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Random phase approximation for light nuclei based
on fully relativistic Hartree-Fock calculations
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The particle-hole spectra of light nuclei are examined in the self-consistent random phase approx-
imation based on fully relativistic Hartree and Hartree-Fock models for the nuclear ground state.
The particle-hole interaction is completely prescribed by the ground-state calculation. It includes
cr, co, p, and m meson exchanges, with o and co parameters adjusted to fit the bulk properties of nu-

clear matter. Differences between Hartree (no exchange) and Hartree-Fock (with exchange) predic-
tions for the spectra are discussed.

I. INTRODUCTION

In recent years relativistic models' for the ground-state
properties of nuclei have been pursued with some success.
These models are based on a relativistic quantum field
theory of baryons and mesons called quantum hadro-
dynamics (QHD). Calculations for finite nuclei have been
performed in the Hartree or mean-field approximation
to this theory, with an interaction based on the exchange
of cr, ~, and p mesons.

The couplings of the 0 and co mesons are determined
by fitting the saturation density (1.30 fm ') and binding
energy (15.75 MeV) of nuclear matter, while the mass of
the phenomenlogical 0. is fixed by the rms charge radius
of Ca. The model gives a reasonably good description
of the bulk properties of finite nuclei, viz. the neutron and
proton density distributions, rms radii, energy levels and
spin-orbit split tings.

Recently Blunden and Iqbal ' have extended the above
model to include exchange terms (i.e., the relativistic
Hartree-Fock approximation}. In addition to the above
mesons a pseudovector pion interaction is included, to-
gether with a tensor coupling term for the rho. (The pion
does not contribute in the Hartree approximation. ) The
sigma and omega meson couplings are again determined
from nuclear matter, while the rho and pion couplings
are taken from experiment. Although the effect of the
Fock or exchange terms is large, the final results have
gross features similar to those of the Hartree calculations.
This is probably not too surprising since both calcula-
tions saturate nuclear matter at the same place and give
similar results for the bulk properties (at normal nuclear

densities�}.

It is of interest to see how well these relativistic models
do in reproducing the excited-state properties of finite nu-
clei. Since there are no additional parameters intro-
duced, this constitutes a severe test of the interactions as
well as the underlying theory.

Another consideration is that the pion will play a more
important role in excited states than it does in the ground
state. In particular, the unnatural parity
(0,1+,2,3+, . . .} isovector modes are highly sensitive
to the nature of the pionic interaction. The Hartree-Fock

coupling constants are all, to some extent, constrained by
the pion, since the theory incorporates pions consistently
from the start. However, this is not true in the Hartree
model. Therefore, even though the ground-state proper-
ties are similar in the two theories, the excited state spec-
tra may be very different.

Properties of collective states were examined in a rela-
tivistic semiclassical approximation by Horowitz and
Walecka. They found that the experimental systematics
of the collective vibrational modes (giant resonances}
could be reproduced in their model. Furnstahl has con-
sidered the negative parity states in ' 0 in a microscopic
random phase approximation (RPA} calculation based on
the Hartree approximation. He found that a reasonable
excitation spectrum could be obtained with a pseudovec-
tor pion coupling but not with a pseudoscalar coupling.
One problem reported in his results was that the spurious1,T =0 state did not occur at zero energy, as is expect-
ed in a self-consistent model where the wave functions of
the ground and excited states are determined from the
same underlying Hamiltonian. We shall comment on this
further in Sec. III.

The organization of this paper is as follows. In Sec. II
we formulate the RPA equations of motion, and give for-
mulae for the particle-hole matrix elements of the relativ-
istic interaction. The meson parameters determined from
the Hartree and Hartree-Fock calculations are repro-
duced.

In Sec. III we present results for the excited-state spec-
tra in both Hartree and Hartree-Fock approximations.
We discuss the strength distribution of the giant dipole
(1,T =1) resonance, as well as the spurious 1,T =0
state. In Sec. IV the unnatural parity states are examined
in greater detail. Additional interactions are introduced,
in particular a tensor coupling for the p, and a contact (or
Landau-Migdal) term for the m exchange. Section V con-
tains discussion of the major results and comments on
possible modifications to the theory.

