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Quasiparticle model for nuclear dynamics studies: Ground-state properties
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A model Hamiltonian is advanced which provides a computationally efficient means of investigat-
ing nuclear dynamics. The Hamiltonian includes both Coulomb and isospin-dependent terms, and
incorporates antisymmetrization effects through a momentum-dependent potential. Unlike many
other classical or semiclassical models, the nuclei of this simulation have a we11-defined ground state
with a nonvanishing (p2). It is shown that the binding energies per nucleon and rms radii of these
ground states are close to the measured values over a wide mass range.

I. INTRODUCTION

This paper is the first in a sequence of three which will
develop a model which is both computationally fast and
describes many of the properties of nuclei and their reac-
tions at energies of less than 200 A MeV. In this paper,
the main ingredients of the model will be outlined, and its
ground-state properties will be explored. In the second
paper, the problems of handling collisions in a stochastic
manner which preserves angular momentum will be dealt
with. The last paper in the series will deal with the ther-
modynamic properties of the model, particularly its
phase structure.

Finding a model description of nuclei which can be
handled in an efficient manner for computer simulations
is a difficult task. On a quantum mechanical level, the
wave functions must be antisymrnetrized because of the
fermionic nature of the nuclear constituents, and this im-
plies that one is dealing with Nt components to the wave
function even for a single Slater determinant. It is clear
that determining the time evolution of anything but the
lightest nuclei by numerically propagating the nuclear
wave function would be computationally very demand-
ing. Many of the computational models which have been
advanced, particularly for the study of nuclear fragmen-
tation which involves evaluating many-body correlations,
attempt to reduce the N-body problem to one which in-
volves the evaluation of only N elements for a force or
energy. While it is recognized that such simplifications
may not always be particularly accurate, such N models,
as we will call them, appear to be the only ones fast
enough to be reliably evaluable in a typical Monte Carlo
calculation. In other words, one is forced to make a
compromise between approximating the many-body
physics and producing a simulation which can execute
fast enough to produce a statistically significant Monte
Carlo sample. The sample size may run from a few hun-
dred events to calculate a mass yield curve from a reac-
tion, up to tens of thousands of events to predict a corre-
lation function.

The difficulty in performing the N reductions lies less
in the nuclear potential (models of which are often ob-
tained from the analysis of nucleon-nucleon scattering—

a two-body process) than in the problem of enforcing the
necessary restrictions on the occupancy of states required
by Fermi-Dirac statistics. For the time evolution of one-
body distributions, incorporating the effects of the Pauli
principle are not overly difticult. Once one has an initial
state which satisfies the constraints on phase-space occu-
pancy (this is not a totally trivial task) then the distribu-
tion can be propagated by means of a collisionless trans-
port equation without violating the phase-space con-
straints. Introducing a collision term for fermions, as
suggested by Nordheim' and Uehling and Uhlenbeck
(which we will call the NUU method) may cause prob-
lems for the computer simulation of many-body distribu-
tions.

The essence of the NUU method is the following:
Each time a collision occurs, a tentative assignment is
made for the new rnomenta of the scattered pair of parti-
cles according to a predetermined distribution. The oc-
cupancy of the tentative phase space determines whether
the collision is allowed. In a Monte Carlo simulation, the
determination of whether a collision is allowed is made
by comparing a random number with the occupancy.
This method has been applied to simulations of the time
evolution of one-body and A-body distributions.

To see how the NUU collision term will affect the time
evolution of many-body distributions, let us focus on the
initialization problem. That part of the energy density
associated with the nuclear force is often parametrized in
the simple form:

H(r)= +——A p(r) 8 p(r)
2 pp 3 pp

Here A and 8 are constants, pp is the density of normal
nuclear matter taken to be 0.17 fm, and isospin and
other terms have been neglected. For infinite uniform
nuclear matter, the energy per nucleon corresponding to
Eq. (1) has a minimutn value of —41.22 MeV at
p=1.33pp. A finite system of classical computational nu-
cleons will thus have a ground-state energy in this range
as well.

