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Unified theory of yN =nN, m.n.N, and mN =mN, m.m.N reactions
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We present a set of coupled integral equations for the reactions y N ~~N, m.~N and
mN~m. N, ~m.N, that satisfy two- and three-body unitarity. These equations are based on a chiral

bag Lagrangian in which the coupling to the photon is introduced at the quark level by demanding

U(1) local gauge invariance. The final equations include the contribution of both meson exchange
and isobar currents.

I. INTRODUCTION

Pion photoproduction from a single nucleon can be a
powerful tool for the study of the structure of the low-

energy baryon spectrum in terms of quarks and gluons.
In particular, it can test the different chiral bag models, '
as the photon couples to both the quarks and pions in the
baryon by imposing U(1) gauge invariance on the chiral
Lagrangian. The detailed form of this coupling is deter-
mined by the chiral Lagrangian for the model. As a re-
sult of this, any comparison between theory and experi-
ment may provide an insight into the form of the effective
chiral Lagrangian. However, to carry out such a com-
parison at medium energies, e.g., in the energy region in
which the b, (1232) and N(1440) are produced, it is neces-
sary to formulate the theory to satisfy the Watson
theorem. This requires that two- and three-body unitari-
ty in the pion channel be satisfied. Recently, Araki and
Afnan presented such a formulation based on the cloudy
bag model (CBM). Their final amplitude for nB~yB
(8 =N, 5), was given as a distorted-wave matrix element
of the form

T(nB~yB)=(kwB
l
(Ta.''ag+1)Ua;a

l 4zB ~

—&4.al ~,a 0,a&

where Ta ais the elastic .n Bamplit—ude, P a is the cor-
responding distorted-wave function in the ~—B channel,
while g is the n Bpropagator —(i.e., g =dad ) Here, .
P'ra and tt'a are the plane waves in the initial and final
states. The effective operator Vz.~ includes the contribu-
tion from meson exchange, isobar current, as well as the
effects of pion multiple scattering, to the extent of satisfy-
ing two- and three-body unitarity, i.e., it includes the
effect of yN~mN', mh, m.mN. It was also shown that in
lowest order, v~.~ includes the standard mechanisms that
have been included in the past by Blomqvist and Laget
and by Tanabe and Ohta with the added feature that all
the vertices are written in terms of parameters of the
chiral Lagrangian. Unfortunately, the determination of
vz. z to all orders involves the solution of the three-body
nmB (8 =N, A, . . . ) problem, and the determination of
the full off-shell three-body amplitudes. This limits the
use of Eq. (1.1) to lowest-order calculations (i.e.,

~n+(nB)

~(nn. ) +8
~~+~+B (1.2)

and

y+N~m+N

~m+(mB)

—+(nn) +8
~~+~+B . (1.3)

Here, the baryon B is considered as a three-quark state
(i.e., 8 =N, b„.. . ), and the (nB) ~ corresponds to the
N' resonances, not included as a three-quark state, and
observed in pion elastic scattering or photoproduction.
In Eqs. (1.2) and (1.3), the (nn)+8 corre.sp. onds to the
production of two-pion resonances such as the p meson.
With these equations, one can address such questions as
to the structure of the N* resonances in terms of quark
excitation in the chiral bag model versus the more tradi-
tional mechanisms such as the formation of resonances
due to the coupling to the ~—6 threshold or the open-
ing of the ~mN channel. ' '" The interesting feature of
the final equations is the fact that the kernel of the two
sets of coupled equations that describe the reactions in
Eqs. (1.2) and (1.3) are identical. The only difference be-
tween the two sets of coupled integral equations is the in-
homogenous term, which specifies the initial boundary
condition. In this way, we have included the contribu-
tion of vz. z to the amplitude for photoproduction to all
orders and avoided the problem of having to evaluate the

distorted-wave Born approximation), and to the energy
region below the threshold for N(1440) photoproduction,
as three-body unitarity is not satisfied.

