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Level densities for hot isobaric nuclei are investigated by incorporating the isospin fluctuations in
the statistical theory of nuclei. The single-particle level density parameter a is extracted as a func-
tion of temperature for various isospins of the system. At large temperatures, the empirical value of
a~ A/8 is reproduced. A new method of extracting the neutron-proton asymmetry parameter is
proposed. The neutron-proton asymmetry parameter is found to depend very strongly on deforma-
tion and isospin at low temperatures. The effect of the shell structure on the asymmetry energy is
predominant for certain isospins corresponding to stable neutron-proton combinations. Results are
presented for 4=42, 44, 46, and 208. The excitation energy versus isospin plot for constant entropy
of the system exhibits pockets similar to yrast traps in high-spin states of highly excited nuclei.

I. INTRODUCTION

The introduction of isospin by Heisenberg! to treat
neutrons and protons on the same footing, i.e., as nu-
cleons in two different isospin states, has proved to be a
convenient way of calculating certain nuclear properties.
Wigner and Feenberg? have obtained expressions for the
masses of isospin multiplets of cold isobars in the usual
liquid drop formalism by exploiting the symmetry of the
Hamiltonian with respect to the total isospin of the sys-
tem in the absence of Coulomb interaction. In an ap-
proximate way, they have assumed that the 27+ 1 states,
where 7 is the total isospin of the system, have a common
energy level with 7, values ranging from —7to 7.

The purpose of the present work is twofold:

(i) to highlight the effects of the shell structure on these
multiplets at low temperatures.

(ii) to extract the neutron-proton asymmetry parameter
from the statistical model of the nucleus as a function of
temperature, deformation, and isospin. This dependence
of the asymmetry parameter on the isospin and the defor-
mation of the nucleus has been overlooked in most calcu-
lations®~!! which take recourse to liquid drop assump-
tions.

The present calculation elucidates the following impor-
tant points:

(i) The neutron-proton asymmetry parameter is strong-
ly dependent on the shell structure which is grossly
different for various deformations of the nucleus. In the
liquid drop model (LDM), the single-particle level spac-
ing is assumed to be inversely proportional to the mass
number A4 of the nucleus, irrespective of the isospin 7 of
the system, and the asymmetry energy is assumed to be
proportional to the square of the isospin. Both these as-
sumptions are not justified in view of the nuclear shell
structure which causes large fluctuations in the single-
particle level density which is a function of deformation,
particle number, and temperature as illustrated by Stru-
tinsky,'? Ramamurthy et al.,'* and the present au-
thors.!4—16

(ii) Another important aspect of the present calculation
is that the asymmetry energy contributions are less
significant at large temperatures owing to the fluctuations
in the occupation probabilities of the different single-
particle states at higher excitations. This leads to a de-
crease in the neutron-proton asymmetry parameter a,q
at large temperatures. It is estimated that the asymmetry
parameter takes a value approximately equal to 20 MeV
at very low temperatures, in good agreement with earlier
works, and less than 5 MeV at temperatures greater than
1.5 MeV. The dependence of the asymmetry parameter
on deformation is very strong at low temperatures. The
value of the parameter at T =0.4 MeV decreases from 20
to 5 MeV as the deformation parameter § is changed
from 0 to + 0.6.

(iii) The single-particle level density parameter, a (7, T),
7 as a function of isospin 7 and temperature 7T, is calcu-
lated for 4 =208, and it is found that at higher tempera-
tures the level density parameter approaches a constant
value which is almost equal to the empirical value
a ~ A /8, irrespective of the isospin 7.