This classical computational ground state is, of course,
not what one wants for nuclei. One method used to help
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avoid this problem is simply to start with a phase-space
distribution which is closer to what is expected of the
"real" nucleus and propagate it. In a Monte Carlo ap-
proach, this distribution will have fluctuations, the mag-
nitude of which depend on the individual model. If the
fluctuations in the initialization are large, then the NUU
collision term will help smooth them out by scattering
particles away from high-density regions to low-density
ones. On the other hand, if considerable care has been
taken to initialize the phase space (such as is done in Ref.
4 for one-body distributions) then the collision term may
actually induce unwanted fluctuations in the many-body
distributions of cold nuclei. This can happen when an
unlikely collision occurs and transfers a particle into a re-
gion of phase space which is already nearly saturated,
thus oversaturating the region. These phase-space fluc-
tuations generally cause the computational nuclei to be
metastable, although the lifetimes may be very long.

In models such as Refs. 5-7, the indeterminacy of the
binding energies of these metastable states is typically
1-2 MeV per nucleon. This puts a fundamental uncer-
tainty on the excitation of these nuclei which is not
present in, for example, molecular dynamics calculations.
Hence, when one of these models ' was used to investi-
gate the effects of the liquid-vapor phase transition on nu-
clear reactions, only the reaction trajectories in phase
space could be evaluated, not trajectories in the excita-
tion energy versus density plane. ' The need for a well-
defined ground state is even more obvious when one
wishes to make comparisons with data, particularly mass
distributions. The simulation must be capable of calcu-
lating excitation energies and, equally important, must
possess a prescription for following the decays of these
excited states. "

An alternative to the NUU method is to add to the nu-
clear and Coulomb terms a classical potential whose
ground state for noninteracting particles resembles a Fer-
mi gas. Parametrized functional forms for such poten-
tials have been advanced by several groups, ' ' begin-
ning a decade ago. What we wish to do here is obtain a
potential from the expectation value of the kinetic-energy
operator for a specific nuclear wave function, so that a

I

physical meaning can be attached to the parameters of
the potential. The functional form we obtain bears some
resemblance to at least one of the previous ansatze. '

The layout of the paper is as follows. In Sec. II we
derive what we call the Pauli potential, and investigate its
ground-state properties. Of course, to have a model
relevant to nuclei, we need a strong interaction Hamil-
tonian, and this is obtained in Sec. III. Finally, the
ground states of finite nuclei governed by the combined
nuclear and Pauli Hamiltonian are summarized in Sec.
IV.

II. A PAULI POTENTIAL

One of the most important effects of Fermi-Dirac
statistics as far as a nucleus is concerned is that the
ground state is forced to have a nonzero expectation
value of the kinetic-energy operator:

where all nucleons will be assigned a mass m of 938.9
MeV in this calculation. We wish to express Eq. (2) in
terms of a set of quasiparticles. The antisymrnetrization
of the wave function causes the evaluation of Eq. (2) to
include a summation over at least Xf terms and possibly
as many as N(N!) terms. This is computationally prohi-
bitive for all but the very lightest systems. To consider
nuclei of the order of 10 nucleons, one is restricted to
calculations of order N in complexity. Hence we seek
approximations which allow us to express Eq. (2) in terms
of two-body interactions between the quasiparticles.

Consider the two-particle problem. We take the
single-particle wave functions, before antisymmetrizing,
to be Gaussian wave packets

' 3/4 a'(r —r, )

2

ip, r
exp (3)X,(r)= exp

centered at r, with average momentum p, . The width of
the wave packet is characterized by the parameter a.
The two-particle wave function is then

]I],b(r], r2) = X, (r] )Xb(r2) —X, (r2)Xb(r] )

1/2f f ~X.(r])Xb(r2) —X,(r2)Xb(r])
~

dr, dr2
(4)

The total kinetic energy of the particle pair can be shown
to be

as a two-body potential between quasiparticles with
phase-space coordinates (r„p, ) and (rb, pb ):

(K).b= P. +Pb+3a A +a fi
a'm'

V (X,„)=
2m ab

where

X,b= —,'[a (r, —rb) +(p, —p„) /(]]l a )] .

The 3a A term reflects the fact that the wave packet is
not a delta function in momentum.