In the present paper we will show how the results
Araki and Afnan, for pion photoproduction, can be ex-
tended to include yN~~n. N, and in this way give a
unified description of both pion photoproduction and
pion elastic scattering. In other words, we get one set of
matrix integral equations that describe the reactions

~+N ~m+N
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II. REVIEW OF PREVIOUS RESULTS

Before we can proceed to derive a set of coupled equa-
tions for the reactions in Eqs. (1.2) and (1.3), it is impor-
tant to remind the reader of the origin and form of the
underlying Hamiltonian and its relation to the chiral bag
Lagrangian. The main aim in constructing the Hamil-
tonian is to integrate the quark degrees of freedom in
favor of the hadronic degrees of freedom. In this way, we

hope to maintain some of the information about the
quark degrees of freedom in the form factors for the cou-
pling between the baryons, mesons, and photons. At this
stage of the game, this procedure involves a number of
approximations that are difficult to overcome —the most
famous being the center-of-mass motion. The coupling to
the electromagnetic field is introduced at the quark level

by demanding local U(1) gauge symmetry. Thus, the La-
grangian before projection onto the baryon space is, in

fact, gauge invariant. The projection onto the baryon
space involves taking matrix elements of the gauge and
chiral invariant Lagrangian between baryon eigenstates.
These eigenstates, which are three-quark states, are con-
structed from a solution of the equation of motion result-
ing from the chiral Lagrangian in some approximation.
Thus, in the case of the cloudy bag model, the baryon
eigenstates are given in terms of the M.I.T. bag wave
function. ' The resultant matrix elements in the baryon
space are given by Araki and Afnan. In this case, the
form factors for the coupling between the baryons,
mesons, and photon are known analytically. A more ela-
borate and possibly more realistic procedure is to solve
the equations of motion for the chiral Lagrangian in the
mean-field approximation. In this case, the form factors
for all the coupling are known numerically.

Using the above procedure, we can write the Hamil-
tonian, projected onto the Hilbert space of baryons,
mesons, and photons, as

H=ge„B„B„+gfd qco a a

+ g f d k koCt Ck+HI (2.1)

distorted-wave matrix element given in Eq. (1.1).
In Sec. II we summarize the results of Afnan and

Pearce' for pion-nucleon scattering above the threshold
for pion production and the work of Araki and Afnan
for pion photoproduction. Although, intutively, we ex-

pect a set of coupled integral equations for the reactions
in Eqs. (1.2) and (1.3) to establish this unification, we need
to examine the amplitude for y B~~mB. This is
achieved in Sec. III. In Sec. IV we combine the results of
Secs. II and III to get our unified coupled integral equa-
tions for the reactions on Eqs. (1.2} and (1.3). Finally, in

Sec. V we present some concluding remarks.

HI —&B IH IB~&+&B~lH IB~&

+ & ~~
I

II
I

~~ &+ & B
I

H
I Br &

+ &B~
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H
I Br &+ &~~

I
0

I r &+ &~
I
H

I ~r &

+five Hermitian conjugate terms . (2.2}

In writing the above interaction Hamiltonian, we have
excluded terms that couple a single-baryon state

I
B &

and the three-body state
I

Ben&. a.nd
I
Bn r &. This trun-

cation was introduced to facilitate the truncation of the
equation at the level of including only two- and three-
body unitarity. The effect of this truncation can be inves-

tigated at a later stage using perturbation theory.
Given the above Hamiltonian, we can proceed to

derive equations for the amplitude corresponding to the
reactions in Eqs. (1.2) and (1.3). The method used to
derive the equations relies on the classification of the dia-
grams that contribute to a given amplitude according to
their irreducibility. This classification scheme does not
depend on the detailed form of the Hamiltonian, but on
the kind of vertices included. To that extent, we do not
hpve to specify the interaction Hamiltonian beyond the
form given in Eq. (2.2), and our final equations are valid
irrespective of the form chosen for each of the terms in
the interaction Hamiltonian H~. This approach, which
relies on the last-cut lemma, was first introduced by Tay-
lor' to derive integral equations for the scattering ampli-
tude in quantum field theory. The method has also been
used to derive equations for the NN —m.NN system'
and the mN —nnN system. '

To derive equations for the amplitude for a given pro-
cess, we need to classify the diagrams that contribute, in
perturbation theory, to this amplitude according to their
irreducibility using the last-cut lemma. To achieve this
we need to first define a k cut as an arc that separates the
initial state from the final state, in a given diagram, and
cuts k-particle lines with at least one line being internal.
Second, an amplitude is r-particle irreducible if all dia-
grams that contribute to this amplitude will not admit
any k cut with k (r. With these two definitions, we can
introduce the last-cut lemma which states that for a given
amplitude that is (r —1)-particle irreducible, there is a
unique way of obtaining an internal r-particle cut closest
to the final (initial) state for all diagrams that contribute
to the amplitude. By virtue of this lemma, we can expose
one-, two-, and three-particle intermediate states and the
corresponding unitarity cuts and in this way derive equa-
tions for the amplitude that satisfy unitarity. From the
above statement of the lemma, it is clear that we need to
expose the n-particle unitarity cut before the (n +1)-
particle unitarity cut.

