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A semiclassical model is presented for the calculation of energy spectra of one nucleon transfer

reactions to continuum states. Both isolated and overlapping resonances can be discussed. The
theory is applied to medium energy heavy-ion reactions and the calculated spectra show general

trends in agreement with the experimental data.

I. INTRODUCTION

In this paper we present a formalism for studying sin-
gle nucleon transfer reactions between heavy ions when
the final state of the transfered nucleon is in the continu-
um. It is a natural extension of the formalism developed
in' for nucleon transfer between bound states.

Nuclear reactions at incident energies well above the
Coulomb barrier can lead to highly excited residual nu-
clei and in the case of a transfer reaction the transferred
nucleon can have a continuous energy spectrum. Many
approaches to the problem of calculating the cross sec-
tion for such a reaction have been developed. ' They
are all based on extensions of the distorted-wave Born ap-
proximation (DWBA) theory to the case of an unbound
fina1 state. The work of Huby et al. ' is similar to ours
since in both theories the final state for the unbound nu-
cleon is represented by a scattering state with an ap-
propriate normalization. Other approaches are based
on statistical compound nucleus theories. They require
quite lengthy numerical calculations and do not deter-
mine the absolute normalization. McVoy and Nemes'
proposed a simple model based on the plane wave Born
approximation to ca1culate both transfer to continuum
and breakup. However, they obtained only very qualita-
tive results.

A formula for the probability of transfer of a single
neutron from an initial bound state to a final unbound
state is obtained in Sec. II of this paper and the case of an
isolated resonance is considered in Sec. III. In both the
present approach and the one of Huby et al. it is found
that the transfer probability is proportional to

~
sinfit

~

where 5t is the phase shift of the scattering wave function
of the transferred nucleon by the final nucleus. The
analysis in Secs. II and III is made for the case where the
final state of the transferred nucleon is represented by a
single-particle wave function but it can be generalized to
more complicated situations. We discuss this generaliza-
tion in Sec. IV of this paper and find that the transfer
probability is proportional to

~

1 —S&z ~

where Soo is the
elastic part of the scattering matrix for scattering of the
transferred neutron by the final nucleus. If we take the
energy average of this result the transfer cross section can

be expressed in terms of the neutron optical-model S ma-
trix. Some numerical results are presented in Sec. V.

II. TRANSFER TO CONTINUUM STATES

X /2 (d2, kr, k2)ft(d), ky, k, ) . (2.1)

Here 1( (d, k, k, ) is the double Fourier transform of the
coordinate space wave function 1(,(gz) of the initial (final)
nucleon bound-state wave function

tT(x, k, k, )=f f dy dz e ' ' g( yx, z) . (2.2)

The quantity ri in Eq. (2.1) is defined by

g =k, +y, =k2+y2,2 2 2 2 2

where

2m c~
y = — for a=1,2

g2

(2.3)

(2.4)

and Ak& and Ak2 are the z components of the momentum
of the transferred neutron relative to the first and second

We begin the derivation from a formula for the
transfer amplitude given in Ref. 4. The neutron makes a
transition from a single-particle state P, with orbital an-
gular momentum l, , m

&
and energy c, in the first nucleus

to a state ltt2 with angular momentum 12,m2 and energy
c2 in the final nucleus. The two nuclei pass each other on
classical orbits and the transfer amplitude is written as a
surface integral over a surface X between the two nuclei.
The relative velocity of the centers of the two nuclei at
the point of closest approach is u and the z axis is chosen
parallel to u. The surface X is parallel to the z-y plane.
At the point of closest approach the center of the first nu-
cleus is at a distance d, from X and the distance of the
center of the second nucleus is 12. The distance of
closest approach between the two centers is R =d, +d z.

There are many equivalent ways of writing an approxi-
mate formula for the transfer amplitude. We start from
Eq. (3.4) of Ref. 4

f dk (ri +k )'r
2mmu
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nuclei. They are given by

(Q+ —,'mv )

Ak, =—,6k~=-
v

(Q ——,'mv )
(2.5}

—2i 51
QI(r)=CIkIzt[hI+ (kIr) —e h~' (kIr)]

X Y( (O, y),fmf (2.12)

where Q =E, —E2 is the Q value of the reaction. Equation
(2.1) shows the dependence of the transfer amplitude on
the momentum distribution in the initial and final nuclear
states: f(d), k, k) ) is the amplitude for finding the nu-
cleon from the first nucleus on the surface X with
momentum components (k~, k, ) =(k~, k, ) and

$2(d2, k, k2) is the corresponding amplitude for the nu-
cleon in the second nucleus. The restrictions (2.5) on the
z components of the momentum of the nucleon in the ini-
tial and final nuclei are a consequence of energy and
momentum balance along the direction of relative motion
as explained in Ref. 4.