II. FORMULATION

Excited states
~

4 ) of multipolarity J are formed as
superpositions of particle-hole states
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1%' & = g (chal, ah —Yphaha~)10& .
p, h

Here 10& is the exact Hartree-Fock ground state, which
is itself described as an antisymmetrized Slater deter-
minant

exch

10& = g a, I
vac& . (2)

ap and ah are creation and annihilation operators for
positive-energy single-particle states above and below the
Fermi surface. Xph and Yph are the amplitudes for creat-
ing a particle-hole pair and for annihilating a particle-
hole pair already present in the ground state. Negative
energy states are excluded from the present description
(i.e., particle-antiparticle states). The implications of this
omission are discussed later on in Sec. V.

The transition strength between the ground and excit-
ed states is given by

G (r)
i 4„(r)

T

Fp(r) 4 „(&)

if'(r)
rtr~(r)—

where ~=(1—j)(2j+1). 4k (r) is a vector spherical
harmonic which couples orbital angular momentum to
spin, and a tilde is used to distinguish lower component
quantities from those of the upper component.

Using the ansatz of Eq. (1) for the wave functions and
I

'p JIIT'llo&x,'~
p, h

+( —1)'&011T'lli -'p; J & Y,'„ I

'

=X 1&p 112'lli &l&,'a+( —1)"~,'a 31'
p, h

The phase ( —1)"is related to the hermiticity of the tran-
sition operator T via

(4)

where the convention of Edmonds has been used for the
reduced matrix element. The notation h —p in the ex-
ponent is shorthand for jh Jp.

In the present relativistic calculation, the operators T
will have the structure of 2X 2 matrices constructed from
the Lorentz-invariant matrices 1, y", and y5. The two-
component relativistic wave functions have the form

B,. :
h

exch

(b)
FIG. 1. Direct and exchange particle-hole interactions which

appear in the RPA.

linearizing the equations of motion leads (this is strictly
true only if one ignores retardation corrections) to the fa-
miliar RPA eigenvalue problem

A B X X
=E (6)

with

The two-body matrix elements are reduced with
respect to angular momentum J and isospin T. In this
paper we will ignore the Coulomb interaction, and work
with states of good isospin.

The direct and exchange terms of A~' and B '~ are
depicted graphically in Fig. 1. The exchange matrix ele-
ment may be rewritten in terms of direct particle-hole
matrix elements by angular momentum recoupling. By
writing the interaction Vschematically in terms of an iso-
scalar piece Vo and an isovector piece V&~&-~2, the iso-

spin dependence may be factored out, so that
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The first term corresponds to the direct particle-hole interaction Ad;, of Fig. 1(a), while the second corresponds to the
exchange term A,„,h of Fig. 1(b). The terms for 8 may be obtained similarly using Eq. (8).

We will be comparing the results of calculations based on both Hartree and Hartree-Pock models of the nuclear
ground state. Consistency demands that the prescription for evaluating two-body matrix elements of the excited states
should be the same as that used to construct the ground state. In other words, with the Hartree basis one should only
take direct particle-hole matrix elements, while for the Hartree-Fock basis direct and exchange matrix elements should
be used. This point is crucial if one wants to get the spurious 1,T =0 state to go to zero energy.

The two-body matrix elements

& ~ i 'I i J
I

V
I &2 P2 J &dir

are easily evaluated in terms of products of one-body matrix elements. A multipole decomposition of V(r), where
r=ri —r2, can be written in the general form

V(r)= gM (r»o 1) M (r2, (r2),
J

(10)

where M (r„(r1) is a 2X2 matrix whose elements are spherical tensors of rank J formed from the position and spin
coordinates of particle 1. Then we can use the relation