Making use of the last-cut lemma, we can expose the
one-, two-, and three-particle intermediate states in our
analysis of the ~—N elastic amplitude. After some alge-
bra, we get'

where B„,a, and Ck are the annihilation operators for
a baryon in state n, a meson in state a and momentum q,
and a photon with polarization A, and momentum k. The
interaction Hamiltonian Hl is given by

(2.3}

(2.4)

where g =d d~ is the ~B propagator, and d and dz are
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U a 5~aG ——'+ g 5~rMd )(y)GUra
r

=5~pG '+ g U GMd( '(y)5 a,
r

(2.7)

with Md ', the disconnected part of the two-particle irre-
ducible amplitude for mmB~m. ~B, given in terms of the
two-body input amplitudes by

Md = +Md (y}
r

= g 5, d '(i)Ta(.)a(j)+da 't"'(3),
lj

(2.8)

where t'"(3) is the one-particle irreducible amphtude for
~—m. scattering.

To establish the connection between the input ampli-
tudes and the interaction Hamiltonian Hl as given in Eq.
(2.2), we make use of the last-cut lemma to relate a given
n-particle irreducible amplitude to the corresponding
(n+1)-particle irreducible amplitude. At some stage in
this analysis, the n, (n+1), . . . -particle amplitudes be-
come equal, because the interaction Hamiltonian, by
definition, does not couple states that differ by two or
more bosons (i.e., mesons or photons}. Then the corre-
sponding amplitude is written in terms of the interaction
Hamiltonian. Thus for the B~m.B amplitude we have,
using the last-cut lemma,

and

I()) I(2)+j(2) T(1)
B;B

. = &B [
fr

[
~B & .

(2.9}

(2.10}

Similarly, we have that

the pion and dressed baryon propagators. The effective

potential vB.B is given by'

V

(2.5}

where G d d da is the mmB . propagator, and Fd '(i) is

the disconnected two-particle irreducible amplitude for
~B~~~B, given by

Fd("(0= g5;,d '(j)f"'(~), (2.6)
j

and 5; =1—5; . In the above, Ta"ais th. e n-particle irre-
ducible amplitude for nB +nB—, while f'"' is the n

particle irreducible amplitude for B~m.B. Here, and
throughout this paper we take particles 1 and 2 to be the
pions, while particle 3 is the baryon. Thus, we have that
i,j, . . . =1,2, and a, P, . . . =1,2, 3. In this notation,
f"'(i) is the one-particle irreducible amplitude for the
absorption of the ith pion on the baryon (i.e., B~nB}.
The contribution of three-body unitarity to the n.m poten-
tial vB.B comes through the three-body amplitude for
mm.B~n.m.B,U;, which satisfies the Alt, Grassberger, and
Sandhas (AGS) equations'

and for the arm amplitude t"'(3) we have

t"'(3)=t' '(3)[l+d d„t"'(3)] (2.12)

with the ~m. potential given in terms of the interaction
Hamiltonian by

t"'(3)=&~&
~

H
~

~~& . (2.13}

In this way, we have determined the input required to
calculate the effective potential UB.B and the amplitude
TB.z. For a more detailed derivation of the above re-
sults, the reader is referred to the work of Afnan and
Pearce. '

We now turn to the pion photoproduction amplitude
(i.e., nB~y B). Here again we use the last-cut lemma to
classify the diagrams that contribute to this amplitude ac-
cording to their irreducibility. This procedure gives us
the amplitude for ~B~yB in the form

T a;a =T a".a+f"' da f "' (2.14)

=(Ta'ag + I »a;a (2.15)

+ QFd '(i)GU;JGM'„g(J)5J),GF.2 d(k), .
ijk

(2.16)

where do is the bare baryon propagator, and G =d dada
is the ~yB propagator. The disconnected two-particle ir-
reducible amplitudes for n'n B~a y B,M '„'d(i ), .en B
~y B,F )'.d, and ~yB~y B,F 2'. d (0 are given by

g;d()}=g 5;,d. '(j )T a'a(0
J

y (2)t d —1 g (1)f
1;d B J a

F (2)t()) d —
1
j(1)t())

(2.17)

(2.18)

(2.19)

The one-particle irreducible amplitude for B~yB,f "' is
given by

(2.20)

with

(2.21)

In Eq. (2.16), the one-particle irreducible amplitude f b",
for ~~ye. , is given by

I'b"=I(b"=&~)a
~
y~& ~ (2.22)

while the amplitude f,")t, for mr)~y, in Eq. (2.18) is

given by the equations,

j',"t=[r'"(3)d d +1]f' 't

(2.23b)

where TB.'B is the n-particle irreducible amplitude for
mB~yB, and the effective photoproduction potential