II. METHOD

A. The statistical theory

In the statistical formalism, we start with the grand
canonical partition function Q,(a,B3,7) for a system of 4
nucleons at a temperature T =1/B. The Lagrangian
multipliers a, B, and ¥ conserve the total number of par-
ticles, the total energy, and the total isospin of the sys-
tem!7 18

Qo(a,ﬁ»?’)= 2

E. N

exp(aN; —BE;+yT;) . (1)

The partition function in Eq. (1) does not include the
Coulomb interaction which will be added subsequently.
The average number of particles, the average total ener-
gy, and the total z component of isospin are projected out
of the partition function by the following equations:
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(N)=A4=0InQ,/da , )
(E)=-01InQ,/3B, (3)
(1)=31InQ,/dy . 4)

The corresponding equations in terms of the single-
particle energies €; are

(N)=A4=3n+3n, (5)
(E)=3 (nj+n])e; , (6)
(TY=3ntri+3Snim, )

where n' and n; are the occupation probabilities at

single-particle energies €; of neutrons and protons with
isospin projections 77 =+ 1 and 7; = — 1, respectively

nf =[1+exp(—a+Be—yr)]~!, ®)
8
n=[1+exp(—a+Be;—yr7)] " .

The occupation probabilities are displayed in Fig. 1 as a
function of ¢; for the two states 7-. The single-particle
energies €;, as a function of the deformation parameter §,
are generated by the Nilsson Hamiltonian for the de-
formed oscillator diagonalized!® in the cylindrical basis®

H=p*/2m +(m /2)(wix*+ 0’y* + 02 Z?)
+Cl-s+DI? . )

The coefficients for the I-s and /2 terms are taken from
Seeger® who has fitted them to reproduce the shell correc-
tions'? to ground-state masses. The deformation parame-
ter d is varied from —0.6 to + 0.6.

The coupled nonlinear Egs. (5) and (7) have to be
solved for the Lagrangian multipliers a and y for a given
mass number A, temperature T, and the total z com-
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FIG. 1. Occupation probabilities n;" (1a and 2a) for 7} and
n; (1b and 2b) for 7; as a function of the single-particle ener-
gies €; for 4 =208 corresponding to a total isospin of 22. The
solid curves are for T =0.2 MeV, whereas the dashed curves are
for T=1.2 MeV.

ponent of the isospin 7 [ =(N —Z) /2] of the system. The
energy of the system is then calculated using Eq. (6). The
corresponding excitation energy E *(7, T) and the entropy
S (1,E*) are obtained using the following expressions:

4
E*1,T)=3 (n+n7)e,— S €,

i=1

S(r,E*)=S*+S~, 10
where

St=—3[nInn} +(1—n")In(1—n;")]
and

S™=—3[nInn; +(1—n;7)In(1—n;)] . (11)

The level densities for various excitation energies and
isospins of the system are given by’

p(1,E*)=Bexp[S(1,E*)1/S o, - (12)

The normalization factor S, ,, depends upon the dimen-
sionality of phase space which is the number of eigen-
states used.'*

The total energy E of the system for each temperature
T is minimized with respect to the deformation parame-
ter 8. The lines of constant entropy are then drawn in the
E* versus 7 plane for 4 =42, 44, and 46, and the results
are displayed in Figs. 2—4. Collective deexcitations along
the constant entropy lines are possible through the emis-
sion of beta particles.

B. The neutron-proton asymmetry parameter

The neutron-proton asymmetry parameter a,,, is ex-
tracted from the statistical theory using the following ap-
proach.
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FIG. 2. Constant entropy lines for 4 =42.
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FIG. 3. Constant entropy lines for 4 =44.

The mass of the multiplets of total isospin can be writ-
ten in the liquid drop model following Wigner and Feen-
berg? who, however, have not included the asymmetry
energy

E,y=a,,(N—-Z)/4

which removes the mass degeneracy between different
multiplets. Introducing the net isospin of the nucleus
with Z protons and N neutrons as 7=(N —Z) /2, the nu-
clear mass is given by

M=(M,—M,)r+3[(A/2)—7]
X[(A4/2)—1—1]e?/5R +const , (13)

where the nuclear radius R =r,4'/3, with ry=1.2 fm.
The constant term includes all other factors independent
of 7 and M, and M, are the neutron and the proton
masses, respectively. Incorporating the asymmetry term
in the expression for M, we have