For cases where the initial and final single neutron
states g) and g2 are bound states the wave functions on
the surface X may be approximated by their asymptotic
forms

g(r)- C&'yh—) (&yr }Yi (~ y) (2.6)

where hI" are Hankel functions of complex argument
defined in Ref. 19, p. 415. The double Fourier transform
of Eq. (2.6) calculated according to Eq. (2.2) is

P(x, k~, k, )= —C e "
Y& (lr),

Xx

where

(2.7)

k =(iy„,k, k, ),

~k~ =V'k* k=
y' =k'+k'+y'

k

ik
(k2+ k2 —y2 ))/2 =l y

(2.8)

(2.9)

A(l2m2, l)m) )= 4@i —C2C)K~ (riR )
mv 1 2

and y is related to the bound state energy E by Eq. (2.4).
In Eq. (2.7) C is the asymptotic normalization constant of
the state g . When the Fourier transform (2.7) is substi-
tuted into (2.1) the integral can be evaluated to give the
transfer amplitude

where hI' —' are Hankel functions of real argument which,
according to Ref. 19, can also be written as hI" ———ihI'+'
and hI' ' ——ihI' ', with

2m Fy
kI ——

$2 (2.13)

When r is very large the radial part of Eq. (2.12) can also
be written as

RIf
2N .

sin(kr ' lIm—+—51 ),r 2 f (2.14)

(2.15}

We now wish to calculate the double Fourier transform
of the function (2.12). First we consider the case 1& ——0.
Then (2.12) reduces to

p(r)=CIkf 2i[ho+'(kIr) —e ho (kIr)] i/2(4 )i/2

(2.16}

where

+ikf r

h(')~)(kIr)=

The integral

where 5) is the 1&-wave phase shift. The normalizationf .Ifconstants CI and N are related by C& ——2Ni /exp(i5, ).f
We choose the normalization constant N so that the wave
function RI is normalized in a large box of radiusf
L ggR. Then

N f RI (r)r dr=4N f sin (kr 21&n+o) —)d—r= 1
p f p

2 f
then

X Y) (P), n }Y)" (P2, 0), (2.10) +lkf P

r
(2. 17)

cosp =—ik
sinp =

7a Va
(2.11)

where the complex angles P are related to the k in Eq.
(2.5) by

is convergent but converges rather slowly. To simplify
the discussion we introduce an extra convergence factor
e ' with A, &0 and let A, ~O at the end of the calculation.
The integral can be evaluated by the method used by
Bonaccorso, Piccolo and Brink by introducing
y =A, +ikI.

Now we generalize the above results to the case where
the final state is a single-particle unbound state )}()I with
angular momentum (lI, mI ) and energy rI & 0. Equation
(2.6) for the asymptotic form of the final wave function is
replaced by the scattering wave function with appropri-
ate boundary conditions

—[kI= lim f f dy dz e
A, ~p r

277 —y [xJ
e

7x

where

(2.18)
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y„=lim (k +k, +y )'
~-o

= lim (k +k —k +k +2ik A)'

(k2+k2 k2)(~&f (2.19)

The interesting point about the above result is that both

ho
—'(kr) have the same double Fourier transform so that

—y„ ix )x l
Pf (x, k», k, ) = —Cf e '2n. sin5O

(4 )(/2
dn L dkf L m

p(Ef )def —— def 2 deaf
deaf

n.
deaf 7T

(2.26)

Equation (3.3) in Sec. IV gives the transfer probability
between bound states. Comparing Eq. (2.25) with Eq.
(3.3) we notice that the difference lies in the asymptotic
normalization constant of the final state and in the argu-
ment of PI .

2

From Eq. (2.25) one can obtain the transfer probability
for going to a final state with energy cf in a range

deaf

by
introducing the density of final states

(2.20} where we used the quantization condition

This derivation can be easily generalized to the case
where lf &0 to give

kfL =n~

]BI e x
—r lxi

Pf(x, k», k, )= Cf—e 2n. sin5(f Y( (kf) .

(2.21)

which is consistent with the normalization of the final
wave function in a box of length L [cf. Eq. (2.15)]. Then

'2
dP

(lf, l;)=
deaf

i5I
C2 ~Cfe sin5(f

where the magnitude of Cf is given in Eq. (2.15}.
(b) Equation (2.3) for g is replaced by

(2.22)

This has the same form as the double Fourier transform
of the bound-state wave function (2.7) where now y„ is
given by Eq. (2.19) rather than Eq. (2.9).

From this point onwards the calculation of the transfer
amplitude to a continuum final state can be made in the
same way as for the transfer to a final bound state. The
final expression for transfer amplitude is the same as Eq.
(2.10) with the following replacements.

(a) The normalization constant for the final state

e
—2gR

x (2lf + 1 )P( (X; )P( (Xf )
gR

(2.27)

In Eq. (2.27) the term sin5( tends to zero for large lf,f
this ensures that the total transfer probability will have
contributions only from a limited number of final states
with relatively small values of If.