J
&&1'ui» I

V I&2 ~P2 J&dir ~ 1~)'tl Pl'JIIM'(&1 ~1)llo&«IIM'(&2 ~2)Ii~2 'p2 J& ~

2J +1
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I
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There are two important features of this interaction to
point out. First, we have not included a tensor coupling
for the p. Secondly there is no contact (or Landau-
Migdal) term for the n. exchange. This is commonly add-
ed to nonrelativistic calculations in order to simulate the
effect of short-range correlations. One of our aims in the
present calculation is to see how well the bare QHD in-

For the current problem, the interaction in momentum
space is given by the exchange of mesons in the form

2

V(q)
~ 1(1)1(2)

2 2—q~+m ~

2 2
g Q7+ 2 2+ 2 2—qp+m~ —q~+ EBS

g
2 y( & )y( & )q py(2)y(2)q +

(12)
4M2 q2 +~2

where q„=qo —q. Retardation efFects are small for
low-lying excitations, so we can set qo =0. We have also
used the following conventions:

teraction does without the addition of phenomenological
terms. In Sec. IV we shall examine these additional
terms to see their effect on the unnatural parity spectra,
for which they play the greatest role.

The coordinate space interaction V(r) is related to
V(q) by the Fourier transform

13
V(r)= f,e ' ' V(q) .

(2m )
(13)

The multipole decomposition may be performed in either
coordinate space or momentum space. We prefer the
latter for the present problem, since the resulting one-
body spherical tensors of Eq. (11) turn out to be the same
ones needed to evaluate the one-body matrix elements of
Eq. (3). Details are given in the Appendix, where the ex-
plicit form of the momentum space multipole expansions
are given for the various types of interactions.

Table I gives the Hartree and Hartree-Fock coupling
constants used in the present calculation. All parameter
sets saturate nuclear matter at 1.30 fm ' and 15.75 MeV
in their respective approximations, and give reasonable
values for the bulk symmetry energy.

The unperturbed basis states are obtained from the nu-
merical Dirac-Hartree-Fock code of 81unden and Iqbal.
The continuum has been discretized similarly to Ref. 6 by

TABLE I. Hartree and Hartree-Fock parameters sets which saturate nuclear matter at 1.30 fm
The second set includes a tensor coupling for the p aud a "spin-isospiu" contact interaction, Eq. (15).
The masses are 520, 783, 770, and 138 MeV for the cr, co, p, and m mesons, respectively.

gp

Hartree I
Hartree-Fock I

10.47
10.00

13.80
11.90

2.63
2.63

13.45
13.45

Hartree II
Hartree-Fock II

10.47
8.11

13.80
12.47

2.63
2.63

13.45
13.45

6.6
6.6

0.7
0.7
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imposing a boundary condition that the lower wave func-
tion component F(r,„)=0at r,„=12fm and restrict-
ing all integrations to within this sphere. This choice of
r,„places the d3/2 resonance in ' 0 at about the right
energy, yet has a negligible effect on the bound states.
Other boundary conditions were found to give similar un-

perturbed spectra. In order to keep the calculation tract-
able, the basis has been truncated at three major shell
spacings (between 30-50 MeV). Within this model space
we were able to obtain reasonable convergence for all but
the most highly collective states.

In the following we will somewhat loosely refer to
"Hartree" as the result of using direct interactions with
the Hartree basis and parameter set, and "Hartree-Fock"
as the results of using both direct and exchange interac-
tions with the Hartree-Fock basis and parameter set.
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III. RESULTS

One should keep in mind that different multipole exci-
tations are sensitive to different pieces of the residual in-
teraction. Although exchange terms mix the contribu-
tions of all the rnesons into the particle-hole interaction,
the dominant direct terms are highly selective. There-
fore, the Hartree based spectra will strongly reflect the
features of the various mesons in the interaction.

In general a multipole excitation of a given spin-parity
and isospin will receive a direct contribution from those
mesons which carry the same spin-parity and isospin
quantum numbers. For example, the o (0+, T =0)
meson will only contribute to natural parity
(0+,1,2+,3,. . . ) T =0 excitations (electric mul-
tipoles). The co(1,T =0) meson has both a "Coulom-
bic" interaction which contributes to natural parity exci-
tations, and a weaker "magnetic" interaction which con-
tributes to both natural parity and unnatural parity
(1+,2, 3+. . . but not 0 ) excitations (magnetic mul-
tipoles). The p(1,T =1) behaves similarly to the cu, but
for T =1 modes. The m(0, T =1) only affects the un-
natural parity T = 1 modes (including the 0 ).