M=(M,-M,)r+a[(A/2)—7][(4/2)—T7—1]/ 4"/
+4a,,m/ A +const , (14)
where the Coulomb constant a.=3e2/5r,. In terms of

the isospin 7, the variation of binding energy with isospin
j
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FIG. 4. Constant entropy lines for 4 =46.
is given by

(aB /aT)LDMz —BM/BT
=—(M,—M,)—8a,,7/A4—2a,1/A"?
+a (4 —1)/4"3, (15)

The negative sign indicates that as M increases B de-
creases. The corresponding expressions in the statistical
theory can be obtained using the partition function which
includes the Coulomb interaction

Q =exp(—BQ), (16)

where () is the thermodynamical potential of the system.
After introducing the Coulomb interaction, the logarithm
of the partition function is expressed as a sum of two
terms

InQ =1nQ, —BE, , (17)

where the second term on the right-hand side corre-
sponds to the Coulomb energy of the system and Q, is
the same as in Eq. (1). Using this partition function and
the definition of the thermodynamical potential Q (free
energy), which is the negative of the binding energy, we
can obtain the change in binding energy as a function of
isospin as

-1
(8B /07)gpey=—030/37=—T7 | n (1—n} N5 P+ S n;7(1—n7 W17 2| —Qa,7/AY¥)+a,(A—-1)/43 . (18)

The first term on the right-hand side of Eq. (18) has been
obtained from the partition function as

AT InQ,)/d7r=T(d1nQ,/dy )(dy /d7) . (19)

Equation (18) gives the variation of the binding energy of

‘the system with the isospin 7 and can be identified with
the liquid drop model neutron-proton asymmetry term
8a,,, 7/ A. The first differential on the right-hand side is
the net isospin as can be seen from Eq. (4). Using Egs.
(2)-(8), we have
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oy /3r=— | S nF(1—n/" )1})?
-1
+ 3 n7(1=n7 N2 . (20)

The other terms which are due to the classical Coulomb
energy of the nucleus are the same as in the liquid drop
model. From Egs. (15) and (18), the neutron-proton
asymmetry parameter is extracted as a function of tem-
perature, deformation, and isospin. Calculations are per-
formed for 4 =208, 42, 44, and 46. The results are
displayed in Figs. 5-8.

C. The single-particle level density parameter

It is commonly observed that the energies calculated
using the shell model are usually an order of magnitude
larger than the liquid drop value. However, the excita-
tion energies of the system with respect to the ground-
state energies of the shell model can be calculated fairly
accurately. This fact has been effectively used in the for-
mulation of the shell correction method of Ramamurthy
et al.'* which reproduces very well the experimental
values of the ground-state masses of the nucleus. The ex-
citation energy E* of the system is obtained using the
equation

E*(r,T)=E(r,T)—E, , @1

where E, is the ground-state energy of the nucleus. The
single-particle level density parameter a(7,T), as a func-
tion of isospin 7 and temperature T, is extracted using the
equation

a(r,T)=SXr,E*)/AE*(7,T) . (22)
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FIG. 5. Variation of the asymmetry parameter with isospin
for various temperatures in the case of 4 =208.
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FIG. 6. Variation of the asymmetry parameter with isospin
for various deformations in the case of 4 =208.
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FIG. 7. Variation of the asymmetry parameter with isospin
for various temperatures in the case of 4 =42, 44, and 46.
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Calculations are performed for the system A4 =208 and
the results are displayed in Fig. 9.

III. RESULTS AND DISCUSSION

The isospin of the system is projected out of the grand
canonical partition function using Eq. (4). It is important
to note that the occupation probabilities n;" and n;~ for
the positive and the negative projections of the single-
particle isospin states in each single-particle level €; are
different. The removal of degeneracy of the 7+ states is
due to the rotation in isospin space. Figure 1 shows these
occupation probabilities as a function of ¢ at two
different temperatures. Curves la for n;* and 1b for n;~
correspond to a total isospin 7=22 at a temperature 0.2
MeV for A =208. Curves 2a and 2b correspond to a
temperature of 1.2 MeV for the same isospin. These
curves help in comprehending the way of generating the
net isospin of the system which can be obtained from the
graph as

r= [dnjri + [dn;r; . (23)