If in Eq. (2.12) for the final wave function instead of—2i5l
putting S&' ——e one leaves the more general form off
the reflexion coefficient SI then the transfer probability isf
written as in Eq. (2.25) but with

I
sin5(

I
substituted by

2
f

—,
'

I
l —s(

I

g =k)+y) ——k2 —kf .2 2 2 2 2

(c) Equation (2.11) for the angle p2 are replaced by

(2.23) dp
(If l )=

I
1 —s( I 8(lf, l;),2

deaf

where

(2.28)

k2
cospf —— , sinpf ——

kf
'

kf
(2.24)

B(lf, I, ) =—
I
C,

I
(2lf +1}

4 mv
The transfer probability becomes

P(lf, l;)= g I
A(lf, l, )

Ii+ mm
1 2

2

—
I
sin5

I

'
I
C

I
z(21 +1)If 1 f

e
—2gR

XP((X; )P( (Xf )
qR

(2.25)

where P& and PI are Legendre polynomials of argument
I f

k k
X;=1+2 and Xf——2 —1

and the asymptotic form of the Bessel function has been
used

1/2

e
—2qR

xP((X, )P, (Xf)
qR

(2.29)

III. TRANSFER TO A SINGLE RESONANCE

and 8(lf, l, ) can be interpreted as an elementary transi-
tion probability. This second form is more suitable for
physical interpretation as we shall see later.

Equation (2.27) gives the probability of transfer of a
single nucleon in the orbit l,. in the projectile to a contin-
uum state in the target. The discussion in Ref. 4 suggests
that when the optimum transfer condition is satisfied
(

I Q I, ,= —,'mv ) the inclusion of nucleon spin will not
alter the result. When there are several neutrons in the
orbit l; the total transfer probability would be obtained
by multiplying Eq. (2.27) by the number of active neu-
trons.

K (qR )=
2qR

e
—r]R The transfer probability formula as given by Eq. (2.27)

is appropriate to deal with final states of positive energy
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both below and above the centrifugal barrier. Here we
discuss states well below the barrier which correspond to
narrow resonances. Transfer to these states can be stud-
ied by integrating Eq. (2.27) over the energy region of the
resonance. By taking a Lorentzian shape for the reso-
nance and assuming that all the other factors in Eq. (2.27)
are slowly varying over the resonance we obtain

/

sin5I
r ry2 r=—n.5(e —s„,)
2 (s —6, )'+I'/4 (3.1)

and

P(lf, l; )= J (lf, l, )dE
dp

rr—f ds 5(s —s„,)4B(l„„l;)r
2

2

~
C;

~
(21f+1)

1+2 PI 2
y f k res

e
—2gR—1
gR

(3.2)

where B(l„„l;) is given by Eq. (2.29).
In the case of transfer between bound states [cf. Eq.

(3.15) of Ref. 4] the equivalent of Eq. (3.2) was

cic21 (21,+1)PI 1+22 k,

3 1

P(12,1, ) =—
2 mU

—2qR

XP(, 2 2+1
y2 gR

(3.3)

fi k„, u, (R)

[k„,O, (k„,R )]
(3.4)

where u& is the neutron radial wave function calculated in
the potential of the target at the resonance energy and
OI(k„,R )=hi+'(k„,R ) is its asymptotic form outside a
radius R beyond which the nuclear potential vanishes.
Then we have

The place of the asymptotic normalization constant of
the final state C2 is then taken by the term m I /R k„,.

The close resemblance between Eqs. (3.2) and (3.3) sug-
gests that transfer to an isolated resonance can be treated
in a very similar way to transfer to a bound state provid-
ed one substitute i@2 by k„, and

~
C2

~
by m I /fi k„,.

It seems therefore that the term m I /A' k„, could be in-

terpreted as an asymptotic normalization constant.
To understand this we use the definition of I given in

R-matrix theory'

g„„(R)

(, ) .
[y2h1'+ '(i y 2R ) ]

(3.6)

IV. TRANSFER TO COMPOUND NUCLEUS STATES

In the derivation of Eq. (2.27) the final state is a single-
particle neutron state in the potential of the target. The
result depends only on the phase shift 5I . This suggestsf
that it might be possible to use Eq. (2.27) when the final
state is a compound nucleus state and 5& is the exactf
neutron phase shift including all compound nucleus
effects. Equation (3.2) would also hold but I would then
be a compound nucleus level width rather than a single-
particle width.

At energies just above neutron threshold compound
nucleus states correspond to narrow resonances. At
higher energies the resonances overlap and the neutron
cross section becomes smooth. In either case the energy
average (SI ) of the elastic S matrix corresponds to thef
optical model S matrix. ' If we suppose that in the range
of these energy averages only the phase shift changes
while B(lf, l;) in Eq. (2.29) remains almost constant then
the average involves only

~
1 —SI ~

and we getf

where f„„ is the numerical solution of the single-particle
Schrodinger equation at the experimental binding energy
and hi+'(iy2R ) is a Hankel function of complex argu-
ment imposed as its asymptotic form. C2 is independent
from the radius R when this is taken well outside the nu-
clear potential.

Therefore we see that when going from negative ener-
gies to positive energies, Eq. (3.3) goes smoothly into Eq.
(3.2), since Eq. (3.6) goes into Eq. (3.5) provided uI(R) is
normalized inside R, that is

ui(r)r dr =1 .
0

In Appendix A we show the correspondence between the
normalization of a bound-state wave function and of a
resonance wave function in another way which is very
close in spirit to the approaches of Vincent' and Huby'
and which gives a formula for the resonance width I
which does not depend on the choice of the channel ra-
dius. Similar results were also obtained in Refs. 11 and
12.

