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The variational Hartree method is applied to a system of N bosons interacting via Skyrme-type
attractive and repulsive forces. When the system condenses into its ground state, the wave function
for a single boson, P, may be described by means of the nonlinear, time-independent Schrodinger
equation, V2g=e, g —A

~ P ~

'P+B
~ P ~

t)). In one dimension, this equation has a single, analytic,
bound state solution and exhibits the property of saturation. In the physically more interesting case
of three dimensions with spherical symmetry, no analytic solutions are known, so that a numerical
solution must be resorted to, and this shows that saturation is again obtained. However, an analytic
approximation to the three-dimensional wave function, which is very accurate for values of
el8/A &0.1, is deduced and studied. Approximate analytic expressions for the Hartree potential
energy, kinetic energy, and mean square radius of the system are thereby derived, and applications
to finite nuclei and infinite nuclear matter are considered.

I. INTRODUCTION

In a previous publication, ' we considered the proper-
ties of the ground state condensate of a one-dimensional
system of N bosons interacting via Skyrme-type attractive
and repulsive forces. Using the variational Hartree
method, we were able to formulate the problem in such a
way that the single boson ground state wave function
obeyed a nonlinear Schrodinger equation. Upon solving
this equation, we found, as expected, that the interplay of
the attractive and repulsive forces counterbalancing each
other, led to the condensate achieving a state of satura-
tion as the number of bosons in the system was increased
without limit.

The reason for initially restricting our attention to one
space dimension was that this enabled us to obtain ana-
lytic expressions for the single boson wave function, the
single boson separation energy, the Hartree potential en-

ergy, the kinetic energy and the mean square length of
the boson chain. We thus had an ideal, analytically solv-

able model exhibiting saturation, which is a fundamental
feature necessary for the stability of any macroscopic sys-
tem. We were able to see the behavior of the condensate
evolving from a situation dominated by delta function at-
tractive forces, when a very small number of bosons was
present, to an equilibrated, uniform chain as the repulsive
forces made their presence felt with increasing boson
number and saturation was approached. The model thus
provided an excellent testing ground to study this evolu-
tion in a readily controlled and easily understandable
way.

As an additional bonus, by setting the strength of our
repulsive force to zero, we were able to recover the mean
field results of Calogero and Degasperis, Nohl, and
Yoon and Negele for an N-boson system interacting

through purely attractive delta function forces only.
These results, in fact, are identical to those obtained by
McGuire, who solved this problem exactly.

It is our intention here to extend our previous treat-
ment so as to examine a spherically symmetric three-
dimensional system, and thus deal with some physically
more realistic examples. It is not immediately clear
whether the properties of the one-dimensional solution
will be retained upon effecting this change of dimen-
sionality, but we do in fact find that saturation again
occurs, so that real, physical systems in which this
phenomenon is important can be studied. Unfortunately,
no analytic solutions are known for the three-dimensional
nonlinear Schrodinger equation which now describes the
single boson wave function (to be discussed further in
Sec. II) which we write as

However, Anderson has studied this equation nurnerical-
ly and has shown that it has stable solutions, provided
that the parameters satisfy 0 & e&B l A & —,', . Fur-
thermore, the changing forms of these numerical solu-
tions for increasing values of E',8/A, together with our
previous analytic one-dimensional solution, suggest an

approximate analytic solution for this case also, which
turns out to be excellent for e,8/A g0. 1 and allows us
to produce analytic approximations for the Hartree po-
tential energy, the kinetic energy, and the mean square
radius of the system. These approximations become
better and better as saturation is approached more close-
ly, enabling many of the attractive sirnplifications of the
one-dimensional model to be carried over and applied to
physically interesting examples in three dimensions.

The nonlinear Schrodinger equation of Eq. (1.1) has
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generated a great deal of recent interest in many ap-
parently diverse areas of theoretical physics. With the
parameter restrictions mentioned earlier, it supports sta-
tionary, stable soliton solutions, and has therefore been
commonly used in investigations of classical soliton dy-
namics, and in the closely related area of soliton models
of hadrons. ' In nuclear physics, it has been shown that
the equations of nuclear hydrodynamics can be reformu-
lated in terms of this equation, so that it has been applied
to large nuclear systems to describe static and dynamic
phenomena in heavy ion collisions. ' Conversely, at the
other extremity of the mass scale, it has been used to in-
vestigate the properties of light nuclei containing equal,
even numbers of protons and neutrons as a Bose conden-
sate of "alpha" particles" or, perhaps more precisely,
spin-isospin quartets. The idea of Bose gas is, of course,
more frequently encountered in low-temperature and
condensed matter physics, where Eq. (1.1) has been ap-
plied to describe a linear system of bosons interacting via
two-body attractive forces and three-body repulsive
forces. ' Various other novel applications have been sug-
gested by Coleman' and Cohen et al. ' in connection
with Q balls. We therefore conclude that Eq. (1.1) is well
worth further study in its own right because of this
wealth of potential applications.