~B;B is given by

U~ T (3) +I(2)td 7 (2)+j (1)d I(1)t
0 b

+I (()d I())t+ y F(2)())GU GF (2)t

Ta(".a = & n B
~

8
~

~B &, (2.11) Finally, to complete the definition of our input amplitude
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in terms of the interaction Harniltonian, we have

T(s3)a=&~&
I
8

~

r&& . (2.24)

+ QFd )(i)65; Md( )(a)GT tt, . (2.25)

T~ tt = V~.tt+ V, t.)gTs s+ g 5~. ttMd '.(P)GTt3.tt, (2.26)
P

wherc Ta.a = Ta.a. The ~B~~B Potential Va.a is given

by

V~. t) =Ttt 'tt+ f'" d,f'"+. gF„"'(t)G5,Fd"' (1), "
IJ

(2.27)

A careful examination of the above equations reveals
that we need the amplitudes TB.B and T B.'B under two
distinct circumstances. In the one case [Eqs. (2.3) and
(2.14)] we need to calculate these amplitudes as the non-

pole part of the full amplitude. In the second case [Eqs.
(2.8) and (2.17)] where the amplitude is labeled by the
pion that interacts with the baryon, the amplitude is an
input into the calculations. Because in this second case,
the n. —B interaction takes place in the presence of a
spectator pion, the energy at which we need the ampli-
tude is at least m less than the energy at which the am-

plitude is required in the first case. To that extent we do
not have a self-consistancy problem on our hand. To cal-
culate the amplitude in the second case, in terms of the
interaction Harniltonian, we require that unitarity be
satisfied to one order lower than in the first case. Thus to
satisfy three-body unitarity for the amplitude in the first
case, the amplitude in the second case needs to satisfy
two-body unitarity only, i.e., it is a solution of a two-body
problem. In practice, we can parametrize the amplitudes
in this second case while the amplitudes in the first case
are the output of the calculation.

In the above equations, we have presented the ampli-
tude for pion elastic scattering and photoproduction as a
distorted-wave Born approximation integral for an
effective potential which is by no means simple to calcu-
late, as it requires the full off-shell AGS three-body am-
plitudes U &. For n- —N elastic scattering, we overcome
this problem by examining' the amplitude for ~B
~maB, F' '. This allows us to write a set of coupled
equations for the reactions in Eq. (1.2) in the form'

TB;a = Va;a+ Va;ag Ta;a

III. THE m~B~yB AMPLITUDE

To get a set of coupled integral equations for pion pho-
toproduction we need to examine the amplitude for
m.m.B~yB,F', ,' where the subscript c refers to the fact
that all the diagrams that contribute to this amplitude, in
perturbation theory, are connected diagrams. These dia-
grams can be divided into two classes. (i) Those that are
one-particle irreducible, which we denote by F()'. ) . (ii)

The one-particle reducible diagrams can be written, using
the last-cut lemma, as

I ())td f ()) (3.1)

I' )~=I ( )~+M( )Gr( )~ . (3.4)

Here, I' ' is the three-particle irreducible amplitude for
the reaction mvrB~B. This means it gets contributions
only from diagrams with four- or more-particle inter-
mediate states or no intermediate state at all. Since the
number of baryons is conserved at one, four-particle in-
termediate states can only be attained by a term in the in-
teraction Hamiltonian that couples the state with one
baryon, and states of one baryon and three bosons
(mesons or photon). Since no such term exists in the
Hamiltonian given in Eq. (2.2), I' ' has a contribution
only from the diagram with no intermediate states, i.e.,I' ' =(n'nB

~

H
~

8)=0, because no such term is in-
cluded in our Hamiltonian, by definition. We can at a
later stage include the contribution due to such a cou-
pling in perturbation theory. This result will allow us to
write Eq. (3.2) as

F (0)t F ())t+F(&)t f(1)td f ()) (3.5)
7

We now turn to the one-particle irreducible amplitude
F",.,' . Here again using the last-cut lemma in classifying
the diagrams that contribute to this amplitude, we can
write

where I'" is the one-particle irreducible amplitude for
the process m.~B~B. We, therefore, can write

F (())t=F"'t+ I'"td f "' (3.2)

In a similar manner we can write, using the last-cut lem-
ma, the one-particle irreducible amplitude I'" as,