Equation (3.5) is also interesting because at very low
energies (s„,~O) it goes like k „,', and this term will can-
cel with PI (2k2/k„„—1)-k,„' in Eq. (3.2) so that thef
transfer probability becomes constant in the limit of zero
resonance energy. The same happens in Eq. (3.3) and we
expect that the transfer probability calculated from Eq.
(3.3) goes smoothly into the one obtained from Eq. (3.2)
at zero energy.

mr
fi k„,

u&(R)

[k„„OI(k„,R )]
(3.5)

dp
(If,I;)=(

~

1 —S,
~

)B(lf,i, )
dEf

(4.1)

In the case of transfer to a bound state the asymptotic
normalization constant of the final wave function was
given by where

=(
~

1 —(S( )
~

+TI )B(lf,I;), (4 2)
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TI —1 —
I
(Si )

I

(4.3)

is the transmission coefficient and B(l&,1,. ) is given by Eq.
(2.29).

In Eq. (4.2) the term proportional to
~

1 —(Si )
~

isf
due to the shape elastic scattering of the transferred neu-
tron by the target nucleus, while the second term propor-
tional to T& is due to compound nucleus formation. Ex-

f
periments on neutron transfer to continuum states might
distinguish between these two components.

Equation (4.2) was obtained under the hypothesis that
only the elastic channel was open. In Appendix B the re-
sult will be generalized to the case where other channels
are open. In that case the transfer probability Eq. (2.28)
is replaced by Eq. (B8) in which scattering matrix ele-
ments of different channels appear. If we sum over all
possible final channels we get Eq. (B10) which depends
only on the elastic part Soo of the scattering matrix. If
Soo contains compound nucleus resonances we can aver-
age over them and obtain Eq. (Bl1) which is the same as
Eq. (4.2). This result can be understood by a simple phys-
ical argument. The transfer probability cannot depend
upon which channels are open if the reaction proceeds
via compound nucleus formation, because the compound
nucleus does not remember via which channel it was
formed.

V. CROSS SECTION

In this section we discuss cross sections obtained by
applying the theory presented in this paper in connection
with the experimental results of Refs. 8 and 18~ In Ref.
18 it was pointed out that there is no unique model for
nucleon transfer reactions to the continuum which can,
at the same time, explain the important features of the
experimental energy distributions like the position of the
peaks, the widths, and the peak values.

By looking at the experimental spectra contained in
Refs. 8 and 18 and at the discussion therein one notices
that the transfer cross sections to the continuum are
peaked at a final energy close to but always smaller than
the incident energy. This suggests that the reaction is of
quasielastic nature with almost no excitation of the pro-
jectile and that an optimum transfer condition must be
satisfied at the peak energy. When the same reaction has
been performed at different incident energies it has been
seen that the widths increase almost linearly. It is im-
portant to have a theory which can predict correctly the
position and width of the peak because this information
can help to distinguish between the transfer and fragmen-
tation part of inclusive cross sections. This is even more
important for multinucleon transfer reactions.

The absolute value of the cross section is more difficult
to obtain. From the experimental point of view the prob-
lem is that the differential cross sections are known only
at certain angles and in order to obtain the total integrat-
ed cross sections one has to extrapolate the values to the
unknown angles. This procedure can produce errors.
From the theoretical point of view the DWBA calcula-
tions have an arbitrary normalization and therefore can-
not reproduce the yields. Other models can reproduce

the yields but only for certain energies and projectile
mass (cf. Ref. 18 and references therein).

We now discuss how our model describes the energy
dependence of the cross sections. An approximate for-
mula for the total transfer cross section can be obtained
from Eq. (4.1) by integrating over impact parameters as
in Bonaccorso, Lo Monaco, and Brink

=2m Pe(b db
dFf 0 dEf

R, —a, dP,

'g dEf

where

(5.1)

dp, dP
(l~, l;) . (5.2)

deaf

( deaff
The nucleus-nucleus probability of elastic scattering P,&

was given by the sharp cutoff model with strong absorp-
tion radius R, and a, is the Coulomb length parameter.
In Eq. (5.2) dP(l&, l;)lds& is given by Eq. (4.1) with
R =R, .

When calculating a spectrum from Eqs. (5.1), (5.2), and
(4.1) it is necessary to have the correct behavior of the
neutron-nucleus scattering amplitude (Si ). It can bef
obtained by an optical-model calculation with optical-
model parameters depending on the final energy. We use
a simple parametrization

(S, )=
1+exp[(lg —1&)/a]

(5.3)

where lg is chosen by the semiclassical approxiination

1g ER
2

Here R is the radius of the target and E is
the neutron-nucleus asymptotic wave number at energy

6f . We have taken two prescriptions for the diffuseness
parameter a. The first is a constant which is independent
of energy. The second has an energy dependence given
by the prescription a =ls/n where n is a constant satisfy-
ing the condition 1 &n.