An additional collateral effect, or spinoff, is that wave
functions and expectation values associated with the cu-
bic nonlinear Schrodinger equation [having B =0 in Eq.
(1.1)] can be deduced from the approximate analytic re-
sults associated with Eq. (1.1) by taking the limit as B ap-
proaches zero (as was done for the one-dimensional case
in Ref. 1). This simplified form of Eq. (1.1) has also pro-
voked a lot of interest in such varied areas as condensed
matter physics, nonlinear optics, and quantum field
theory. ' ' It is also intimately related to the sigma mod-
el, where fermions are coupled to a single scalar field.
The detailed theory and semiclassical approximation to
this model may be found in Refs. 17 and 18.

In Sec. II we shall formulate the N-body problem in
terms of the variational Hartree method to arrive at an
eigenvalue equation for the ground state condensate. Ex-
act solutions of this equation will be presented for one
and three dimensions in Sec. III, while an approximate,
analytic solution in the three-dimensional case (together
with some analytic approximations to the expectation
values of the system's observables) will be deduced in Sec.
IV. In Sec. V we apply these results to the field of nu-
clear physics, and discuss our conclusions in Sec. VI.

the density dependent repulsive term prevents two parti-
cles from getting too close together and so avoids the col-
lapse associated with a simple delta function attractive
potential.

We formulate the problem in exact analogy to Calo-
gero and Degasperis and write our (unnormalized) N
boson ground state trial wave function 4(r„rz, . . . , r~)
as

N
C (ri, rq, . . . , r~) = g P(r; ), (2.2)

where we have placed all N bosons in the lowest single-
particle orbit to obtain a many-body wave function for
the Bose condensate of the system. We then use the Ritz
variational principle to minimize the energy functional

E[@]:—(@
~

&—&, m ~

~')

which has the form of a time-independent nonlinear
Schrodinger equation.

We shall be primarily concerned with exact and ap-
proximate solutions of this equation so as to investigate
the properties of the Bose condensate within the mean
field approximation. We shall find it convenient to define
the constants e, = —2meo/fi, A =2m(N —1)a/R, and
B =2mN(N —1)P/fi which will allow us to rewrite Eq.
(2.3) as

~'0'=&if A
I 0 I

'0+—B
I 0 I

'0 (2.4)

which is equivalent to Eq. (1.1) with the time dependence
separated out. We shall now look for real, bound state
(eo & 0) solutions in one and three dimensions.

III. EXACT SOLUTIONS IN ONE
AND THREE DIMENSIONS

In one dimension the Laplacian is simply d2$/dx 2 and
Eq. (2.3) may be integrated analytically by standard tech-
mques. ' We apply the boundary conditions that p (and,
consequently, dp!dx) approaches zero as x approaches
infinity and that

This leads immediately to the Hartree eigenvalue equa-
tion [11]for the single-particle eigenfunction P,

f2

2' ~'4=~4+(N 1)~
I
4—1'0 —N(N 1»

I 0 —
I

'0»

(2.3)

II. FORMULATION OF THE PROBLEM

We wish to investigate the behavior of the ground state
of a system of N bosons which interact with one another
through a potential, V(r„rz), which consists of a delta
function attraction and a density dependent delta func-
tion repulsion

~(rl r2) [ &+&S [—,'(ri+r2)]]~(ri —r2)

This Skyrme-type effective interaction was suggested by
Moszkowski' in his studies of infinite nuclear matter. It
has the desirable feature of ensuring saturation because

2(e, /A )'~

16')8
1+ 1—

(3A )
cosh[2(e, )' x ]

'1/2 ' (3 1)

The value(s) of e, may now be obtained by normalizing P.

which is equivalent to dpldx
~ „0——0. The latter con-

straint indicates that we have no reason to prefer the pos-
itive over the negative x direction. This freedom to
choose the position of the origin is related to the lack of
translational invariance inherent in the Hartree method.
We obtain the unnormalized single boson wave function
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We find that there is a unique bound state energy eigen-

value, given by
' 1/2

3W' , B
e, = tanh

16B 3
(3.2)

P'= Q A /e~P, r'= Qe& r,
so that the differential equation becomes

Since 0&tanh &8/3&1, this solution is clearly in line
with Anderson's stability considerations which require
0 & E'(B /A & &g

This one-dimensional analytic solution

will serve to inspire a spherically symmetric three-
dimensional approximation in Sec. IV.