From the form of Eq. (5), we can identify the last term

which will be referred to as the Pauli potential. The po-
tential has the following desirable properties: In the limit
in which the quasiparticles are well separated in phase
space, i.e., X,b ~~, the potential vanishes. Further, the
potential is repulsive for finite separations in phase space.
Qualitatively, this is the behavior which we expect for the
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many-particle Fermi gas.
It remains to be demonstrated that the ground state of

an N bo-dy system of quasiparticles interacting via Eq. (6)
resembles that of an ideal Fermi gas. With our model,
the energy of the N-particle Fermi gas would be

E(r, k)= g(k(/a) +—,
' g2m ~ Xlm

I l~m e

where

is an eigenvector of M for all q=(q",q, q'),
q"E ( —m /a, m /a ),

MV(q)= gM(„. e co„

2

+5„„Q( ~
r, —r. ~')e i™qco.

mv

+5„~(Q~rl —r
~

)

i(rI —r ) q —iri qge e (10)

m

I+ g f ( ,'a rl ), !=—m,
j~l

—f ( —,'a~r,~
), 1~m,

(8)

k, =(kI', k$, kf ), rl=("t «f "f )

kI ——kI —k, r

and where Rk, =p, .
As an example of what happens in a many-body sys-

tem, consider the particles placed on a cubic lattice with
lattice spacing a. If aa &&1, then the sites are effectively
decoupled, and the ground state has kI ——0 for all I. For
small aa this is not the case. We will show that as aa is
reduced the kI ——0 configuration changes from a local
minimum of the energy to a saddle point. We begin by
considering the nature of E as a function of k& near the
point kl ——0. First note that BE/BkP=O for all l and
p=x, y, z. Hence kI ——0 is a critical point of E. Now con-
sider the curvature matrix of E at kI ——0

B'Z
Bkt'Bk"

A,(q) = Q(~r ~')e
r 6 lattice

f2
1+ g f(—,'a r )[1—cos(r q)]

r G lattice

So V(q) is an eigenvector of M with eigenvalue A,(q). The
minimum of A, (q} occurs along the line q"=q~=q* for all
a. From Fig. 1 we see that for aa & 2.2, A,(q}& 0 for all q
hence k&

——0 is a local minimum (in fact the global
minimum}. If aa & 2.2., A,q will change sign as a function
of q which implies that kI ——0 is a saddle point and can-
not be the global minimum of E. So the ground state of

Replacing the sum over particle label by the sum over lat-
tice sites,

2

MV(q)= cue ' g Q(~r
~

)

r E lattice

=&(q)V(q)

where

where

f(X)= l
ex

XeX

(ex 1)

gf( 'ar&) — g— f(—'ar )

j~l r~0
r E lattice

Defining

In the limit N~ ~, all lattice sites are equivalent, and
the sum over particle label can be replaced by a sum over
lattice sites:

0

a =3.0
— 2.6
2.4
C eC

2.0
&.8

— 1.6

K4

Q(X )= .
1+ g f( —,'a r ), X=O,

r&0
r E lattice

—f(—,'X ), X&0,

1.2

then Eq. (8) can be rewritten

0 0.4 0.8 1.2 K6 2 2.4 2.8 3.2

It will be demonstrated that

[V(q)] „=e co
FIG. 1. Eigenvalues of the cur vatures matrix along

q =q~ =q, axis for various values of aa.
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the system will exist for some nonzero value of kl. For
example, for aa slightly less than 2.2, the ground state is
one in which kI alternates in sign with lattice position
corresponding to qa =~. As aa is decreased further, the
direction of greatest negative curvature at the kl ——0 state
shifts to lower values of qa. For example, qa is
significantly less than m/2 at aa= 1.0. One expects the
minimum in the energy will also shift in this d!rection.

Having demonstrated that the ground state of a system
of these quasiparticles can possess a nonzero kinetic ener-

gy, it remains to be shown that the energy of this system
can be brought into quantitative agreement with that of a
Fermi gas. The energy of the quasiparticle ground state
depends upon a, which up until this point has been treat-

ed as a free parameter. We wish to fix a by demanding
that the ground-state energy of the system of quasiparti-
cles on a simple cubic lattice be close to that of an ideal
Fermi gas at the equivalent density. However, we find
that Eq. (6) as it is written will always underestimate the
energy of a Fermi gas over all ranges of a.