Equation (5.1) gives the cross section for transfer be-
tween an initial bound state with energy c, and angular
momentum 1; and a final continuum state with energy cf
within a range d cf. For each energy range we take an in-
coherent sum over final states as in Eq. (5.2). We define
now the total final kinetic energy as

—E +Q. (5.4)

where E;„, is the initial energy of the projectile in the lab-
oratory, Q is the reaction Q value given by Q=a, ,

—Ej.
where c; is the binding energy of the neutron in the last
occupied state of the projectile and cf is the neutron final

energy in the target. The projectile is supposed to remain
in its ground state after transfer.

In Figs. 1 —4 cross sections per active nucleon
do'!dE&( = der/de&) ar—e shown for several different re-
actions. The values of the incident energy, the strong ab-
sorption radius and the parameters of the initial state are
shown in Table I.

Figures 1 and 2 are for the reaction Pb(' 0,"0) Pb
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FIG. 1. Spectrum of the reaction 'Pb(' 0,"0)' 'Pb at

E;„,=500 MeV corresponding to values in Table III.
FIG. 3. Spectrum of the reaction Ti( Ar, ' Ar) Ti at

E,„,=1760 MeV corresponding to values in Table III.

at 500 MeV and 800 MeV, respectively. Figure 3 is for
the reaction Ti( Ar, Ar) Ti at 1760 MeV which has
been described in Ref. 21. Figure 4 is for the reaction

Au( Ne, ' Fl)' Hg at 341 MeV which has been studied
experimentally by Wald et al. '

The results in Figs. 1-3 are for neutron transfer and
are calculated with a diffuseness parameter a given by the
energy-dependent prescription a =l /n. Figure 4 shows
an example for proton transfer and the diffuseness param-
eter is fixed at a =0.65. The dependence on the choice of
a can be seen by comparing the results in Tables II and
III.

The characteristics of the spectra shown in Figs. 1 —4
are summarized in Tables II and III, where E;„, is the
projectile incident energy in the laboratory, —,'mv is the
incident energy per nucleon at the instant of transfer,
E „„/A l is the value of the projectile final energy [Eq.
(5.4)] at which the peak of the cross section occurs divid-
ed by the number of the nucleons in the projectile. The
optimum transfer condition discussed later corresponds
to E~,» /A i

-—,
' m v . The fourth columns in Tables $1

and III show the widths of the cross sections taken at half
the peak value and the last columns show the peak value
multiplied by a factor 10 .

First one notices that the positions of the peaks corre-
spond to a final energy

Ef Einc +Qopt

where

I Q.pt I

=
I

E —ef I
=-,'mv'

(5.5)

(5.6)

and U is the relative velocity at the point of transfer. This
can be seen for example by comparing the values of
E „„/A& with —,'mU in Table II.

This feature of the quasielastic reactions to prefer a
final state with the target excited has already been no-
ticed by other authors. In our formalism it is clear why
and how it happens: The transfer probability and cross
section as given by Eqs. (4.1) and (5.1) have a maximum
when the parameter ri has a minimum and from Eqs. (2.3)
and (2.5) this happens when

~ Q
~

=
~ Q, , ~

= —,'mv .
Therefore the most favored final energy of the target is

ef e ' + 2
rnv with Ef & 0 since —,

' mv &
~
s; at the in-

cident energies we are concerned with

(E;„,/nucleon=20 —:100MeV). The reaction proceeds
via transfer of the nucleon to a continuum state of the
target having final energy equal to the initial binding en-
ergy plus the energy per nucleon of relative motion.

In Tables II and III one notices that the widths of the
peaks in the transfer cross section increase with the in-
cident energy. The increase in widths is almost linear
with incident energies, typical values are between 20 and

440

352-
160 208Pb Elnc=800MeVX

264—

176-
UJ

88—

s ~ I I i g s I

200 400 600
, l I

800 1000 1200

Final Energy (MeV)

FIG. 2. Spectrum of the reaction 208Pb(' 0 150)2O9Pb at
E;„,=800 MeV corresponding to values in Table III.

) 35.2—

26.4-
E
o 176—

LLI

8.8—

0 i ( I s I i i I s s I & s s I

200 300 400 500 600

20Ne 197Au Einc =341MeV

Final Energy (Mev)

FIG. 4. Spectrum of the reaction ' 'Au(' Ne, ' Fl)' Hg at
E;„,=341 MeV corresponding to values in Table II.
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TABLE I. Parameters used in the numerical calculations.

Reaction

208pb(160 150)209pb

Ti( Ar, Ar) Ti
A ( N, 'Fl)' H

Einc
(MeV)

312.6
500
800

1100
1760
341

R,
(fm)

11.96
11.75
11.52
11.40
9.87

11.95

(MeV)

—15.664

—9.871
—12.845

C;
(fm

—1/2)

7.28

2.62
6.5

TABLE II. Characteristics of some spectra calculated with a =0.65 where a is defined in Eq. (5.3).