In three dimensions, with spherical symmetry, (i.e.,
L =0) the Laplacian is d P/dr +(2/r)(dip/dr) and no
analytic solutions of Eq. (2.3) are known. A numerical
approach is necessary to obtain exact solutions, and it is
convenient to rescale both the wave function and the ra-
dius and write

ap&
1+(1—46,8/A )'

2e,B/A
(3.7)

Having produced a single boson wave function, we
now consider its normalization. Figure 1 shows the norm
of P', fo"

~

P'
~

r' dr' as a function of e,B/A, for values

of the abscissa between 0 and 0.16. We see that the norm
grows without limit as the value of —,', is approached from

below. For any value of e&8/A in the prescribed range
we are able to obtain an acceptable solution. However, it
will not, in general, correspond to an integral number of
bosons in the system. To see this, let us examine the
norm more carefully. In one dimension the normaliza-
tion condition provided us with a unique energy ep. A
similar thing will happen here if we insist that N, which is
contained in A and B, must be an integer. The normali-
zation condition is 4m f o"

~ P ~

r dr =1, which in our res-

caled variables becomes

dg' 2 dP'
gr' r dr

(3.3) (3.8)

p'(r)=ao+azr' +a4r' +
where

(3.4)

e)B
a2 ——ao 1 —ac+ ap /6 (3.5)

and

iB
a4 ——a2 1 —3ap+5 ap /20 . (3.6)

In general, the function obtained in this way for a given
value of E&8/A, and an arbitrary value of ao, will not
have an acceptable asymptotic behavior at large r'.
However, the nature of that unacceptability allows us to
make an improved estimate of ap, and after a few itera-
tions a satisfactory numerical solution is obtained. It is
particularly useful to appreciate that an upper bound on
ap is provided by

This equation (and, in particular, the phase space trajec-
tories of P' for various values of e,B/A ) has been nu-

merically studied by Anderson. ' To obtain an accept-
able wave function we seek a solution which approaches
zero @s r' approaches infinity, and whose first derivative
at the origin is zero [to avoid problems with
(2/r')(dP'/dr') in the Laplacian].

Anderson's basic conclusion is that stable solutions
without any nodes, having a well-defined value at the ori-
gin, exist for 0&@,B/A & —,', . Solutions with nodes are

also possible, but they do not concern us here, since we
are only interested in the ground state of the system. Our
method of solution, based on his previous analysis, is
therefore as follows: We replace the differential equation
by a finite difference equation, choose a value for P'(0),
use a series solution of Eq. (3.3) valid for small r' to ini-
tiate our solution, and proceed to solve in the forward
direction. We write the initiating series as

Using this expression, we are able to convert our graph of
norm vs e~B/A into a graph of e~B/A vs boson num-

ber X. This is shown in the upper panel of Fig. 2 for the
case when the efFective interaction parameters take the
values a = 1600 MeV fm, P= 32 000 MeV fm, and
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FIG. 1. The norm of the rescaled wave function, P', of Eq.
(3.3) as a function of the parameter el8/A . Note that the
norm grows without limit as the asymptotic value of
elB/A = —,6 is approached from below. These results are in

agreement with those of Ref. 20.
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FIG. 2. The upper panel shows the parameter e&8/A as
function of boson number, deduced from the normalization con-
dition of Eq. (3.8), using the interboson potential parameters
a= 1600 MeVfm and P=32000 MeVfm . The lower panel
shows some specimen unscaled single boson wave functions, P,
as a function of r, corresponding to N=3, 7, and 19 bosons. As
N increases, P(r) takes on the appearance of a Fermi function.

(3.9)

which has a value of 15 MeV with the parameters being

I=939 MeV/c (the nucleon mass).
We see that only certain discrete values of e,8/A (or,

equivalently, E&) correspond to integral values of N A.
possible alternative strategy is therefore for us to specify
the particle number and perform a twofold iteration on
the energy and ao until we satisfy the normalization con-
dition and the boundary condition at large r', so as to ob-
tain a nodeless wave function for that desired value of N.
Some examples of the unscaled quantities (() vs r are
shown in the 1ower panel of Fig. 2 corresponding to
¹ 3, 7, and 19 using the parameter values mentioned
earlier. As a further check on the validity of the method
outlined here, it has been applied (with suitable
modifications) to the one-dimensional case, and found to
give complete agreement with the known analytic wave
functions and eigenvalues.

There are two points to notice about the curve in the
upper panel of Fig. 2. Firstly, as N increases, the value of
e,B/A approaches the asymptotic value of —,'„which
implies that saturation is being attained, and that when it
is reached, the energy to remove a single boson, eo, will
be given by

(3.10)

where we have used the largeness of N to ignore the
difference between N and (N —1). Using Eq. (3.9) for
eo', we obtain

p, = limN~Q (3.1 1)

for the number of bosons per unit volume. Our parame-
ters yield a value of 0.0375 bosons/fm, [so that if each
boson consisted of four nucleons we should have 0.15
nucleons/fm, which lies within the expected range of
0.16+0.015 nucleons/fm (Ref. 21)].

