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We present a covariant transport theory for heavy-ion collisions based on the cr-co model. The

two-body collision term is introduced in line with relativistic classical kinetic theory assuming the

free nucleon-nucleon cross section in the collision integral. Within this approach, we study col-

lisions of ' 0+ ' 0 at 600 MeV/nucleon for two different parameter sets of the underlying Lagrang-

ian density, i.e., different equations of state. The most striking result is the strong sensitivity of the

transverse momentum distribution on the momentum dependence of the mean field which is self-

consistently included in the relativistic approach. We find that residual two-particle collisions

might even slightly reduce the transverse momentum p, due to an increase of stopping power ob-

tained from the collisions. An increase of the cross section by a factor of 2 leads to a much smaller

enhancement of p, than observed in nonrelativistic calculations with a momentum independent

mean field. We furthermore present a first application to high-energy photon production and study

the influence of the equation of state on the differential photon yield.

I. INTRODUCTION

It is one of today's major goals in nuclear physics to
extract information about the strong interactions, espe-
cially the nuclear equation of state (EOS) via the investi-
gation of heavy-ion collisions. A lot of effort in this
direction has been done by applying transport theoretical
techniques like simulations of the Boltzrnann-Uehling-
Uhlenbeck (BUU) equation. These simulations combine
the complementary mean field and cascade description
for heavy-ion collisions at the semiclassical level. How-
ever, to obtain reliable information about the EOS at
high densities the theoretical description has to be im-
proved in several aspects.

It is known from nucleon-nucleus scattering, ' as well
as from the Brueckner theory, that the nuclear potential
felt by a nucleon depends on its momentum. It becomes
less attractive if the nucleon momentum increases. It has
been shown that this momentum dependence of the
mean-field potential can significantly alter the results of
BUU calculations concerning properties like momentum
flow and particle production. It is therefore desirable to
start from a theory that takes the static mean field and its
momentum dependence consistently into account. Furth-
ermore, a change of the nucleon-nucleon collision cross
section due to medium effects may influence the results.
Finally, to probe the high-density region of nuclear
matter, relativistic bombarding energies are necessary
which certainly require a covariant description. Besides
the relativistic kinematics this especially involves a rela-
tivistic formulation of the mean-field forces thus avoiding
shortcomings like, e.g. , superluminal velocities of sound
as they are observed by the nonrelativistic Skryme forces
at higher densities.

In the following we therefore investigate a model
which is formulated fully covariantly and thus naturally
includes momentum dependent forces. ' On the basis of
the tr to model (QHD I) (Ref. 9) a-covariant Vlasov equa-

tion can be formulated. ' In Sec. II we briefly review this
derivation and propose a two-body collision term
motivated by the covariant classical kinetic theory. " In
this way we obtain the simplest version of a relativistic
transport theory for heavy-ion collisions. ' A similar ap-
proach has been recently proposed by Ko et al. '

The numerical realization is discussed in Sec. III. The
results from the pure Vlasov part and the effects from the
two-particle collisions will be shown in Sec. IV. Besides
.the time evolution of the densities we will concentrate on
momentum space, especially the transverse momentum
distributions and the rapidity spectrum. Finally we apply
the model to the production of high-energy photons as a
first application to two-body observables.

II. A COVARIANT BUU APPROACH

A. The covariant streaming term

We start out with a field theoretical model of nucleons
coupled to scalar and vector mesons (QHD I) given by
the following Lagrangian density as proposed in

X a, =4[@„(i8" g„to") (M——g, 4—)]%

4F~ F +2m

where we have further included a nonlinear self-
interaction of the scalar field. ' In this simplest version
of the model it is suScient to treat only the four Dirac
components of the nucleon spinor explicitly, since the in-
teraction is invariant under rotations in isospin space.