Reaction

208pb(160 150)209pb

Ti( Ar, Ar) Tj
Au( Ne, ' Fl)' Hg

Einc

(MeV)

312.6
500
800

1100
1760
341

—mv1 2
2

(MeV)

14.22
25.84
44.48
63.17
41.35
11.81

Emean

A1
(MeV)

19
29
47
64
43
16

Width

(MeV)

17
25
37
59
44
18

a(Ef' )peak X 10

(mb/Me V)

59
142
152
110
52
43

TABLE III. The same as Table II but a = l~ /12 for l~ ( 12, a =0.8 for l, ) 12.

Reaction

208pb(160 150)209pb

Ti(40Ar, ' Ar) Ti
Au(20Ne, ' Fl)' 'Hg

Einc

(MeV)

312.6
500
800

1100
1760
341

—mv1 2

2

(MeV)

14.22
25.84
44.48
63.17
41.35
11.81

Emean

(MeV)

19
29
47
64
43
16

Width

(MeV)

23
26
31
43
42
25

o(Ef)p kx10

(mb/Me V)

106
337
425
328

77
80

TABLE IV. Variation as a function of the final energy cf of the parameters and factors appearing in
Eq. (5.7) for the reaction ' 'Pb(' 0,"0) Pb at E;„,=800 MeV discussed also in Table III. The last
column shows the cross section per active nucleon.

(MeV)

10
30
50
70
90

110
130
150

(fm ')

0.922
0.869
0.936
1.102
1.329
1.593
1.878
2.175

4
8

10
12
14
15
17
18

k2
PI 1+2

l

1.25
1.00
1.32
2.22
3.68
5.73
8.35

11.5

S(lg )

1.62 X 10'
4.31 X 10
8.96x10'
9.81X 10'
2.49 X 10'
1.02 X 10"
6.42 X 10"
3.91x 10'4

F(g)

(fm )

5.44 x 10-"
9.66 x 10-"
1.81 X 10
4.07 X 10-"
2.14x 10-"
4.82 x 10-"
6.62 X 10
6.76 X 10

o.(cf ) x10

(mb/Me V)

90.1

424
166
39.1

5.45
0.50
0.043
0.0027

TABLE V. Contribution from different initial states to the total cross section which is shown in the
last column. The second column contains the values of the cross section per active nucleon. The reac-
tion is 'Pb(' 0,"0) Pb at E;„,=800 MeV discussed also in Table II.

Initial State

1P 1/2

113/2
1$1/2

o(Ef )p k X 10
(mb/Me V)

152
76
59

Active neutrons
Cr T(Ef )peak X 10

(mb/Me V)

306
306
117
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60 MeV in agreement with experimental results.
The peak cross section for the first reaction varies with

incident energy and has a maximum for E;„,=800 MeV.
The values of the peak cross section are very sensitive to
the choice of the strong absorption radius and to the
diffuseness parameter a in the neutron optical model am-
plitude Eq. (5.3). A comparison of the results in Tables II
and III shows that the peak cross section is about a factor
3 larger when the energy dependent diffuseness is used
rather than the fixed one.

Table IV shows an example of the contributions of
different terms in Eq. (5.1) which can be written as

=—(z, —a, ) [c, ['
deaf 4

where

2 S(l/)F(g), (5.7)
mv

k~S(II)= g( ~

1 —(Si )
~

+T( )(2lI+1)PI 2 —1f f kff

and
(5.8)

k 2 —2gR,,

F(rl) =PI 2 +1 (5.9)
I s f I

The term PI (2k, /y + 1) contains the contribution to the

energy dependence coming from the initial state. This
term increases with energy but it does not change so
much. The term S(1&) contains most of the information
from the final state. There is a very strong increase with
final energy. This is mainly because lf becomes bigger so
that more terms contribute. The term P& (2k2/kI —1)f
can became very large when I& is large. S(l&) is very sen-

sitive to the choice of l and a because the optical-model
factor determines the cutoff of high If contributions. The
term F(rl) is very sensitive to the value of q and has a
maximum when g has a minimum. It decreases very rap-
idly at high energy because of the increase in the value of

The peak in the spectrum in Fig. 2 corresponds to a
situation where g=y, k, =0. The energy dependence of
the various terms shown in Table IV is typical of this
kind of reaction.

We would now like to discuss how our formalism can
be used to predict or discuss experimental results. Our
estimates for the position of the peaks and for the widths
are in qualitatitive agreement with the trends of the ex-
perimental results reported in Refs. 8 and 18. Also our
calculations do not have an arbitrary normalization like
the DWBA calculations of Mermaz, therefore they
should in principle be able to predict the yields of the re-
actions. However, to get reasonable estimates of the
yields the results from Eq. (5.1) which gives the cross sec-
tion per active neutron in the level l, should be multiplied
by the number of active neutrons in the orbit and transi-
tions from all occupied orbits in the projectile should be
included. To show the importance of such modifications
we have calculated the cross section Eq. (5.1) for the reac-
tion Pb(' 0, ' 0) Pb at E;„,=800 MeV, with the
bound-state parameters of Ref. 4, and with a constant

diffuseness of a=0.65 in Eq. (5.3). Table V shows the
peak values of o (EI ) for all possible initial states in oxy-
gen. The results in column 2 come from Eq. (5.1) while
those in column 4 are obtained multiplying the cross sec-
tion per active neutron by the number of active neutrons
in the orbit. The total peak value of crT(E&) becomes
729)(10 mb/MeV while taking into account only the
last occupied orbit in oxygen we obtained a peak cross
section per active nucleon equal to 152.1 )& 10
mb/MeV. Therefore it is important to take into account
all possible initial states if one is interested in predicting
the yields of a reaction, while the position of the peak and
the width are well reproduced by taking into account
only the last occupied orbit.