We have drawn constant entropy lines in Figs. 24, in
the excitation energy E* versus 7 plane. These curves
are drawn after minimizing the total energy of the system
with respect to deformation for each temperature. In the
event of a collective deexcitation along the constant en-
tropy line during isospin fluctuations, the system may be
trapped in one of the isobaric states which have relatively

Asymmetry parameter(MeV)

ISOSPIN(h)

FIG. 8. Variation of the asymmetry parameter with isospin
for various deformations in the case of 4 =42, 44, and 46.
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lower energies than the neighboring states with a certain
net isospin. These traps are similar to the yrast traps'>?!
observed in the collective deexcitation of higher angular
momentum states. In the case of 4 =46, no such traps
are seen in our calculations as shown in Fig. 7. For
A =42, we find from Fig. 2 that the minimum occurs at
7=17, corresponding to the proton number 14 and the
neutron number 28, which are closed subshells. In Fig. 3,
we see that in the case of 4 =44, the stable isobar corre-
sponds to the proton number 16 and the neutron number
28, indicating closed subshells. These relatively stable
states can be populated only at very high isospin excita-
tions and do not occur normally, as nature tends towards
highly symmetrical states. These changes are mainly due
to shell structures which play a major role in the deter-
mination of nuclear stability.

From Figs. 5 and 6, we find that the asymmetry param-
eter extracted from the statistical calculation for 4 =208
shows a maximum only for =22, which corresponds to
a neutron number 126 and proton number 82. This indi-
cates the relatively higher stability of the 7=22 state for
A =208. Since single-particle level density at the fermi
energy is very low, the level spacing is large. The asym-
metry energy is large, since it is directly proportional to
the level spacing. In simple terms it means that a small
change in the net isospin requires a large energy for nu-
clei with relatively larger level spacing at the fermi ener-
gy. In Fig. 5 it is seen that the variation of the asym-
metry parameter with isospin is flattened out for large
temperatures. In Fig. 6, the smooth behavior is accom-
plished by increasing the deformation of the nucleus. In
the latter case, the smoothening is due to the decrease in
the level spacing of the single-particle levels with increas-
ing deformations. This aspect has not been studied in

32
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FIG. 9. Variation of the single-particle level density parame-
ter with temperature for various isospins of the isobar 4 =208.
The numbers on the curve refer to the net isospin of the system.
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earlier calculations. In the case of 4 =42, 44, and 46,
symmetric double humps on either side of the =0 plane
are seen at low temperatures as shown in Figs. 7 and 8.
However, at higher temperatures these features are ab-
sent. The asymmetry parameter at low temperatures for
A =42, 44, and 46 shows maxima at r==*1, £2, and *3,
respectively, corresponding to the proton number 20 in
all the cases, implying closed-shell nuclei.

The fact that at large temperatures, the asymmetry en-
ergy is very small compared to its value at low tempera-
tures, is important in the study of reactions involving iso-
spin fluctuations. Hot nuclei formed in heavy-ion col-
lisions subsequently experiences rapid isospin fluctua-
tions?? at high temperatures; since the asymmetry energy
is small at large temperatures, the fluctuations may not
give rise to large energy changes in the system. The situ-
ation at low temperatures is totally different. Since the
asymmetry energy is very large at low temperatures,
large energy changes may follow isospin fluctuations.

In Fig. 9 we show the variation of the single-particle
level density parameter a(7,T) temperature, for various
isospins of the isobar 4 =208. The value of the level
density parameter corresponding to 7=22 is very small at
low temperatures, indicating the higher stability of the
T=22 state compared to other isospin values. At higher
temperatures, however, the effect of the isospin is less
significant, and the curves converge to the value predict-
ed by experimental observation®?* which is given by the

empirical relation a ~ 4 /8.