IV. ANALYTIC APPROXIMATIONS
IN THRKK DIMENSIONS

We are unable to analytically integrate Eq. (2.4) in
three dimensions (with L =0) because of the presence of
the term (2/r)(dP/dr) in the Laplacian. However, in-
spection of Fig. 2 shows that, as N becomes larger, the re-

used here. Secondly, we see that the curve has a
minimum value of N, and a small region where two
values of e& correspond to the same value of N. With our
chosen parameters we see that this implies that no solu-
tion is possible for two bosons, and hence that three bo-
sons provide the minimum number needed to achieve a
bound state, while the double valued section of the curve
corresponds to a nonintegral boson number. It is in-
teresting to note that this means that if we identified our
bosons as alpha particles, and the ground states of the
various ¹ lpha nuclei as Bose condensates of alpha par-
ticles, we would say that Be is unstable against breakup
into two alpha particles, whereas ' C is bound against al-
pha emission.

However, we do not wish to take this point too serious-
ly, since our mean field approach is not expected to be
valid for such small values of N. Apart from this, the bo-
son pair interaction of equation (2.1) is appropriate for
neutral alpha particles. Now, in the absence of Coulomb
repulsion, it is an empirical fact that the corresponding
scattering length is positive, indicating that such a system
could indeed be bound. It is therefore probable that the
nonbinding of two particles in our model is small-N quirk
of our theory, and not necessarily related to the physical
nonexistence of an alpha-alpha bound state.

The lower panel of Fig. 2 shows how the single boson
wave function evolves with increasing particle number.
As expected, for a few particles, the individual bosons are
localized near to the origin. As N increases, and satura-
tion is approached, the wave function takes approximate-
ly the form of a Fermi function, being nearly constant far
some distance out from the origin before falling to zero
over a relatively short distance which we can identify at
the surface region. In fact, we can even get an expression
for the saturation density without solving the difFerential
equation. We identify the density of the condensate as
p=N

~ P ~

. Then, when saturation is achieved in an
infinite system, we shall have ()' /=0, and Eq. (2.4) may
be written as
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gion where P varies significantly with r gets pushed out
further and further from the origin. In these cases we see
that at very large or very small distances, dg/dr is small.
It only takes substantial values at the surface, where 2/r
will, in its turn, be a small quantity. For N "large
enough*' it may therefore be a good approximation to
throw away (2r)(dg/dr) and solve what amounts to the
one-dimensional nonlinear Schrodinger equation, subject
to the same boundary conditions (namely, dP/dr

i „0=0
and $~0 as r ~ 00). In this approximation we therefore
obtain an unnormalized, single boson wave function iden-
tical to that given in Eq. (3.1). However, the normaliza-
tion condition is now

1 8(w2+8 )=1,
2e) 3B

where

(4.1)

16@)B8= tanh
3A

(4.2)

We have already seen the limiting saturation value of
ei —— 2m eo/fi a—s N becomes large and tanh8 ap-

proaches 1 in Eq. (3.9). In addition, we can obtain the

y i(

4m r r=1,
instead of the linear condition

f i P ['dx=1,

so our eigenenergies and other expectation values are
different.

The expressions for the norm, Hartree potential ener-

gy, kinetic energy, and mean square radius may all be
evaluated by integrating appropriate integrands around
the rectangular contour in the Argand plane shown in
Fig. 3. As we take R towards infinity, the contributions
from the vertical sections vanish, and we obtain the
desired quantities in terms of residues at the two enclosed
poles.

The normalization integral gives us a transcendental
equation for the separation energy, e&, of the form

value of e] in the absence of a repulsive force by letting B
become vanishingly small. We find

2
(4.3)

3A
lime, =
B~O

lim&r &= 63 A

B~O 80 ~4
(4.5)

When the system increases in size and saturates, the sin-
gle boson wave function remains almost constant out to
some large radius where it falls rapidly to zero. We may
then relate the mean square radius to & r & by a factor of
3 Therefore, as the partic 1e number becomes 1arge, we

predict that the root mean square radius of our conden-
sate will be given by

' 1/2 i/3
5&r & NP

3 7TCX

(4.6)

which increases in proportion to N' as we would expect
for a saturated, spherical system. We could have ob-
tained this value for the rms radius of the condensate
without taking the large N limit of Eq. (4.4) by simply
considering the saturation density, p, =3a/(4p), [ob-
tained in Eq. (3.11) without even solving the differential
equation] and taking the N particles in volume 4mR3/3
to have this density.

The Hartree potential energy for a single particle is
found by evaluating

& VH & =4m f (N —1)( —a+Nppi)$4r ~dr,
0

and yields

n.Qe,
& VH &=

3
[(188—3n 8—38 )tanh 8

6A tanh 8
—(m'+ 38')tanh8+ 8(~'+ 8') ] .