One nice point about our procedure is the extremely
short CPU time necessary to calculate one spectrum. It
takes between four and five seconds and this includes the
time used to run library routines which give a plot of the
spectrum. We have used the VAX 11/780 computer of
the Department of Physics in Catania.

Proton transfer can be calculated from the formulae
given in this paper by using effective binding energies, Q
values and normalization constants. Figure 4 shows an
example of our results obtained using the effective values
discussed in Lo Monaco. ' Lo Monaco uses the following
prescription for transfer between bound states: The
effective Q values is given by

Q~ff —Ef Ef —[V;(d, ) —Vz(dz)]=a, —e2

where c. , and c2 are effective binding energies defined by

z e
aE~=E~-
a

and

d

is the Coulomb potential between the proton and the core
in the initial and final nucleus, respectively, taken at the
point d where

d A'
1 j

/3
and d

& +d2 ——R, ~

d2

A, 2 are the mass numbers of projectile and target re-
spectively and R, is the strong absorption radius.

The effective normalization constant for the initial
bound state is obtained from Eq. (3.6) calculated at
R =R, and y = —2m c&/A .

For the proton transfer between Ne and ' Au at
E;„,=341 MeV, shown in Fig. 4 we get a width of 25
MeV in very good agreement with the value of 26 MeV
given by Wald et al. ' for the transfer part of their in-
clusive spectrum at the grazing angle.

The use of effective parameters as discussed here corre-
sponds to a sudden approximation for the effect of the
Coulomb field of the other nucleus in proton transfer.
Hashim and Brink (private communication) have shown
that the use of another set of parameters corresponding



1784 A. BONACCORSO AND D. M. BRINK 38

to an adiabatic approximation does not affect the results
very much.

with boundary condition X(0)=0. Outside the range of
the nuclear potential

VI. CONCLUSIONS X(r)=X,„,(r)= i—'yrh~'"(iyr), r &R (A3)

In this paper we have derived an analytical formula for
the calculation of energy spectra for one nucleon transfer
to the continuum. The normalization of final unbound
states is determined automatically by the theory and it is
an agreement with other results ' ' obtained from more
sophisticated scattering theories. Both isolated and over-
lapping resonances can be discussed.

The transfer probability formula has the structure of
an elementary transfer probability weighted by the sum
of the compound nucleus formation probability plus the
probability of nucleon elastic scattering by the target as
given by the optical model.

Calculated spectra show general trends in agreement
with experimental data. The peaks correspond to an op-
timum Q value whose definition is given by the theory as

~ Q, , ~

= —,'mv, where —,'mu is the relative energy per
nucleon at the instant of transfer. Widths are between 20
and 60 MeV and they increase almost linearly with the
incident energy.

We think that this method can be used for the predic-
tion of transfer cross section at higher energies than those
presently available and might be reliable for the separa-
tion of transfer components from breakup components of
inclusive spectra.

C = f X(r)dr
0

(A4)

An alternative formula for C can be obtained from the
Wronskian propriety (Ref. 19, Eq. III-28) which holds
when X(a) and X'(a) have fixed values

(A5)

One can take the limit a ~ ~ if X~O as r ~ ~. Using
Eq. (A3) we obtain

f X,„,(r)dr =. X,„,(R )

where

F(yR ),1

2r
(A6)

at the bound state energy c= —y . The normalization
constant C in Eq. (Al) is obtained from

C f X (r)dr=1
0

so that
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APPENDIX A

In this appendix we show the correspondence between
the asymptotic normalization constant of a bound-state
wave function and the normalization of a resonance wave
function. Vincent' and Huby' have shown that the nor-
malization of a resonance wave function depends upon
the width I and they have obtained a formula for I . We
obtain the same result as Refs. 10 and 15 following a
different method.

In the case of a bound state the wave function is

substituting Eq. (A6) in Eq. (A4)

C = f X (r)dr+ F(yR )
0 2f

(A8)

In the case of an unbound state the wave function is
still of the form (Al) with —y substituted by k =s and
with the boundary condition X(0)=0. Outside the range
of the nuclear potential Eq. (A3) is replaced by

X,„,(r) =kr[cosfij&(kr)+sinfin&(kr)], r &R (A9)

t(r Ep) =kern&(k~r ) (A10)

at resonance energy c~=k~, since in that case cos5=0
and sin5 = 1. Near resonance Eq. (A9) can be written as

X,„,(r, e)=kern&(kr)+ kyar A (s)j &(kr) (A 1 1)

where j& and n& are the regular and irregular Bessel func-
tions defined in Ref. 19, p. 415. Equation (A9) holds at
any energy c=k . It reduces to

f&(r ) =C Y& (O, p),X(r)
(A 1) where

where X(r) is a solution of the Schrodinger equation

de
, —y'X=, &(r)X

dr
(A2) Near a resonance one can use Eq. (A5) with a =0 since

X(0)=0. The left-hand side of Eq. (A5) can be written as
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X(R) 8 1 BX