The reason for this lies in the fact that we retained only
two-body terms in evaluating the kinetic energy of the
many-body system. To estimate the magnitude of this
approximation, consider the simple one-dimensional sys-
tem three particles equally spaced on a straight line. Us-

ing the single-particle wave functions of Eq. (3), one can
calculate the exact kinetic energy of the fully antisym-
metrized three-body wave function via

f f f4,'b, (x],x2,x3)(E]+f2+f3)+,b, (x],xz, x3)dx] dx2 dx3
(z&,= f f pgbg(x ] fx2t x3 )+gbp (x ] tx2Ix3 )dx ]dx2dx3

(12)

The antisymmetrized wave function ]I!,b, (x„x2,x3) is
formed via

1
+~bc x]&x2~x3

] g ijk~a(xi)~b(xj)~c(xk) ~

ijk

where e;Jk is the totally antisymmetric Levi-Civita tensor.
The kinetic energy in Eq. (12) is to be compared with the
pairwise result of

(~&,.„=-,' g «&,,

a'A'
V~ (X,b ) = V,

2m +ah
(13)

This rescaling, which is required to reproduce the ener-
getics of the three- and higher-body systems, means that
the energy of the isolated two-body system is overpredict-
ed. However, it is far more important to have the many-
body energy correct. As we discuss below, the charac-
teristics chosen for nuclear interaction will also be
weighted towards the heavier systems, although the mod-
el does handle light systems reasonably well.

with ( K &;j defined by Eq. (5). The ratio
R = (E &3/(E &~„., is dependent on the relative positions
of the particles in phase space: The further the particles
are separated, the closer R will be to unity. Taking
k, =kb ——k, =0 to obtain an upper bound, we find R will

range up to about 1.5 depending on aa. This is an upper

limit for R, in that all momenta have been set equal to
zero even though aa is in a range where this momentum
configuration is not the ground state. For the true one-
dimensional ground state, the three-body terms will not
be as large. However, in moving from the three-body sys-
tem in one dimension just considered to the many-body
system in three dimensions, we expect that the many-
body terms will be the same order of magnitude as the
pair terms.

Hence, we are forced to rescale the strength of the Pau-
li potential, which we write as:

The two parameters of the potential, V, and a, are es-
timated by equating the ground-state energy per particle
of a simple cubic lattice at a specific density with that of
an ideal Fermi gas at the same density. Three densities
are chosen for comparison, p, /2, p„and 2p„and for
each a locus of values of V, and a which yield the same
energy as the Fermi gas are obtained. The reference den-
sity p, is equal to p]]/4 to take into account the four spin
degrees of freedom in nuclei. The specific lattice chosen
had 4 sites with periodic boundary conditions imposed
by working on an 8 (i.e., two periodic sites along each
side) lattice. It was found that making the lattice larger
(6 with two periodic sites along each side) did not
change the energy appreciably. The ground state was
determined by a Monte Carlo algorithm in which random
changes are made to the momenta of pairs of particles,
and the changes are accepted or rejected according to
whether they lower the energy of the system. Lastly, it
should be noted that the energy of the lattice at infinite
lattice spacing is finite (the energy per particle is
3a fi /2m). In order to compare with the ideal Fermi gas
result, whose energy vanishes at zero density, the energy
of the lattice at infinite separation has been subtracted
from that at finite separation.

The results are shown on Fig. 2 for the three densities.
One can see that there is a common intersection area
around V, =1.7—1.9 and a= —,

' fm '. This value for V, is

just what we expect from the discussion above on many-
body corrections. Further, the value of a can be com-
pared with results obtained in our previous semiclassical
equations of motion (SCEOM) model. In that model,
the Wigner transform of the wave functions in Eq. (3) was
used to construct a classical phase space for fermions. It
was found that in order to minimize the fluctuations in
that phase space for "cold" nuclear matter, a had a value
of —,

' fm ', identical to the result here.
Having examined the accuracy with which our Pauli

potential reproduced the ground-state energy of an
infinite system of fermions, we now apply it to a finite sys-
tem of particles in an external potential. The specific case
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FIG. 2. Loci of values of V, and a ' which produce the same
ground-state energy for the simple cubic lattice as the ideal Fer-
mi gas. The loci are shown for three densities: p, /2, p„and
2p„where p, =po/4.