(4.g)

The expectation value of r can be calculated along the
same lines to give

z&
9A tanh 8(38 +7m )

g0+82( 82+ ~2 )2

In the absence of repulsion, we obtain

-R+—I Tt

Ai

8
12~, 2V~i

R+—I TK

]ta, The total Hartree potential energy is obtained on multi-
plying this result by N/2 (to avoid double counting). The
no-repulsion limit of this expression is

16~
lim& V —1
B~O 9A2 6

(4.9)

while the large N limit is obviously given by the satura-
tion value

FIG. 3. The contour used to obtain the approximate analytic
expressions of Sec. IV. Two poles are enclosed, and as R ap-
proaches infinity the contributions from the vertical sections to
all the quantities considered, vanish.

3(x
hm &V„&=—

16

The single-particle kinetic energy is found from

$2&T&=-" 4 f-yV y. d. ,
2m 0

(4.10)

(4.11)
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and is (setting A'=m = 1)

( T )=, [(68+m'8+8')tanh'8
6A tanh 0

+(m2+382)tanh8 —8(vr2+8')] .

(4.12)

The small B limit of this is given by

8n. m
lim (T)= 1+
8 o 9A

(4.13)

while the large N limit varies like N
1/3

9m''
lim (T) =

N~ oo 64Na
(4.14)

This means that as the particle number increases, the to-
tal energy becomes purely potential with the single-
particle kinetic energy approaching zero. This is to be
expected since at saturation we effectively have a ball of
hard spheres which have lost their freedom of individual
movement due to the presence of the (infinitely) large
number of other spheres around them. It is a1so a conse-
quence of the Heisenberg uncertainty principle. As the
system increases in size, we lose all knowledge of an indi-
vidual particle s position, and the uncertainty in its
momentum may therefore approach zero, leading to a
vanishing single-particle kinetic energy.

These analytic expressions are expected to become val-

id as the particle number becomes large, and they cer-
tainly have the correct qualitative behavior to describe a
saturating system. In Sec. V we shall test them out in a
concrete, physical example.

V. SOME APPLICATIONS IN NUCLEAR PHYSICS

Since alpha decay was observed experimentally before
the discovery of the neutron, it motivated Gamow to
make some early attempts to describe nuclei as
conglomerates of alpha particles. Although this model
subsequently fell from favor with the introduction of
proton-neutron models of the nucleus, it has been per-
sistently revived, in one form or another, over the (al-

most) 60 years which have elapsed since then.
Wheeler used the resonating group method to con-

struct a Be wave function consisting of two alpha clus-
ters in which the individual nucleons were properly an-
tisymmetrized. This approach has also been vigorously
pursued by Edwards, Wildermuth, and Neudachin
et al. An alternative approach, in which Be was de-

scribed as a pair of alpha clusters with fixed centers (and
whose component nucleons were again properly antisym-
metrized), was proposed by Margenau. Similar work
was done by Biel, and some unpublished work by Bloch
was elaborated upon by Brink to develop an ingenious
model which has recently been revived because it lends it-
se1f to cranking.

A phi1osphically very different approach, in which Be
was taken to be composed of two structureless alpha par-
ticles obeying Bose-Einstein statistics, was introduced by

(R )' = lim
Ao~ oo

Hence, we see that this same ratio of parameters leads to
the relation (Ro)'~ =1.17Ao fm. This result is compa-
tible with measurements across the entire periodic table
of the matter radii of atomic nuclei obtained from neu-
tron scattering experiments.

The energy to separate an alpha particle from the
medium was given in Eq. (3.9) as 3a /16f3, which leads to
a value of 15 MeV. The compressibility of nuclear matter
can be related to this same combination of parameters by
differentiating the total energy of the saturated system, E,
twice with respect to the density, p, [see Eq. (3.10), (4.10),
and (4.14), and write N =4Ao] as follows:

1 d EK=-
p dp Ao

9a
4p

(5.2)

This gives a value of 180 MeV, which lies within the
range of accepted values and which are usually quoted as
lying between 1SO and 360 MeV (Ref. 3S).

In our model, only two of the four nuclear matter
quantities considered are independent, and they give us
values for the ratios a/P and a /P (thus serving to fix the
two unknown parameters). It is nevertheless gratifying
that we are able to achieve acceptable agreement with the
results of more sophisticated calculations in which these

Wefelmeier and further developed by Teller and
Wheeler, Dennison, and Kameny. Our own boson
model is clearly most compatible with these latter ideas,
and we shall endeavor to apply it to nuclear physics by
identifying our bosons as spatially correlated combina-
tions of two protons and two neutrons having total spin
and isospin of zero and loosely referred to as alpha parti-
cles. We shall fit our two free parameters, a and P, to the
established properties of nonrelativistic nuclear matter,
and see to what extent we can reproduce the observed
properties of the ground states of the ¹lpha nuclei (by
which we mean those light nuclei containing equal even
numbers of protons and neutrons).