2k Bk X Br

On the surface X we can use the asymptotic form for
the P' —' in terms of Hankel functions

P'*'(r)=(v } '~ k hI'*'(k, r}YI (r} . (B2)

x '"
2k dkBr

ax ax
ak k, ar

A k0

mI
1 G(koR)—

0

where

G(p)=X (R) pni(p)2 d 1 d

p nt dp

(A12)

(A13)
where (B4)

The term (U )
'~ appears because of the condition

U, (P,'+' P,'+')r =1, which imposes unit outgoing flux in
the exit channel. With this normalization the scattering
matrix elements satisfy the unitary condition

Q S~*,Ss, ——5„. (B3)
b

According to Blatt and Weisskopf (p. 523) the normali-
zation constant C, in Eq. (Bl) is given by

2 1
al =2Z,

and Eq. (A5) reduces to

Ak0—f X (r)dr = G(koR )—
0 2k mI and

LbT=
Vb

L,
Vg

It follows that
—1

m I R
&

G(koR )f X (r)dr+ . (A14)
Ak0 2 0

Equation (A14) was already obtained by Vincent. ' The
close resemblance between Eqs. (A8) and (A14) suggests
that the term m I /iri ko can be interpreted as the normal-
ization constant of a resonance wave function. It is in-
teresting to note that Eq. (A14) is independent of the
choice of R provided R is taken outside the nuclear po-
tential.

AppENDIx B

In this appendix we generalize the results of Sec. II to
the case in which the initial and final channels are many
particle states. We need to generalize the wave functions
in Eq. (2.1}. We consider a case in which the core of the
projectile has no structure and zero spin and always
remains in its ground state. In the initial state the neu-
tron is in the projectile in a bound state Pi(r ) and the tar-
get is in its ground state Xo(g) which has zero spin. The g
are the internal coordinates of the target. The neutron is
transferred to a continuum state in the target and its final
state is %,(r, g) satisfying a boundary condition with a
neutron in an outgoing wave state P',+'(r ) and the target
in an excited state X,(g). We need the initial and final
states only on the surface X discussed in Sec. II and on
that surface they can be approximated by their asymptot-
ic forms. The appropriate asymptotic form of %,(r, g) is
the antiscattering state

+.(r, g) =C, P'.+'(r )X,(g) QSb', P'b '(r )X—~(g)
b

(B1)

fX,*(g)Xt,($)d g=&,g . ' (B7)

From now on the calculation procedes as in Sec. II
since the P are the Fourier transforms of the neutron ini-
tial and final wave functions.

The transfer probability to a final state where the tar-
get is left in an excited state X,(g) with excitation energy
c,, and the final neutron has an energy c.—c. relative to
the target is

(z C2

v, 4

where Cf and N are defined in Eq. (2.15).
Their argument proceeds in terms of wave trains.

They say that the time over which the waves are active
must be the saine in all channels (and the same as the
time over which the incoining wave was switched on) and
since they travel with different velocities in each channel,
then they must be normalized in boxes of different length.

The density of final neutron states can also be defined
in terms of Tby

p(s)de= dE .T
(B5)

The Fourier transforms of (B2) can be defined and calcu-
lated as in Sec. II giving P *(dz, k~, k2), and P, (d i, k~, k i )
will be the Fourier transform of the initial neutron state.

The transfer amplitude will be
iAC,

A = fdk(i)+k )'
2m'. v

X [5o,$,'+ "P,—S,P
' "P,], (B6)

where v is the velocity of relative motion at the instant of
transfer, i) and ki 2 are defined in Eqs. (2.23) and (2.5).

Equation (B6) contains 5o, as a result of the intergra-
tion over the internal variables g which gives

where p'*'(r), with a=a, b are the outgoing and incom-
ing scattering waves. The Sb', are S-matrix elements for
the antiscattering of a neutron by the target.

dp, =
I ~oa Sou I &(If I } .

Summing over all final states of the target gives

(B8)
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/1 —S
f

+ g /S, /
8(lf I),

de @o
(B9) =(

I
1 —Soo(E)

I
+1—

I
Soo(e)

I
'»(II I )ds (B10)

where B(lf, l; ) is given by Eq. (2.29) of the text and l, , lf
are the orbital angular momenta belonging to the set of
quantum numbers which characterize the initial and final
states respectively.

Equation (B8) is the generalization of Eq. (2.28) to in-
clude the effect of excitation of the target by the
transferred neutron. By using the unitarity property of
the Smatrix Eq. (B9) can also be written as

in this equation c is the energy of the neutron relative to
the target and Soo(s) is the S-matrix element for elastic
scattering of a neutron with energy c by the target.

The S-matrix element Soo(E) may have resonances cor-
responding to compound states made up of target plus
neutron states. Average of these resonances gives

(Bl 1)

which is the same as Eq. (4.2) of the text.
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