we examine is that of a harmonic potential, because of
the availability of an exact quantum mechanical solution.
The system consists of an equal number of spin-up and
spin-down neutrons (with no nuclear interaction) subject
to a harmonic potential of the usual form —,'kx . A har-
monic oscillator fit to the ground-state properties of ' 0
gave' k=4.038 MeV/fm, which we will use as a
representative value for finite nuclear systems. For a= —,

'

fm ', we do not find a large change in our predictions of
the ground-state energy as V, is varied from 1.7 to 1.9, al-
though 1.9 is in somewhat better agreement with the ex-
act result. Both the exact calculation and the results
from the simulation are shown in Fig. 3. The agreement
between the two calculations is good, although of course
we cannot reproduce the structure associated with shell
closings. From this calculation and the infinite lattice re-
sults, we

fix

a —,
' fm ' and V, =1.9.

Finally, it is worthwhile commenting on the relation-
ship between this potential and the ansatze advanced pre-
viously. We have not attempted a comparison between
the ground-state properties of our potential and that of
Refs. 12 and 13; we have not solved for the ground states
associated with our nuclear interaction and either alter-
nate Pauli potential nor do we claim that ours produces a
more realistic ground state. The strength of this ap-
proach is that the potential is derivable under a set of ap-
proximations, and the two parameters can then be es-
tirnated by independent methods. It is encouraging that
the values of the parameters obtained in the fit to the Fer-
mi energy are consistent with these general expectations.
It is also encouraging to note that the functional form
which we obtain for the potentials is not too dissimilar to
those used previously, particularly Ref. 13.

FIG. 3. Ground-state energy per particle calculated for a sys-
tem of noninteracting neutrons in a harmonic potential with
k=4.038 MeV/fm . The dashed curve refers to the exact quan-
tum mechanical calculation, while the solid curve is the result
from the simulation.

III. NUCLEAR INTERACTION

A. The quasiparticle potential

The functional form we choose for the nuclear poten-
tial energy density is derivable from a zero-energy
Skyrme interaction'

A p Bp C(pp Pn)V= — +—,+— + (Vp)'.
2 pp 3 pp 2 pp 2

(14)

p(r)= gp;(r),

where the sum runs over all particles i. This assumption
is equivalent to saying that the cross terms in the 4'*4
product of antisymmetrized single-particle wave func-
tions cancel. Taking the wave packets of Eq. (4), p(r) be-
comes

p(r) =
3

g exp[ —a (r —r, }2] .
&m.

(15)

These first two terms are the same as those in Eq. (1).
The third term is isospin dependent and is a function of
the proton and neutron densities, p and p„, respectively.
The fourth term depends on the gradient of the density
and can also be motivated by the Skyrrne interaction. We
discuss the determination of the parameters A, 8, C, and

g& below.
To evaluate the total energy, we assume that the par-

tial density p can be written as
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We rewrite the expression for the total nuclear potential
energy using the shorthand

( A );=fp;(r)A d r,
from where,

and

1/r, r ~ro,e
V, (r)= '

z
4~ED [3 (—r lro) ]l(2ro) otherwise,

3

2

po

(16)

Because of the Gaussian form of the density in Eq. (15),
all of the integrals in Eq. (16) can be done analytically.
Furthermore, all but one of the sums involves only N
terms. The problem summation is that over (p /po)„
which is of order N . For a system of hundreds of parti-
cles, evaluation of N elements is computationally prohi-
bitive, and so we approximate it by

x (,) =x (~) + JIvp)'d'r (17)

which is an N operation. For uniform matter, this ap-
proximation is of no consequence. However, omission of
the second term allows for certain fluctuations which
preserve average density to develop with no penalty in
energy, and these fluctuations can lead to ground-state in-
stabilities in nuclei past the maximum in the binding en-

ergy per nucleon curve. Since g& and g2 multiply the
same functional form, they will be subsumed into
G =g, +g2.