1(2)t+F(2)t f())t (3.3)

with

while the m~B~mB potential reduces to F (1)t F (2)f+F(2)tg7- (1) +F (2)tgT (1)
1;c 1;c B;a 1 g B;B (3.6)

(2.28)

In this way, we have a set of coupled equations that will

give us, not only the amplitude for pion elastic scattering,
but the pion production amplitude as well. More irnpor-
tant is the fact that these amplitudes satisfy two- and
three-body unitarity. In the next section, we will carry
out an analysis of the ~~B~yB amplitude that will allow
us to write a similar set of equations to those of Eqs.
(2.25) and (2.26) for the reactions in Eq. (1.3). F (o)t F (2)t+F(2)t (T()) +f())td f (())

1;c 1;c B;B B (3.7a)

where g =dad& is the By propagator, and F', ' is the
two-particle irreducible amplitude for m.m.B~yB. Here,
T B.'B is the one-particle irreducible Compton scattering
amplitude yB~yB. Because we are including only dia-
grams to first order in the electromagnetic interaction,
this amplitude is taken to be zero. For a detailed discus-
sion of the coupling to the Cornpton scattering channel in
this formulation, the reader is referred to the work of
Araki et a/. ' We now can write Eq. (3.5) as
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F (2)f+F(2)f T (0)
1;c 8;B (3.7b)

An analysis, using the last-cut lemma of the two-
particle irreducible amplitude for mm.B~~B,F' ', will

give the result that'

with

d (3.8)

F,' ' = +Md '(a)GU;GFd 't(i),
ai

F(2)t y F(2)t(i)

(3.9a)

(3.9b)

and Fd ' (i) given by Eq. (2.6).
On the other hand, the connected two-particle irreduc-

ible amplitude for m.m.B~yB,F', ,', can be written using
the classi6cation of diagram, and the last-cut lemma, as

F""=FI'.,"+(M"'GF,""),+(M'"GF", "), ,
)

(3.10)

where the subscript c indicates that we are including only
connected diagrams. For the Hamiltonian under con-
sideration, the three-particle irreducible amplitude for
~n.B~yB,F &., is zero, because there is no direct cou-(3)f

pling between the yB state and states with three bosons
(i.e., pions or photons}. In addition, the three-to-three

FIG. 2. The lowest-order diagrams that contribute to F &.,'.
They correspond to the terms in Eq. (3.19).

amplitude for m.mB~~mB, M' ' can be written using the
Faddeev ' ' decomposition in terms of the AGS ampli-
tudes for the mm.B system, as

M' '= g [Md '(a)5 &+Md '(a)GU &GMd '(p)] .
aP

(3.11)

Finally, the two-particle irreducible amplitude for ~m.B
~ymB, M'„' has a connected and a disconnected part
with the connected amplitude M '~'. , given by

M'„'., = gM'„'d(i)5; GM z. 'd(j).
V

+ g Md '(a)GU;GM'&Id(i)5, J

(a)

(c)

(b) && [1+GM s".'d(j)], (3.12)

where the disconnected amplitude for ~mB ~ymB,
M'z' d(i) is .defined in Eq. (2.17). On the other hand,
the disconnected amplitude for ~y8 ~nyB, M z 'd(i.).
is given in terms of the m~ amplitude by

M ~ 'd())=dr 'Ts' 's.(i) . . (3.13)

Making use of the above results, including Eqs. (2.17) and
(3.11)—(3.13), and the AGS equations [Eq. (2.7)], we can
rewrite the two-particle irreducible amplitude for
~m.B~yB as

F I.,' = g 1+. +Md '(a)GU;G
a

XM (i )GF

(e}

(g)
FIG. 1. The lowest-order diagrams that contribute to T &.'&.

They correspond to the terms in Eq. (3.18c).

1+ g Md"'(a)GU, G
ij a

XM„' d(i)5; GF 2 „'(J), (3.14)

with F I.d and F2.d given in Eqs. (2.18) and (2.19), re-
spectively. In a similar manner, we can write' the two-
particle irreducible amplitude for ~~8~~8,F' ', as

F' ' = g 1+ +Md '(a)GU, G F' ' (i) . (3.15)
I a

Making use of Eqs. (3.14) and (3.15) in Eq. (3.7b), we get
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F'1.,' ——Q 1+ +Md '(a)GU;G Md '(i)GF I.d + gM'q'd. (i)5)GF2d(j)
i a lJ

+ g 1+ +Md '(a)GU~(G Fd ' (i}gTB 'B ..
a

(3.16)

Here, we have the amplitude for two-pion photoproduction that satisfies two- and three-body unitarity. As it stands, it
is not the most convenient form for computation, because it is expressed in terms of the fully off-shell AGS amplitudes
U &, and the half-off-shell amplitude for m.B~yB,T ~.'z. In the next section we will show how this amplitude can be
written in terms of solutions of coupled integral equations similar to those given in Eqs. (2.25) and (2.26).

