., Rutherford) scattering cross sections,
and p, is the absorption probability into such nonquasi-
elastic channels as fusion, deep inelastic, etc. The absorp-
tion in semiclassical theory is given by the mean-free-
path attenuation of incident flux.® Experimentally, the
quasielastic cross section (do ), is obtained by adding
contributions from all observed channels, and the ratio of
transfer to the quasielastic cross section (do);/(do) is
the transfer probability P;. This probability can be fac-
tored as P =tSF for one-nucleon transfer reactions. Here
t is the intrinsic probability (e.g., transmission coefficient
in the tunneling model), S accounts for nuclear structure
(spectroscopic factors), and F is a reduction factor to ac-
count for the orbit mismatch or perturbation (caused by
Q value, changes in Z, M, angular momentum, etc.). Von
Oertzen et al.’ give a detailed discussion of these factors,
including comparisons of F factors obtained by the semi-
classical versus distorted-wave Born approximation

(DWBA) method. The value of the probability for the
whole orbit can be approximated by its value ¢ (D) at the
perihelion, where the nuclei are separated by the apsidal
distance D, and with this approximation the transfer
probability becomes

P,[D(E,0)]=Ct,(D), 2)

where C stands for the product SF. An implicit depen-
dence of D on orbit parameters E and 6 is shown. The
factor C generally depends on collision dynamics as well
as on nuclear structures;“>* however, previous stud-
ies> 5 have shown that for cases such as this, where many
individual transitions are included in the energy-
integrated cross section, it is insensitive to, or even in-
dependent of, E and 6.

We first studied the shape of the measured transfer
probability versus Coulomb apsidal distance D,. For this
purpose the ratios of transfer to quasielastic differential
cross sections measured at four different energies were
combined into common plots using the relation for
Coulomb orbits

D,=[(Z,Z,e*)/(2E)(1+csc)(6/2)] .
The results are shown in Fig. 2. If the short-range attrac-

tive nuclear force could be ignored, the probability
should follow a straight line on a semilog plot; i.e.,

P(D,.)xexp(—2kD,) ,
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FIG. 2. Transfer probabilities for the *°Ti(*°Zr,**Ti)*'Zr, 1n-
and °Ti(*°Zr,’'V)*Y, 1p-reactions vs Coulomb apsidal distance
D, are shown. Solid lines give theoretical slopes (see text for de-
tail). The error bars shown are statistical errors.

where k is a constant. But, as illustrated in Fig. 1, this is
not the case. The slopes of the solid lines (shown in Fig.
2), which were drawn to represent large D, results, were
calculated in the manner described herein. As has been
pointed out by Korner et al.'® and by Christensen
et al.,! the deviation of the kind seen in Fig. 2 can result
from the distortion of Coulomb orbits by the tail of the
nuclear potential. The potential tail causes P to rise fas-
ter by pulling the Coulomb orbit inward, forcing the ac-
tual apsidal distance to be smaller than the corresponding
D,. The rise ceases when the strong-absorption regime is
reached, and the probability turns over, producing a
shape similar to those seen in Fig. 2.

To find a realistic relation between the actual apsidal
distance D and angle 6, a nucleus-nucleus potential was
added to the deflection field, and then the orbit integral
dr

2

O=m—2L (E,D)fD”(E —Uy—U,—U; )2
r

(3)

was numerically evaluated. In this integral L (E,D) is the
classical angular momentum and Uy, U,, and U, are the
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nucleus-nucleus, Coulomb, and centrifugal potentials, re-
spectively. A Woods-Saxon equivalent of Lozano and
Madurga’s,!! exponential potential, which represents the
tail region especially well, was adopted for this calcula-
tion. The upper panel of Fig. 3 shows the combined
height of U, and Uy, in the tail region. The top of the in-
teraction (U,+ Uy) barrier, which is reached at 11.30
fm, is 105.6 MeV. The lower panel shows 6 vs D at c.m.
energies corresponding to the four experimental bom-
barding energies. (Since D is directly related to the im-
pact parameter or L, this figure, in effect, gives the classi-
cal deflection functions.) Also included in the same figure
are the values of D, (solid curves) for reference. As ex-
pected, the added attractive potential does reduce apsidal
distances. The orbits are so modified that the relation be-
tween 0 and D is still unique for three lower energies, but
not for the highest. The interaction barrier (U, + Uy) is
exceeded at the highest energy, and the relation is mul-
tivalued (in the angular range shown) because the paths
of severely refracted (pulled inward) trajectories, which
turn around at inner turning points, can merge with the
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FIG. 3. The strength of the interaction potential U, + Uy
used for the classical trajectory is shown as s function of inter-
nuclear separation distance in the upper panel. Apsidal dis-
tances calculated using the U.+ Uy potential are shown by
discrete points for the four energies and backward angles in the
lower panel. The solid curves of the lower panel give Coulomb
(Uy =0) results.



2084

paths followed by more distant trajectories, which turn
around at outer turning points. (See, for example, Ref. 8
for these and more complicated trajectories.) Small
changes of the values of diffuseness or strength parame-
ters of the nucleus-nucleus potential do not alter the 8 vs
D relation significantly.