Lastly, the Coulomb potential between protons is in-
cluded as well. The functional form of the Coulomb po-
tential between two protons with Gaussian charge distri-
butions [i.e., Eq. (4)] contains error functions, which are
cpu time consuming to evaluate. Since this is not a criti-
cal part of the calculation, we replace the Gaussian densi-
ty distribution with a uniform~sherical distribution. A
radius for the sphere of ro ——3&2m/4a has been chosen to
give a potential which approximates the exact potential.

By substituting Eqs. (15) and (17) into Eq. (16) and per-
forming the integrals an explicit form for the interaction
between the quasiparticles due to the nuclear potential is
found. Combining this with the Pauli and Coulomb po-
tential the energy of a collection of quasiparticles can be
written as

We emphasize that Eq. (18) is an explicit expression for
the Hamiltonian in terms of the phase-space coordinates
of the quasiparticles. All of the integrals over the proba-
bility distributions of the nucleons have been done analyt-
ically so that test-particle methods, etc. , are not needed.
The Hamiltonian then explicitly involves only two-body
terms.

B. Parameter determination

The model has a total of six parameters: a and V,
from the Pauli potential as well as A, 8, C, and G from
the nuclear interaction. The Pauli parameters were
determined by approximating the properties of the zero-
ternperature Fermi gas in the previous section. Once the
nuclear parameters have been fixed, then the ground-state
properties of any nucleus can be calculated. One method
of determining, the four nuclear parameters, then, is to
calculate the binding energies and rms radii of as many
nuclei as is practical and perform a least-squares fit to the
experimentally observed values. This approach is exceed-
ingly cpu time consuming within this model.

The approach adopted here is to find constraints im-
posed by the infinite-nuclear-rnatter limit so as to reduce
the fit to a search over one free parameter. The con-
straints are as follows.

(i) The binding energy per nucleon of infinite nuclear
matter at p=po ——0.17 fm and small co=(pz —p„)/po is
taken to be' B =Eo+a,~, where Eo ——15.68 MeV, and

a, = —28.06 MeV. (ii) The binding energy has a max-
imurn at p= po and co =0.

We can calculate the energy in the infinite-matter limit
using Eq. (14) for the potential energy and the ideal Fer-
mi gas result for the kinetic energy. For small co, the re-
sult is

E (p ) =
~ E(Fp /p) o+ 3eF(p/po) c—o

+ A /2(plpo)+& /3(plpo) +C/2(p/po)co',

(19)

(A +CS;S )
+a G ( 3 ar, )D ( r,")— "

Po

+, g QD(r;, )
3Po

(18)

where

r,, = /r, —r, [

S;= 1( —1) for protons (neutrons)

where eF is the Fermi energy at p =po and has the value
38.37 MeV. The binding energy is the difference between
Eq. (19) and the energy (E„) when the particles are
infinitely separated. Typically it is assumed that p:—0 for
infinite separation, therefore E„=O in Eq. (19). Under
this assumption we can solve for A, 8, and C to find the
respective values —124.11, 70.06, and 30.54 MeV. How-
ever, with this model and with real systems the density at
infinite separation is not identically equal to zero. The
finite wave-packet width of Eq. (4) gives rise to a nonzero
E„given by
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where

(Pl/Po)+ (P|/PO) +
2

(Pl/Po)

+ ,'«'(Pi/Po» (20)

IV. GROUND-STATE PROPERTIES

The calculational method used to find the ground
states of a given system is the following: First, an initial
choice is made for the positions and momenta of all A

nucleons. The initialization is very similar to that used in
the SCEOM model: ' Nucleons are placed on a bcc lat-
tice and are then assigned momenta distributed randomly
with a sphere in momentum space of radius equal to the
local Fermi momentum.

These positions and momenta are allowed to evolve in
time according to a set of damped equations of motion:

dH dH

Bp; Bq;

"dH ~ BH
P.=—

Bq; b Bp;

(21a)

(21b)

where ju is chosen to have a value of 400 (fm c/MeV) and
b is 938.9 (fmc/MeV) . In the b~ao limit this tech-
nique reduces to that of Ref. 12.