A. '0
With these comments in mind, we shall begin by exam-

ining the negative parity states of ' 0, shown in Fig. 2.
In the first column is shown the unperturbed energies of
the Hartree basis. The unperturbed Hartree-Fock ener-
gies are quite similar and have therefore not been drawn.
The next two columns are the Hartree and Hartree-Fock
predictions for the spectra. Only those levels which have
a non-negligible transition strength to the ground state
are shown. The fourth column is a selection from the
compilation of Ref. 9 of those experimental levels which
show predominantly 1p-1h character. Clearly not all lev-
els have been shown.

There are only minor differences between the Hartree
and Hartree-Fock T =0 spectra. Both predict a strongly
collective 3 as the first (negative parity) excited state,
with the positions of most of the remaining levels being

comparable. One exception is the second 0 level, which
lies at is unperturbed level in the Hartree calculation (re-
call that the co can contribute to all unnatural parity exci-
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FIG. 2. Isoscalar and isovector negative parity states in ' O.
Shown are the unperturbed basis states in a Hartree model, the
Hartree-based RPA, Hartree-Fock RPA, and the experimental
levels (from Ref. 9). Not all levels are shown.
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tations except the 0 ) but lies some 4 MeV lower in the
Hartree-Fock calculation. The 4 level also does some-
what better in this case. The overall agreement with the
experimental systematics is modest

Differences are more marked for the T = 1 excitations.
The Hartree is too attractive, particularly for the un-
natural parity states, which are strongly influenced by the
pion interaction. Indeed, one notices that for these cases
the lowest-lying T = 1 states are below the corresponding
T =0 states, in strong disagreement with experiment.
For example, the first 2, T =0 occurs at 9.0 MeV while
the first 2, T = 1 occurs at 7.7 MeV. Similarly, the
0,T =0 lies at 1 1.3 MeV and the 0,T = 1 at 9.7 MeV;
the 4, T =0 occurs at 16.4 MeV and the 4, T = 1 at
14.7 MeV.

The Hartree-Fock interaction is repulsive, pushing the
levels above their unperturbed values. The correct order-
ing of the T =0 unnatural parity levels below the T = 1

ones is now seen. The low-lying cluster of 0, 1, 2
and 3 levels is reproduced, although it lies about 2 MeU
below experiment. The rest of the spectrum is also in
reasonably good agreement.

In Fig. 3 we have shown the Hartree and Hartree-Fock
predictions for the position and strength of the giant di-
pole ( 1,T = 1) resonance. The two-component dipole

200

transition operator to be used in Eq. (3) has the form
T' (r) = ,'rr—Y,~(P)y . Also shown for comparison is
the experimental ' N(p, y)' O cross section, taken from
Ref. 10, which is predominantly dipole in character. The
Hartree levels occur at essentially their unperturbed posi-
tions, while the Hartree-Fock pushes the centroid up by
about 4 MeV. The position of the dominant
configuration is then about right, although the splitting
with the next strongest configuration is somewhat too
large.

A few remarks about the spurious 1,T =0 state are in
order. In any self-consistent model using the same under-
lying Hamiltonian to generate the ground state and the
excited states, there should occur a spurious excitation
mode corresponding to a translation of the whole system.
In the RPA, this means there will be a 1,T =0 excita-
tion which occurs at zero energy and which carries 100%
of the dipole transition strength. For both Hartree and
Hartree-Fock we found a collective state at about 3 MeV.
It carries over 99% of the total strength, and can there-
fore be clearly identified with the spurious state. To get
convergence toward zero energy would require enlarging
the basis considerably, including the introduction of neg-
ative energy states.