To examine the physical content of the above result and at the same time be able to compare our amplitudes to simi-
lar formulations, we consider the lowest-order contribution to this amplitude. This corresponds to neglecting all multi-
ple scattering in the final state and can be achieved by dropping terms which have the AGS amplitudes. Thus, to lowest
order we have

F (0)t y M(2)(l)GF (2)t+ y M (2)
( )5 GF (2)t(J)+ y F(2)t( ~

) T (0)
t (3.17)

If furthermore, we take the lowest-order approximation to T z.'~, we get

f() )td j (()+T- (2)

f(1)td f (1)+T (3) +f (1)d f(1)'t+f (1)dBf (1)'t+f (1)d f (1)t
t

(3.18a)

(3.18b)

(3.18c)

Using this result, for which the right-hand side (RHS) of the equation is given diagramatically in Fig. 1, we can write
the lowest-order contribution to the mwB~yB amplitude. The result is

F ).I = g TB B(l)dw(l)f. g + g TB.B(l)5)dBf"' (J)
l lJ

+ g f"' (i)dBTB.'B+ g f'" (1')dB5, f'" (j)dB"f"'
l lJ

+ g f'" (i)dB5, Jb"(j)d„f"'"(j)+ g f"' (i)dB5;~f '"dBf'" (j)+ g f"' (i)dBf'"d 7,'" .

This lowest-order result for n.m.B+—yB is illustrated diagramatically in Fig. 2. Comparing the diagrams in Fig. 2 with
those used by Laget, we find that he has basically included all the diagrams we get, with the exception of the first two
[i.e., Figs. 2(a) and 2(b}]. The diagram in Fig. 2(b) is a different time ordering but the same process as the diagram in
Fig. 2(c) and should be included in any calculation, particularly as the diagram in Fig. 2(c) gives the major contribution
to the cross section. The fact that in the diagram in Fig. 2(b) we have a one-particle irreducible ainplitude for
~B~yB, while the corresponding amplitude in the diagram in Fig. 2(c) is three-particle irreducible is only a conse-
quence of the fact that in Fig. 2(b) we have not taken the lowest-order expansion. The diagram in Fig. 2(a) may be con-
sidered as a higher-order diagram since the pion scatters off the nucleon in the final state. Finally, all the vertices in our
analysis are dressed, and are related to the basic chiral Lagrangian we started with. On the other hand, Laget makes
use of a local effective Lagrangian, in which the form factors and coupling constants could be adjusted to reproduce the
data.

IV. THE COUPLED INTEGRAL EQUATIONS

(4.1)

We now turn to the derivation of the coupled integral equations for the reactions in Eq. (1.3). For this we need to
write an expression for the amplitudes describing the reactions m(nB) +~yB, and (trtr)g~yB. This can be achieved

by taking the left-hand-side residue of the mm.B~yB amplitude F '~. ,' at the B* and p poles. To take the residue at B*
pole, we need to expose this pole in the amplitudes Md )(i) and M (&2)d(i). Since the 8 is a resonance observed in tr 8—
scattering and does not correspond to a three-quark state in the present formulation, the corresponding one-particle ir-
reducible amplitude Tz'. z will have a pole in the complex energy plane at an energy c. + corresponding to this reso-
nance. Exposing this pole allows us to write this amplitude as

Tg ~ g — +E —c

where pB+ is the form factor for the vertex 8 ~Bm. Making use of thi. s result, we can write the disconnected
trB~mmB amplitude .

Md '(i. ) as
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l y l

Md '(i)= +5,,d '(j)
1

E GB*
+ 0 ~ ~ (4.2)

In a similar manner, we can expose the pole in the nB+ y—B amplitude and write, using Eq. (2.17), the amplitude
M '„'d(i. ) as

M'„".d(~)= +5, d '(j) T~ 's(i}.+
J

~ y,.( )&(y,.( )
~

E —c.B
+ ' ' gTs.s(i) (4.3)

We now can make use of Eqs. (4.2) and (4.3) to take the left-hand-side (LHS) residue of Eq. (3.16) at the 8' pole. This
gives us the amplitude for mB *~y8 as

T(nB' .yB)=(g' '
~
T,'.s ~

P's), (4 4)

where the amplitude T,'.& is given by

T I.s Fpd —+—Q M'„'d(i)5;~GF. 2.d (J)
J

(4.6)