For completeness we should point out that the study of
four nucleon correlations in nuclei has enjoyed something
of a renaissance recently. There has been a suggestion of
the existence of alphalike condensates within the frame-
work of the interacting boson model, and also some
BCS-like calculations, including four-particle correla-
tions, of the structure of the superfluid and low-lying ex-
cited states of atomic nuclei.

In earlier sections of this paper we have already sug-
gested the parameter values a = 1600 MeV fm and
P=32000 MeV fm . In the limit of a very large, saturat-
ing system, the analytic expression given in Sec. IV be-
come exact, and we can see that this choice is consistent
with the known properties of nonrelativistic nuclear
matter. The saturation density was given in Eq. (3.11) as
3a/4P, implying a value of 0.15 nucleons/fm, in agree-
ment with conventional wisdom [see for example the re-
cent review by Negele (Ref. 21)]. In addition, if we write
the number of nucleons, A o, as four times the numbers of
bosons, N, we can rewrite Eq. (4.6) as

' 1/2 ' 1/3
5(r ) 1 2P

3 2 7Tcx
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2

p,h( O)=po 1+ exp( r /ao—),16 ar 2 2

ao
(5.3)

where a =2, ao =1.77 fm and po=0.06477 protons/fm
(which is normalized to eight protons). This formula is
motivated by considerations of the single-particle orbitals
in a spherical harmonic oscillator shell model, and gives
an excellent reproduction of the data. Our calculated dis-
tribution does not show a central minimum and has too
large a tail, but since we did not expect a mean field
description of only four bosons to be particularly accu-
rate, we consider the outcome to be surprisingly good
despite these obvious shortcomings.

In the lower panel of Fig. 4 we compare our calcula-

four quantities are not so trivially related. We shall now
investigate to what extent our model, with these parame-
ters, can be applied to the ground state properties of the
light ¹ lpha nuclei.

We begin by using the numerical solutions of Eq. (2.4),
described in Sec. III, to calculate the charge density,
charge radius, alpha particle separation energy, and bind-
ing energy for the N-alpha nuclei ranging from ' C to

Ti. As mentioned in Sec. III, the Be nucleus has no
bound states with our chosen parameters, which happens
to be in qualitative agreement with experiment. Howev-
er, we feel that this success is somewhat fortuitous, since
we hardly expect a mean field approach to provide an
adequate description of two boson system, and is prob-
ably a small-N quirk of our theory.

To calculate the charge density, p,h, we assume that
the neutron and proton distributions coincide, and associ-
ate two protons with each boson so that p,„=2M

~
(t

~

and we are treating the individual particles as pointlike.
There are no great qualitative differences between our
calculated distributions for the various ¹anuclei, and so
we present two typical examples from the light (' 0) and
heavy ( Ca) extremities of the mass range in Fig. 4. The
charge densities of both these nuclei have been measured
by high-energy elastic electron scattering and we corn-
pare our calculations with some simple parametrizations
of the data suggested by Hofstadter.

In the upper panel of Fig. 4, we compare our calcula-
tion with the analytic form

0.10—
'l60

E

0.05
CL

r (fm)

0.10
40C&

0.05-o
CL

tion for the proton density in Ca with a Fermi function
which describes the experimental data very accurately.

p h( Ca)= 1+exp[( r —c ) /z ]
(5.4)

where c=3.659 fm, z =0.5455 fm, and po ——0.079 94
protons/fm (and is normalized to 20 protons). The
agreement between calculation and experiment in this
case is considerably better, reAecting the improved ade-
quacy of the mean field approximation for the description
of ten bosons. In particular, the qualitative features of a

r (fm)

FIG. 4. Calculated (solid lines) and experimental (broken
lines) charge distributions for ' 0 and Ca. Interboson poten-
tial parameters of a=1600 MeVfm' and P=32000 MeVfm
are used, and the experimental distributions are from Ref. 39.

TABLE I. Calculated and experimental values of the alpha particle separation energy, root mean
square radius, and binding energy (BE) for ¹lpha nuclei. We use a=1600 MeVfm' and P=32000
MeV fm for the boson potential parameters. Experimental data are from Refs. 40-42.

Nuclei

—6p (MeV)
calc. expt.

((r'))' ' (fm)
calc. expt. calc.

BE (MeV)
expt.