We conclude that by using the statistical theory which
involves the shell structure of the nuclei, the most stable
isobar can be predicted by treating the isospin as a
dynamical variable. A new method of extracting the
neutron-proton asymmetry parameter is proposed. The
extracted value of the neutron-proton asymmetry param-
eter from the present theory agrees well with the value
fitted in the mass formula of earlier works at low temper-
atures. The effects of temperature, deformation, and the
isospin degree of freedom on the asymmetry parameter
value, which have been overlooked in earlier calculations,
have been investigated here. In view of the dependence
of the asymmetry parameter on the isospin of the system,
the asymmetry energy is no longer a parabolic function of
7 as assumed in the liquid drop model. The strong shell
effects will, however, be slightly altered with the intro-
duction of pairing correlations, but the main results of
the paper will remain unchanged. Calculations are un-
derway for isospin fluctuations in fast rotating superfluid
nuclei.

ACKNOWLEDGMENT

This work was partially supported by the University
Grants Commission, India, under the programme of the
Committee on Strengthening the Infrastructure of Sci-
ence and Technology.

w, Heisenberg, Z. Phys. 77, 1 (1932).

2E. P. Wigner and E. Feenberg, Prog. Theor. Phys. 8, 274
(1941).

3M. Brack, J. Damagaard, A. S. Jensen, H. C. Pauli, V. M. Stru-
tinsky, and C. Y. Wong, Rev. Mod. Phys. 44, 320 (1972).

4N. Carjan, A. Delagrange, and A. Fluery, Phys. Rev. C 19,
2267 (1979).

5P. A. Seeger, Proceedings of the International Conference on the
Properties of Nuclei Far from the Region of Beta Stability,
Switzerland, 1970, Vol. 1, p. 217.

SL. G. Moretto, Nucl. Phys. A182, 641 (1972); A185, 145 (1972);
A216, 1 (1973).

IN. Carjan, A. Delagrange, and A. Fluery, Phys. Rev. C 19,
2267 (1979).

8A. V. Ignatyuk, Sov. J. Phys. 9, 208 (1969).

9T. Ericson, Adv. Phys. 9, 425 (1960).

100, Civitarese and A. L. Depaoli, Nucl. Phys. A 440, 480
(1980).

110, Civitarese, A. Plastino, and A. Faessler, J. Phys. G 9, 1063
(1983).

12y, M. Strutinsky, Nucl. Phys. A 95, 420 (1967).

13y, S. Ramamurthy, S. S. Kapoor, and S. K. Kataria, Phys.
Rev. Lett. 25, 386 (1970).

14M. Rajasekaran and V. Devanathan, Phys. Lett. 104B, 95

(1981); 113B, 433 (1982); Phys. Rev. C 24, 2606 (1981).

15M. Rajasekaran, N. Arunachalam, and V. Devanathan, Phys.
Rev. C 36, 1860 (1987).

16M. Rajasekaran, T. R. Rajasekaran, and N. Arunachalam,
Phys. Rev. C 37, 307 (1988).

173, R. Nix, Annu. Rev. Nucl. Sci. 22, 65 (1972).

18C. Bloch, in Proceedings of the Statistical Properties of Nuclei,
edited by J. B. Garg (Plenum, New York, 1977), pp. 379 and
403; Phys. Rev. 93, 1094 (1954).

193, M. Eisenberg and W. Greiner, Microscopic Theory of the
Nucleus (North-Holland, New York, 1976), p. 399.

20G. Shanmugam, P. R. Subramanian, M. Rajasekaran, and V.
Devanathan, Nuclear Interactions, Vol. 92 of Lecture Notes in
Physics, edited by B. A. Robson (Springer, Berlin, 1979), p.
433.

21M. Diebel, D. Glas, U. Mosel, and H. Chandra, Nucl. Phys.
A333, 253 (1980).

22C. Ngo, in Proceedings of the XIV Mikolajki Summer School
of Nuclear Physics—Heavy Ions and Nuclear Structure, Poland,
1981, edited by B. Sikora and Z. Wilhelmi (Harwood
Academic, New York, 1981), Vol. 5, p. 81.

23E. Erba, U. Facchini, and E. Saetta-Menichella, Nuovo
Cimento 22, 1237 (1961).

24H, Baba, Nucl. Phys. A159, 625 (1970).