In a similar manner, we get the amplitude for the reaction (n.rr) B~y8 by taking the LHS residue at the p pole. of the
amplitude F I.,' as given in Eq. (3.16). Since this pole is present in the amplitude for tr tr scatte—ring, Md '(3), the resul-
tant expression is

+ g U, G Md"'(j)GF", d+ gM. '„"d(J)5, , G.F,"d(1) +.Fd"' (i)gT~ 's+ g U,,. GFd"'(j)gTs 's . . (4.5)
J I

In the above result we have the bare amplitudes for nB~yB, M '„'d(i) .and @BLAB,Fd ' (i), appearing in the second and
fourth term on the RHS of the above equation. To avoid these bare amplitudes in our integral equations we need to
redefine the amplitude for m.8 ~y8, T;.~ that will appear in our integral equation. Since the pole corresponding to the
8' is in the complex energy plane, the amplitude for m.B'~yB is not a physical observable to the extent that we can-
not measure it directly. We can only determine its contribution by examining the reaction m.n.B~y8 in certain kine-
matic regions where this mechanism dominates. In that case, we have to use the amplitude F ', ,' to calculate the cross
section. Thus, with no loss of generality, to close the coupled integral equations and have the input in terms of dressed
vertices, we define an amplitude for m8*~yB such that it does not include the second and fourth term on the right-
hand side of Eq. (4.5), i.e.,

T; z FPd + g. ——U; GFd ' (j)gT& '&+ g U; G. 'Md '(j)GF Pd+ gM'„'d(J)5JIGF2. .d (1)
J J

yB)= & 4p'a'
I T3;a i t)i/a &

where the amplitude T3.~ is given by

T3 sg U3 'GFd ' (j )gTs s+ Q U3J G .Md '(j )GF pd + g M 'a ' d(J)5jt GF 2d .(1)
1 J I

(4.7)

(4.8)

Here, we have redefined the amplitude for mB~yB by dropping any reference to its reducibility, i.e., T~.~ = T z.'z. We
now can combine Eqs. (4.6) and (4.8) to write

5a3F', .d + g Ua&G Fd ' j()gTS a+Md '(J)GF Pd. + g M '„'d(1)5)(GF ~.d (1).
J

(4.9)

To eliminate the AGS amplitude U, from the above equation, we first make use of the AGS equations [Eq. (2.7)] to
iterate the RHS once, then make use of the definition of T s, Eq. (4.9), to get.

Ta.a ——Va.s+ Va.agTs. ~+ Q 5aPMd '(P)GTP s, .
I3

where V .s is given in Eq. (2.28), and

(4.10)

Va;B 5a3F 1;d + rf 5ajM A;d(J}5jl 2;d (
jl

(4.11)

This result gives us the amplitudes for ~8*~yB and pB~yB, T .~ in terms of the amplitude T .~ and the amplitude
for ~B~yB, Tz.z. To close the set of coupled integral equations, we need to derive an equation for the m.B+—yB ampli-
tude T~ sin terms of the amp. litude Ts sand the amplitude .T s. To achieve this re.sult, we make use of Eqs. (2.4}and
(2.5) to write Eq. (2.15) as
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Tz.z U—z z+. Vz. zg(1+ Tz &g. )U& z+. g Fd '(i)G5; Md '(a)GU GF. d
' (j)g(1+Tz &g. )U&

iaj
(4.12)

where V~.s is defined in Eq. (2.27). If we now make use of Eq. (2.15) to replace (1+Tz sg.)Us sb. y Ts sa.nd substitute

for Uz. z in the first term on the RHS, using Eq. (2.16), we get

Ts s=.Ts 's+.f' ' dof +f'b"d f" +f "'deaf"' + Vs &gT.s

+ g Fd '(i)GU, ,GF ', d + g F„' '(i)GU, ,GM '„'„(j)G. 5,,F 2 d (I)+ g Fd '(i)G5, jlfd '(a)GU, GFd ' (j )gTs s. .

l ij 1 iaj

(4.13)

We now make use of the AGS equations to iterate the sixth and seventh term on the RHS of Eq. (4.13). This allows us,
with the help of Eq. (4.9), to eliminate the AGS amplitude in favor of the physical amplitude T z, wh. ich we want.
After some algebra, we get the second equation in our coupled channel description of the reaction in Eq. (1.3) to be