12C

16O

Ne
Mg

28Si

32S

Ar
"Ca
44T

3.04
4.92
6.09
6.91
7.53
8.02
8.42
8.75
9.03

7.37
7.16
4.73
9.31
9.98
6.95
6.64
7.04
5.13

3.42
3.15
3.15
3.21
3.28
3.36
3.44
3.51
3.59

2.46
2.73
2.91
3.03
3.13
3.25
3.33
3.49
3.59

82.8
113.2
144.5
176.3
208.4
240.7
273.3
306.0
338.8

92.2
127.6
160.6
198.3
236.5
271.8
307.1

342.0
375.5
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E=—( VH ) +—N ( T ) —28.295N .
2

(5.5)

Overall, our results for the binding energies of the 4-N
nuclei are generally below the experimental values [ob-
tained from a consideration of the proton and neutron
mass defects, and the mass defect of the nucleus in ques-
tion (Ref. 42)], but can be considered satisfactory for a
simple two parameter model which was not fitted a priori
to these data.

These results actually open up an interesting connec-
tion with neutral alpha matter. Equation (3.11) gave a
saturation density of 0.0375 bosons/fm, and Eq. (5.5) im-
plies a saturation binding energy per boson of —35.795
MeV (since ( T) vanishes and ( VH )~ —15 MeV in the

central plateau and a less diffuse surface region where the
density falls quite rapidly to zero are clearly discernible.
The calculations for the intermediate nuclei show a gra-
dual evolution from the curve of the upper panel of Fig. 4
to that of the lower panel, and are accompanied by a cor-
responding improvement in agreement with the data as N
increases and the validity of the mean field approxima-
tion improves. This pattern of improved agreement is
also noticeable in the charge radii (see Table I}which are
calculated to be larger than their experimental counter-
parts ' ' in the lighter nuclei, but are closely comparable
for Ca and Ti.

Table I also shows a comparison between the calculat-
ed and experimental alpha particle separation energies,
—E'0 and binding energies for the ¹ lpha nuclei. The
separation energy is calculated from the normalization
condition on the single boson wave function, and, in our
model, rises monotonically towards the saturation value
of —15 MeV. The experimental values are much more
irregular and do not exhibit any kind of systematic pat-
tern. In particular, we note that the energies to remove
an alpha particle from Ne and Ti are significantly
lower than from the other nuclei. This is a feature which
can be attributed to the presence of double shell closures
at N =Z=8 in ' 0 and N =Z =20 in Ca facilitating
the removal of the alpha particle, and is obviously not
present in our model. Although we are not sensitive to
details which depend on the internal fermionic structure
of alpha particles, the order of magnitude of our separa-
tion energies (calculated with parameter values fitted to
nuclear matter properties} is correct, and might be ex-
pected to give better agreement in heavier nuclei, far
from shell closures. Unfortunately, heavier ¹ lpha nu-
clei are unstable because of the influence of the Coulomb
force which is ultimately responsible for favoring an ex-
cess of neutrons over protons, and so our conjecture can-
not be tested in this context.

The binding energies in Table I are calculated by sum-
ming the Hartree potential and kinetic energies, giving
the energy to separate the system into N individual bo-
sons, and then adding N times the binding energy of a
free alpha particle, to separate the system into its constit-
uent nucleons. We thus write the binding energy in MeV
as

10 15 20
N

-10—
Eo

(MeV)

15 —————
5iL

(MeV)

10 15 N

-10
&V„)
(Mev)

3.0
10 15 20

FIG. 5. The upper panel shows the calculated alpha particle
separation energy as a function of boson number, N. As N in-
creases, the saturation value of —15 MeV is approached. The
middle panel shows the expectation values of the single boson
kinetic and Hartree potential energies as functions of N. The
former tends to zero and the lattice approaches —15 MeV as
saturation sets in. The lower panel shows the root mean square
radius as a function of N. In all cases parameter values of
a=1600 MeVfm and P=32000 MeVfm are taken.

large N limit. These values are within the ranges of
0.036—0.086 alphas/fm and —40 to —10 MeV/alpha,
respectively, obtained by Johnson and Clark using realis-
tic alpha-alpha potentials in a Jastrow variational calcula-
tion. "

Figure 5 shows the behavior of eo, ( T), ( VH ), and
((r ))' as functions of the boson number N obtained
from our numerical solutions. The upper panel shows
the monotonic increase in the magnitude of the alpha
particle separation energy, and its slow approach to the
saturation value of 15 MeV as N is increased. The cen-
tral panel shows the expectation values of the single-
particle kinetic, ( T ), and Hartree potential, ( VH ), ener-
gies as functions of N. The former reaches a maximum at
about N=4 and then declines (eventually like N '~

) to-
wards its asymptotic value of zero, while the latter ap-
proaches the saturation value of —15 MeV. Finally, the
lower panel shows ( ( r ) )'~, which has a minimum value
between N=4 and N= 5, but then rises without limit as N
is increased further (ultimately like N' ).
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TABLE II. Correlations of root mean square radius and binding energies (BE) with the alpha parti-
cle separation energy in the solid sphere approximation for ¹lpha nuclei. We use a=1600 MeV fm
and @=32000MeV fm for the boson potential parameters. Experimental data are from Refs. 40-42.