The measured probabilities replotted versus new apsi-
dal distance are presented in Fig. 4. Although the theory
is not applicable, the cross-section ratios of those close
collisions for which the outer turning points do not exist
are included in the figure for sake of completeness. They
are shown in the hatched areas. The solid curves are pre-
dictions of transfer probabilities form the tunneling mod-
el of Brosa and Gross.'? In this model the nucleon-
transfer probability is given in terms of the probability of
a valence nucleon, which is initially bound in the poten-
tial well of the core nucleus, to be found in the potential
well of the other nucleus by tunneling through the barrier
that is created by the overlapping tails of the two poten-
tial wells (i.e., nucleon transmission coefficient is the in-
trinsic  probability). The tunneling transmission
coefficient ¢ (D) was calculated by both the parabolic- and
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FIG. 4. Experimental transfer probabilities plotted versus ap-
sidal distance D (shown on Fig. 3) are compared to the tunnel-
ing model predictions (solid lines). See text for the explanation

of the hatched areas. The error bars shown are statistical er-
rors.
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WK B-approximation methods. The well shape was as-
sumed frozen during the collision. The standard"?
nucleon-nucleus potentials and the known nucleon bind-
ing energies, B,=10.9 and B,=8.4 MeV, were used.
Both methods gave results that are practically identical:
t(D) is of exp[k(Dy—D)] form, where k and D, are con-
stants. This is the form expected from the DWBA (Ref.
7) and other theories”!* at large internuclear distances.
The value of k for the neutron transfer is primarily deter-
mined by the binding energy, whereas the k value for the
proton transfer is determined by the binding plus
Coulomb repulsion energy (the proton k value is about
30% larger than the neutron k value although the bind-
ing energy is substantially less). Because of the Coulomb
repulsion, the value of D, for the proton is smaller (by
about 1 fm) than the neutron value. For a given binding
energy (neutron) or binding plus Coulomb energy (pro-
ton), the well radii, i.e., 7o 4,”> and r, 47", are the criti-
cal factors determining the value of D,. Diffuseness and
depth of the nucleon-nucleus potential wells influence
these constants only mildly. The nucleon transmission
coefficient ¢ (D) rises linearly on a semilog plot as the bar-
rier becomes lower with decreasing D, but saturates once
the barrier height becomes equal to or lower than the
binding energy (i.e., 1(D)=1 for D < D,). This feature of
the model is illustrated by the theoretical results (solid
lines) shown in Fig. 4, after scaling to represent the data.
The theory reproduces the observed 1p-transfer feature
very well, including the saturation at correct D. The
same theory, on the other hand, gives much smaller 1n-
transfer probability. This follows because the theory pre-
dicts an early onset of the saturation. A substantial (0.3
fm or more) shift of this onset can be obtained if a corre-
spondingly large change of the well radii

(ADy/Dy=Arqy/ry)

is made. But such a change results in “wrong” nucleon
wells and hence is not a viable procedure. Reasonable
changes (£5%) of the value of the diffuseness or depth
do not yield comparable shifts of D,,.

The saturation of the transfer probability is based on
the one-dimensional tunneling model, in which the
transfer probability is assumed to be the transmission
coefficient of the barrier at the saddle point. This is a
reasonable assumption for distant collisions since the
contribution away from the saddle point is insignificant
due to the rapidly increasing barrier, but needs closer
scrutiny for D ~ D, and smaller. For example, if the nu-
cleon gets excited prior to transfer, or if the tunneling be-
comes multidimensional'® inside Dy, or if equivalently a
neck'®!7 is formed, then the neutron-transfer probability
continues to increase through this newly acquired mecha-
nism. Whatever its nature, Fig. 4 shows that the mecha-
nism affects the neutron transfer but not the proton
transfer.

Stelson'® found the principal coupling mechanism that
enhances fusion of heavy nuclei at subbarrier energies to
be the free flow of a neutron between the interacting nu-
clei. (The free flow commences when the barrier tunnel-
ing probability becomes 100% [i.e., t(D)=1].) Stelson
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established a systematic correlation between D, and
fusion ‘“‘threshold” from the analysis of an extensive body
of fusion cross-section data. The head-on collision apsi-
dal distance, D(6=180°), corresponding to the fusion
threshold (100.9 MeV) for the present system, which was
determined from the experimental data,!® is 12.38 fm.
This value is very close to D ~12.5 fm where the 1n-
transfer data begin to deviate from the tunneling theory
prediction. The similarity of these distances suggests that
the free flow of a neutron is responsible for the large
neutron-transfer probability, as well as the enhanced
fusion cross section. This mechanism contrasts with that
which was considered in Ref. 20 where the enhancement
of the fusion cross section is obtained at the expense of
the neutron-transfer cross section. Since the neutron free
flow takes place at relatively large internuclear distances,
and since the exchange force arising from it (neutron free
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flow) can provide additional attraction that hastens the
amalgamation of the collision partners, it is very tempt-
ing to associate the neutron free flow with the initial
stage of the neck formation.'®!7 If this association is val-
id, the neck enhances the neutron-transfer cross section
as well as the fusion cross section.

This investigation is being extended to include similar
studies of neighboring systems with the hope of gaining a
firmer understanding of quasielastic reactions near the
barrier, especially between medium mass nuclei.
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