Ts ~ = Vs.s+ Vs sgTs .s+ g. Fd '(i)G5, Md '(a)GT s, . (4.14)

where Vz. z is given in Eq. (2.27), and

V T (3) +f(2)td f (2)+f (1)d f())t+f (()d f(1)t+ y F(2)(i)GF (2)t+ y F(2)(i)G5 M (2) (j)G5 F (2)t(i) (4 15)
7 7

ij l

VB;B

V.B

VB B

V.B
(4.17)

Then the integral equation for the reaction in Eqs. (1.2)
and (1.3) can be combined into one matrix equation writ-
ten as

T=V+KT,
where the kernel is given by

V sg g Vs. GM„"'(a)G

(4.18)

and

K=
V .Bg g5 pMd '(p)G

13

(4.19)

Vs. = QFd( '(i)5; (4.20)

This result indicates very c1early that we can solve for the
amplitudes for pion photoproduction with very little ad-
ditional work over the effort required to calculate the
elastic amplitude. In fact, the only additional input we
need are the Born amplitudes VB.B and V .B. However,
the new coupled set of integral equations puts a strong
constraint on the model to the extent that the form fac-

If we now compare the coupled integral equation given in
Eqs. (4.10) and (4.14) for the reactions in Eq. (1.3) with
the coupled integral equations for the reactions in Eq.
(1.2) as given by Eqs. (2.25) and (2.26), we find that the
kernel of the two sets of equations are identical. In fact,
the only difference between them is the inhomogenous
term which is governed by the initial state. This observa-
tion allows us to write the two sets of coupled equations
as a matrix equation by introducing the mhtrix amplitude

TB;B TB;B
T= (4.16)

a;B a;B

and the potential matrix

tors and two-body potentials that are required for calcu-
lating the elastic amplitudes will also determine the pho-
toproduction amplitude. There are no additional param-
eters to be adjusted. Also, by introducing the coupling to
the electromagnetic field at the quark level and taking the
baryon B to be the nucleon or b, (1232), we have included
both meson exchange current and the isobar current in
our final amplitudes.

V. CONCLUSION

In the present paper we have derived a set of coupled
integral equations that describe the reactions given in

Eqs. (1.2) and (1.3). These equations, which are of the
Faddeev form, satisfy two- and three-body unitarity and
thus can be used to calculate the amplitude above the
threshold for three-body final states. In particular, they
can be used to study the resonances just above the AN
threshold, such as the Roper resonance. Although our
starting Hamiltonian is based on the chiral Lagrangian,
our derivation does not depend on the detailed form of
the interaction Hamiltonian Hi. This will allow us to
compare the results of the reactions in Eqs. (1.2) and (1.3)
for different chiral Lagrangians and relativistic and non-
relativistic quark models in which the mesons are cou-
pled to the quarks. Furthermore, since the m. —N reso-
nances can be treated as either a three-quark state B or a
purely dynamical effect, we can address such questions as
the quark content of a given ~—N resonance. For exam-
ple, we have considered" in detail the question of the
Roper resonance, as observed in ~—N elastic scattering,
and the matter of how important it is to include a three-
quark Roper state in the [56] or [70] representation. We
can also examine the question of how important a role
the mixing of the [56] and [70] representation plays in
both pion elastic scattering and photoproduction. The
advantage of this formulation over previous analyses is
that the ~—N resonances are treated as resonances corre-
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sponding to poles of the S matrix in the complex energy
plane. The width for the decay of these resonances into
m.N, mh, pN, and m~N is determined using the same
Hamiltonian and integral equations that give the mass
spectrum for the baryon and the cross section for pion
elastic scattering and photoproduction.

Because we have introduced the coupling to the elec-
tromagnetic interaction into our Lagrangian at the quark
level, the model includes the contribution of both meson
exchange current and isobar current. Furthermore, the
Lagrangian, before projection, satisfies both gauge and
chiral symmetry. Any loss of such symmetry is the result
of our projection procedure, or the imposition of unitari-
ty by summing only certain classes of diagrams in pertur-
bation theory. In this way, we may be able to investigate
the violation of these symmetries in a systematic way.

Finally, the solution of the above equation will give us
the input into the BB—~BB—yBB equations that de-

scribe N —N scattering, pion production, and pion-
deuteron scattering, as well as the process involving the
interaction of the photon with the A =2 system. Since,
the parameters of the chiral Lagrangian are determined
from pion elastic scattering, the results for both pion
photoproduction on a single nucleon and all results for
the A =2 system are determined with no further parame-
ter adjustment. In other words, we have a parameter-free
theory. Most interesting is the fact that all the contribu-
tions from the meson exchange current and isobar
current in the A =2 system are predetermined by the
single-nucleon results.
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