The equations of motion are then integrated using a
Runge-Kutta procedure' until p; and q; become
suSciently small. Typical values are found to be less
than q; —10 c and p; ——,

' MeV/fm after 200 fm/c. Some
care must be taken in choosing values for p and b which
yield convergence in a reasonable time frame without
overdamping the system. The binding energies of these
ground states were found to be reproducible at the level

p, =(a/&2n. ) =0.00794 fm at a= —,
' fm

With these three constraints, a one-parameter fit can be
performed to the binding energies and rms radii using 6
as the single parameter. Based on a similar, but different,
search performed previously' we would expect 6 to be in
the several hundred MeV-fm range. The results are
summarized in the next section.

of a few hundredths of an MeV per nucleon for different
starting conditions.

The cpu time required to follow a ground state out to
200 fm/c varies like A: from less than 3 min for A=50
to about 40 min for a mass 200 isotope (times quoted for
a single IBM 3081 processor). The long running times
for heavy nuclei prevented us from doing a complete 7
minimization search. Instead, our attention was focused
on the binding energies and rms radii of a few nuclei in
the 40, 110, and 200 mass range. It was found that the
parameter set A = —129.69, B=74.24, C=30.54 MeV,
and 6=291 MeV fm produced acceptable ground states
for these nuclei.

Several different means can be used to assess the quali-
ty of these ground states. We begin with a general sam-
ple of nuclei over the periodic chart, as shown in Table I.
Looking first at the binding energies, one can see that the
agreement between the model and the data is typically at
the few tenths of an MeV per nucleon. Considering how
few parameters are present in the model, this is about the
level of agreement which one would expect. For exam-
ple, the table also shows the fit obtained by Green with a
mass formula of a similar number of parameters, and one
can see that the level of accuracy is comparable. Since
our model is complete, we can also predict rms radii and
a comparison between these predictions and those ob-
tained in the Woods-Saxon fit'

p(r) =pot exp[(r —R ) /a]+ 1 I

a =0.545 fm,

R =1.18A' —0.48 fm

(22)

is also shown. Again, the predictions are remarkably
close to the fits.

The isospin dependence of the binding energies is also
reproduced fairly well as evidenced by the agreement
found for heavy nuclei in Table I. This can be treated
further by choosing an isobaric sequence, as is shown in
Table II. In this table, two intermediate mass systems are
chosen, A =32 and 51. Again, the agreement with exper-
iment is very reasonable.

One of the problems which most classical models of

TABLE I. Model calculations of binding energies per nucleon and rms radii for selected nuclei. The
predictions for the binding energies are compared with both the data and the mass formula of Green
(Ref. 20). The rms radii are compared with that obtained in a Woods-Saxon fit to a range of nuclei.

Nucleus
Binding energy

per nucleon (MeV)
Model Data Green

rms radius (fm)
Model Woods-Saxon

10
20
40
52
58
88

108
197

5
10
20
24
28
38
47
79

6.77
7.34
8.19
8.75
8.60
8.80
8.70
8.07

6.48
8.03
8.55
8.78
8.73
8.73
8.54
7.92

6.67
7.89
8.47
8.74
8.65
8.69
8.57
7.90

2.47
2.80
3.27
3.41
3.57
4.03
4.27
5.17

2.58
2.96
3.42
3.65
3.76
4.21
4.47
5.35
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TABLE II. Isospin dependence of binding energy per nu-

cleon. The comparison is made between the model calculation,
data, and a fit to the data.

Nucleus
A Z

Binding energy per nucleon (MeV)
Model Data Green

32
32
32
32

51
51
51
51
51

14
15
16
17

21
22
23
24
25

8.15
8.09
7.97
7.69

8.68
8.73
8.74
8.70
8.56

8.48
8.46
8.49
8.07

8.60
8.71
8.74
8.71
8,63

8.40
8.48
8.36
8.03

8.56
8.69
8.74
8.71
8.59

TABLE III. Binding energies and rms radii for light nuclei.
The comparisons are the same as Table I.

Nucleus
A Z

Binding energy
per nucleon (MeV)

Model Data Green

rms radius
(fm)

Model

2
3
4
5

6
7
8
9

10
12

2.71
4.37
6.24
5.84
6.06
6.52
7.09
6.88
6.77
6.97

1.11
2.83
7.07
5.48
5.33
5.61
7.06
6.46
6.48
7.68

1.34
0.61
4.09
4.06
5.37
5.49
6.14
6.29
6.67
7.05

2.45
2.45
2.45
2.48
2.45
2.45
2.45
2.47
2.47
2.55

nuclei encounter is the description of light nuclei. The
ground states of classical-point particles moving in Yu-
kawa potentials are often overbound and/or have in-
correct radii. The results obtained with this model
should be better since (i) a density-dependent potential is
used and the average density of the quasiparticle system
will decrease with decreasing mass and (ii) a finite rms ra-
dius will be obtained even when the quasiparticles are
coincident, because of their finite width.