To illustrate the effect of self-consistency, we also took
the Hartree coupling constants and looked at the effect of
including both direct and exchange interactions. We
then obtained similar results to Ref. 6, namely that there
are two states near 10 MeV which carry about 10 and
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FIG. 3. Hartree and Hartree-Fock predictions for the

strength distribution of the giant dipole mode. Also shown is
the dipole-dominated "N(p, y) ' 0 cross section, taken from
Ref. 1O.

FIG. 4. Positive-parity states of ' C, labeled by spin and iso-
spin. We have only shown those states which occur within a
p ] /Q p 3/p model space.
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75 k of the strength, with the second excited state being
the stronger one. The concerns about the spurious state
reported in Ref. 6 are therefore resolved if the correct
self-consistent couplings are used for each model.

B. i2C

Positive parity states are usually poorly reproduced in
1p-1h RPA calculations. This is because the low-lying
positive parity levels in closed shell nuclei have a
significant 2p-2h or even 4p-4h character. In order to ex-
amine positive-parity states we therefore consider ' C, for
which the simplest basis consists of the p3/g and p, /2 lev-
els. Figure 4 shows the results of our calculations, as-
suming a fully occupied p3/p level for the ground state.
The unperturbed energy splitting is somewhat too large
here compared with the empirical one deduced from
neighboring nuclei. As in ' 0, the ordering of the un-
natural parity 1+ states is wrong for the Hartree case and
of about the right magnitude for the Hartree-Fock. The
natural parity 2+ states have the correct ordering in the
Hartree calculation, but the splitting is too small. The
splitting is a little larger for the Hartree-Fock, but it still
falls short of experiment.

10—
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~2~r
2

2
2

C. ~Ca
Unperturbed Hortree Hortree-Fock Experiment

The Ca results concur with our previous observations
about ' 0 and ' C. The T =0 spectra, shown in Fig. 5,
are very similar for Hartree and Hartree-Fock. The
highly collective 3 states are somewhat too low in ener-

gy, but the lowest 5, 4, 2, and 3 are in good agree-
ment with experiment. Once again, the ordering of the
0, 2, 4, and 6 T =0 and T =1 levels is inverted for
Hartree. The low-lying cluster of 4, 3, 2, and 5
T =1 levels is well reproduced by the Hartree-Fock re-
sults.

The 1,T=1 modes in the giant resonance region
have an energy-weighted centroid of 16.8 MeV in the
Hartree case compared with 20.0 MeV for the Hartree-
Fock. Experimentally the giant resonance occurs at 20.0
MeV. ' The spurious 1,T =0 excitation occurred at a
small imaginary energy in both calculations.
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IV. UNNATURAL PARITY STATES
AND SHORT-RANGE CORRELATIONS

The most striking feature of the present results is the
difference between Hartree and Hartree-Fock based cal-
culations for the T =1 spectra. The differences are most
apparent for the unnatural parity modes, where the pion
plays an essential role. The exchange terms considerably
weaken the strongly attractive direct pion interaction.
Indeed, without some mechanism to damp this interac-
tion, pion condensates would likely occur at or near nu-
clear matter densities. '

Let us now consider the effect of including a tensor
term for the rho in the interaction (12}, as well as the
effect of "short-range correlations. " Typical nonrelativis-
tic calculations take an isovector interaction of the form

Unperturbed Hortree Hortree-Fock Experiment

FIG. 5. Isoscalar and isovector negative-parity states in Ca.
Experimental levels are from Ref. 11. Not all levels are shown.
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2
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where

g (1+K )
C = =2.2,P 2

' 7

assuming a tensor coupling of E =6.6 for the rho.
The n and p interactions contain delta function contri-

butions, which are thought to be suppressed by the
short-range correlations which keep nucleons apart. The
proper way to include these correlations is, of course, to
calculate the Bruckner particle-hole G matrix. What is
usually done instead is to simulate this effect by introduc-
ing a repulsive interaction (Landau-Migdal term) of the
form g'o. , o2~, ~2. Removing all the delta-function con-
tributions would require g'= —,

' +—,
' C = 1.8, however

most calculations remove less than half, typically giving
g'=0. 7.