Nuclei

12C

16O

Ne
Mg

28Si

32S

"Ar
4'Ca
4'Ti

—eo (MeV)
expt.

7.37
7.16
4.73
9.31
9.98
6.95
6.64
7.04
5.13

calc.

2.60
2.81
2.96
3.25
3.44
3.50
3.63
3.77
3.85

((r )) fm

expt.

2.46
2.73
2.91
3.03
3.13
3.25
3.33
3.49
3.59

calc.

95.9
127.5
153.3
197.7
233.0
254.2
284.5
318.2
339.5

BE (MeV)
expt.

92.2
127.6
160.6
198.3
236.5
271.8
307.1

342.0
375.5

We could certainly improve our agreement with the ex-
perimental data in Table I by a different choice of a and
P. However, we do not feel that this would be a physical-
ly reasonable procedure since with so few bosons in the
system the mean field approximation is only just begin-
ning to be validated in the heavier ¹ lpha nuclei, and so
we prefer to retain the parameter values which fit the
characteristics of nuclear matter. Even with these
caveats, our calculations are acceptably close to the ex-
perirnental results and exhibit a reasonable global behav-
ior.

The approximate analytic expressions derived in Sec.
IV are expected to be highly accurate for large boson
number when the contribution of the nuclear surface
[which was effectively ignored by throwing away
(2/r')(dP'/dr')] is less important. Nevertheless, by ap-
plying the analytic expressions for ( VH ), ( T ), and ( r )
to the light N-alpha nuclei, we have found that they give
values within 10% or less of those obtained from the nu-
rnerically calculated wave functions for 6 (N & 11, which
corresponds to e,B/A ~0.1 with our choice of parame-
ters. We have checked that this agreement does indeed
become progressively better as N is increased still further,
and saturation is approached more closely.

In view of the proximity of these analytic approxima-
tions to the exact numerical results, we were motivated to
examine an even more extreme approximation which we
might call the solid sphere model. In this case, we avoid-
ed solution of the differential equation (2.4) completely by
assuming that the single boson wave function (I) was con-
stant out to some cutoff radius R and zero beyond. We
then normalized P within a sphere of radius R and so ob-
tained relations between R, the alpha particle separation
energy eo and the binding energy, E. Employing the
same values of a and P as before, and taking Ep from ex-
periment, we present the resulting values of (( r ) )'~ and
E in Table II. They are inferior to those of Table I (espe-
cially when we note that they involve a greater experi-
mental input), but the fact that they are at all comparable
with the data is a reflection of the leptodermous nature of
atomic nuclei (i.e., their density is more or less constant
throughout their interior and falls rapidly to zero in the
surface region).

VI. CONCLUSIONS

We have presented a spherically symmetric, three-
dimensional model of a system of N bosons interacting
through attractive and repulsive Skyrme-type forces.
The mean field description of the ground state condensate
of this system has been formulated as a nonlinear
Schrodinger equation for the single boson wave function,
P, [Eq. (2.4)]. We have solved this differential equation
numerically, subject to the boundary conditions that p
vanishes at large distances and that its derivative at the
origin is zero. We have also proposed an approximation
which allows a modified version of the equation to be
solved analytically (subject to the same boundary condi-
tions) and which further allows analytic evaluation of the
expectation values of the kinetic energy, Hartree poten-
tial energy, and the mean square radius of the Bose con-
densate. Equation (2.4) is known to have stable solutions
for 0 & e,B /A & —,'„and our approximate analytic expec-
tation values were found to be within 10lo (or better) of
the exact numerical ones for e&B/A ~0.1.

The interplay between the attractive and repulsive
Skyrme-type forces leads to saturation as the boson num-
ber increases. In this limit we have shown that the single
boson separation energy and Hartree potential energy
both attain a constant value, while the single boson kinet-
ic energy vanishes and the radius grows in proportion to
N 1/3

We have applied our results to the field of nuclear
physics by interpreting our bosons as spatially correlated
conglomerates of two protons and two neutrons whose
spins and isospins are coupled to zero (and loosely called
alpha particles). By fitting our two free parameters to the
properties of nonrelativistic nuclear matter, we have been
able to obtain a surprisingly good description of the
ground state properties of the light ¹ lpha nuclei, al-
though the finer details remain beyond our reach.

In view of the widespread occurrence of the basic non-
linear differential equation (2.4) in so many disparate
fields of physics, we anticipate a variety of future applica-
tions of our model and, in particular, of the approximate
analytic results presented in Sec. IV.
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