The results for light nuclei are shown in Table III.
Even the deuteron, which is diScult to handle classically
because of its broad wave function, has approximately
the correct characteristics. Further, we find that A=5
system are significantly less well bound (per nucleon) than
He. Unfortunately, the energetics are not quite correct

and certain A=5 systems remain particle stable, just as
does Be. The rest of the light nuclei have binding ener-
gies and rms radii which are close to their observed
values.

We find, then, that the binding energies and radii pre-
dicted by this model are in quantitative agreement with
experiment at the tenths of an MeV per nucleon level
over the entire periodic chart. Further, the accuracy of
the masses generated in this dynamical model are com-
petitive with those obtained in a simple parametrized

mass formula fitted to the data. This is not to suggest
that the model should be used in place of a mass formula
for predicting ground-state properties (if for no other
reason than the computer time required to obtain an
answer). However, the model does possess the accuracy
required for comparison with experiment for measure-
ments sensitive to the properties of nuclei at low excita-
tion energies.

In applying the model to heavy-ion collisions, as will be
done in the next paper of this series, there may be some
observables which are sensitive to the slight inaccuracies
in the binding energies predicted for the light systems.
However, the predictions can be made more accurate by
the use of an afterburner code to allow for the decays of
particle unbound states. In such a procedure, the excita-
tion energies of the predicted products of the collision are
determined by comparing the binding energies of the
products with the ground-state energies of the computa-
tional nuclei. A statistical decay code based on the ob-
served masses is then used to follow the decays. The only
time-consuming step in this procedure is the initial gen-
eration of the ground-state energies of the computational
nuclei over the mass range of interest. Thus far, we have
calculated the binding energies of all nuclei within +7
charge units of the locus of the most stable nuclei up to
A =110.

V. CONCLUSION

We have formulated a computational model for nu-
clear dynamics studies based on the following considera-
tions: (i) the execution time to evaluate the forces or en-

ergy in an ¹ucleon system must scale only as pN,
where p must be small; (ii) the ground states must possess
a finite value for (p ); (iii} the computational ground
states must be the true ground states of the interaction
used (unlike Refs. 5 —7, which use metastable states} and
possess binding energies and radii which are close to the
observed values over a broad mass range.

The first criterion led us to avoid test-particle methods
[which scale like p(tN), where t is the number of test
particles per nucleon] and towards the use of a
momentum-dependent two-body potential to represent
antisymmetrization effects. The potential which was ob-
tained not only satisfied criterion (ii), but also possessed a
value of the energy distribution which is close to that of a
fermion system in the absence of other interactions.

A simple form was chosen for the nuclear potential en-

ergy density, and it was shown that this form led to bind-
ing energies and radii which were quantitatively compa-
rable with experiment (at the 90% level of accuracy or
better) over the entire periodic chart. Further, the in-
teraction also possessed the commonly accepted proper-
ties of nuclear rnatter. Of course, there are many other
nuclear interactions available than the one we have used:
Ours was chosen solely for its simple functional form and
small number of parameters.

The advantages of using this approach in the study of
fragmentation include the following: Here, the cold nu-
clei are true classical ground states of a Hamiltonian, and
these ground states are straightforward to determine. In
turn, this means that the excitation energy of reaction
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products can be computed.
However, the model is still only an approximation to

the real quantum many-body theory, and there are a
number of features which it lacks. First, this Pauli poten-
tial shares with others previously proposed the problem
of inducing a scattering phase shift between like particles
at low energies, although this problem is not particularly
important in nuclear reactions. As well, the width of the
wave packets i.s fixed in this model, whereas it should be
allowed to evolve with time. This last diSculty could be
partly solved with the inclusion of an equation of motion
for the width a, or (at a substantial increase in computer
time requirements) through the use of test particles.
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