The actual results of RPA calculations using this in-
teraction are quite sensitive to the chosen value of g'.
This sensitivity arises for two reasons. First, these calcu-
lations do not use a self-consistent basis, i.e., the interac-
tion is not also used to determine the single-particle ener-
gies and wave functions used as input to the calculation.
A more important reason is that the interaction may or
may not be consistent with the saturation properties of
nuclear matter. One of the virtues of the present ap-
proach is that both of these points are addressed. We can
therefore examine in a meaningful way the sensitivity of
our results to short-range behavior.

A relativistic counterpart to the interaction (14) is
problematic since it is not obvious how correlations
should be put in, and what their Lorentz structure will
be. Furthermore, delta functions only appear for explic-
itly momentum-dependent interactions —there is no such
contribution arising for the vector rho interaction, as
there is nonrelativistically.

A simple guess is to include a contact interaction
which, to leading relativistic order, would cancel the del-
ta function contribution of the pion. We therefore take

g
2 y(1)y(1)qpy(2)y~2)q

'
K Eg'y'"y'"y' 'y"' '+ " +g ~ ~ y'" —i o'"q" y"' '+i o~~ 'q

4M 2 1 2 5 p 5 2M—qp+m ~
(15)

for the isovector interaction. We want to reiterate that
this is simply a prescription for putting in correlations,
and that a proper treatment will require calculating a rel-
ativistic G matrix.

Putting g'=0. 7 and E =6.6, we refit the sigma and
omega coupling constants to saturate nuclear matter, giv-
ing parameter set II of Table I. The H@rtree parameters
are the same since isovector mesons do not contribute for
symmetric nuclear matter. The Hartree-Fock parameters
show a decrease in the scalar coupling and an increase in
the vector coupling. The overall central potential (recall
that the scalar interaction is attractive and the vector
repulsive) will therefore be considerably reduced com-
pared with parameter set I. The reason is that the isovec-
tor interaction now is attractive in nuclear matter thus
requiring less attraction from the central potential.

The effect of these changes on the unnatural parity
states in ' 0 is demonstrated in Fig. 6, where results us-
ing both parameter sets are compared for Hartree and
Hartree-Fock. For the Hartree case the short-range in-
teraction pushes these states up considerably, so that they
now lie above their T =0 counterparts (not shown) and in
reasonable agreement with experiment. These results are
sensitive to the exact value of g'.

What is interesting, however, is that the Hartree-Fock
spectra are virtually unchanged from the results without
short-range correlations put in. The strongly repulsive
exchange contributions arising from sigma and omega in-
teractions, which are what counteracts the pion interac-
tion for set I, are now much weaker. Instead the repul-
sion is provided by the g' term of (15).

These results indicate the importance of using an in-

20
"0 T='I

15—

I

I

I

I
I

I

I

g P

4w

2
0

o ~
~ ~

0
2

10—

I II

Hartree
I II

Hartree —Fock Expt.

FIG. 6. Isovector unnatural parity states in ' O. Results are
compared for parameter sets I and II for Hartree and Hartree-
Fock. Parameter set II includes short-range correlations and a
tensor coupled rho.
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teraction which is consistent with and constrained by the
properties of nuclear matter. Since the Hartree-Fock
theory incorporates pions consistently form the start, the
final results are rather insensitive to the short range be-
havior of the interaction.

V. DISCUSSION

We return now to the implications of omitting negative
energy states from the present theory. Although direct
transitions to a particle-antiparticle state are ruled out by
energy considerations, these states can affect quantities
such as the transition strength through virtual polariza-
tion. For example, in order to correctly describe magnet-
ic moments in a relativistic model one has to incorporate
polarization corrections comin~ from these negative ener-

gy states (so-called backflow}. ' This polarization correc-
tion will also screen pieces of the interaction, such as the
magnetic interaction of the co. Therefore the transition
strengths, and to a lesser extent the positions, of the mag-
netic multipoles in our calculation are affected.

A direct extension of the basis to include these
negative-energy states appears unwieldy because of the
enormous increase in the number of configurations it
would entail. Recent work' on nonspectral RPA calcu-
lations, which treat both the continuum and negative-
energy states exactly, has shown that Hartree based cal-
culations are feasible without truncating the full Hilbert
space. However, prospects for Hartree-Fock based calcu-
lations in this approach are much poorer. Part of the
problem is that the energy dependence in the meson
propagators is no longer negligible, and must be con-
sidered if realistic results are to be obtained.

A more tractable calculational scheme might be to
divide the full Hilbert space into a small model space,
such as the one we have used, and a larger residual space
which includes both the high-lying particle-hole states
and the antiparticle states. The RPA can then make use
of the small space in the usual way, but the operators will
be renormalized by the residual space. Renormalizations
of magnetic moment operators along these lines in a local
density approximation, based on nuclear matter results,

APPENDIX

Here we present the details of the rnultipole decompo-
sition (10) of the residual interaction (12). The particle-
hole matrix elements can then be obtained via Eqs. (11)
and (9).

Consider a 2&2 matrix M whose elements are spheri-
cal tensors of rank J:

J JM)) M)~
M = MJ (Al}

Then

have been shown to give results comparable to those of
calculations which explicitly evaluate the antiparticle
contribution. '

To summarize, we have examined the RPA spectra in a
self-consistent treatment based on a relativistic Hartree-
Fock model for the nuclear ground state. With no addi-
tional parameters one is able to reproduce reasonably
well the spectra of light nuclei. Hartree based calcula-
tions fail to describe the T =1 spectrum without intro-
ducing short-range repulsion in the spin-isospin interac-
tion. On the other hand, Hartree-Fock based calcula-
tions agree quite well whether such interactions are in-
cluded or not. This lack of sensitivity to short range be-
havior is due to the fact that the interaction incorporates
pions consistently in a manner constrained by the satura-
tion properties of nuclear matter.

One could argue that adjusting the sigma and omega
meson parameters to fit nuclear rnatter saturation proper-
ties, as we have done here, already incorporates to some
extent the effect of short range correlations. The fact
that properties of both the Hartree-Fock ground state
and excited states are not significantly altered by intro-
ducing an explicit correlation effect argues in favor of this
interpretation. Clearly these calculations are still in their
infancy, and more work on the residual particle-hole in-

teraction in relativistic theories, including the effect of
correlations, remains to be done.

&h 'p;JIIM llo&=( —1)"+ -'&pllM'lla &=( —1)"+ -'(&4, IIM'„lip„& —&(T, IIMull

+& &A, IIMxzll(('I &+~ &0, IIMzx IIVI, & } (A2)

where we have used Eq. (5) to reduce the two-component
wave function to its one-component elements.

It should be clear that the interaction (12) can also be
reduced to a sum of one-component interactions of spin-
independent, spin-dependent (o &.o2), and pionic
(o, .qo2 q) form. We therefore need only give the mul-
tipole expansions of these interactions, starting from their
form in momentum space.

Expanding (13) gives

MJ(qr) =jJ(qr) YJ(r)

MJ&(qr) =jL (qr)[YL (r)o];L =J—1,J,J+1 .
(A4)

(a) Spin-independent interactions:

where v(q) generally is of the form kg /(q +m ). We
introduce the notation

V(r)= —f dq q v(q) QF~(q;r&, r2),
J

(A3}

Fz(q;r„r2)=M&(qr, ) Mz(qr2) .

(b) Spin-dependent interactions o, oz..

(A5)
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Fj(q; r&, r& ) = g ( —I )
~™&L(qr& ) MJL(qr2 ) . (A6)

L
J

2J+1

' 1/2

for L =J—1,

(c) Pionic interactions o, qo 2 q:
t

FJ(q;rt, r2)=q g i aJt ajt'MJL(qr1~1lfJL''(q 2)
I.,L'

with

(A7)

1/2J+1 for L =J+1.2J+1

(d) Tensor (p) interactions o't Xq. tr2X q:

0&Xq o2Xq=q 0.
~ &2—0.

~ qadi q ~
2 (A8)
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