In the following we treat this Lagrangian in the Har-
tree approximation. This means that the meson fields are
treated as classical fields and one obtains equations of
motion for the c-number-valued meson fields and nucleon
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spinors. In the present approach we further neglect nu-

cleonic negative energy states. With these approxima-
tions the model is known to describe the saturation of nu-

clear matter and static properties of nuclei reasonably
well. It also contains a momentum dependence of the
interaction whose strength is determined by the same pa-
rameters as the static mean field. The investigation of
nucleon-nucleus scattering in this model shows that the
optical potential increases linearly with the energy of the
nucleon. The steepness of this rise depends on the in-

verse of the Fermi-liquid effective mass which is close to
the relativistic effective mass m =M —g, 4 in nuclear
matter. ' ' Thus, a low effective mass leads to a strong
momentum dependence.

It is our aim to describe the time evolution of finite sys-
tems of nucleons via a one-particle distribution function
which, in the classical limit, goes over to a phase-space
distribution function. We therefore introduce the Wigner
matrix

1 4
—ip R)"— R R8'. = d Re ~ % x+—% x ——

(2m) 2 2

(2)

where 4' denotes the spinor component, i.e., a=0, 1,2,3.
Starting from the Dirac equation, an equation of motion
for W(x,p) can be derived. ' To simplify the coupled
equations for 8'

& we introduce the following spinor
decomposition

ax~ H~

m

an" F"'=g„H„+B"„m' .
Pl

(10)

The equations of motion for the meson fields following
from (1) are treated in the local density approximation.
They are determined by

m,24(x)+BC(x) +CA(x) =g,p, (x),

V(x, H)
m*(x)

The vector part of the Wigner matrix can be obtained via

V (x, H) = H
"'"'"'

"m "(x)

whereas the tensor part vanishes

1„„(x, II ) =0 .

The covariant Vlasov equation (5) can be solved as usual

in transport theories by the test-particle method. ' From
(5) it follows that if the distribution function f (x, II) is

given by a sum over 5 functions, i.e., a test-particle distri-

bution, its time evolution is given by the test particles
moving according to the following equations of motions:

W =9'+y„V~+ ,'a„„SI'",-
with the nucleon current3

A((bR~ „EP~, (4)

where AR+ „,AP~ are intervals in which the fields and
the Wigner matrix significantly change in coordinate and
momentum space, respectively. In a second step one fur-
ther assumes that the Wigner matrix is also slowly vary-
ing in coordinate space within the Compton wavelength
of the nucleon.

We obtain the relativistic Vlasov equation

{H„a~+[g,Hg""+m*(B"„m*)]B„"If (x, H)=0 (5)

together with the mass shell constraint

(II —m* )f (x, H)=0 .

Here H„=p„—g„co„ is the kinetic momentum,
m *=M —g,4 is the effective mass, and
F""=8"co"—8"co" is the field strength tensor. The distri-
bution function is related to the scalar part of the Wigner
function via

where we use that the pseudoscalar and the axial vector
part vanish for spin saturated system. ' The resulting
equations are then considered in the classical limit A~O.
More precisely, this involves the following two approxi-
mations. One of them is an expansion up to first order in
the "triangle operator" A'E=RB„t)", where the spatial
derivative of the triangle operator acts only on the meson
fields. It is valid if

j„(x)=4f d HV„(x, H)

= fd'H "f(x,II),
Ho

(12)

(13)

B. The two-body collision term

In principle, the collision term should be derived on

equal footing with the streaming term by including two-

particle correlations. Since such a stringent derivation is
still a matter of debate' we follow the covariant deriva-
tion in classical kinetic theory. " There the streaming
term results from the consideration of particles moving
on classical trajectories and the fact that the net Aow

through the surface of a Minkowski-space element given

by the world lines of the particle vanishes. Therefore the
Vlasov equation (5) propagates particles with mass m * on
trajectories (x„,II„). In the collision term one takes into
account that these trajectories can change due to residual
two-particle collisions which might account for the very
short-range part of the nucleon-nucleon interaction.

where jo(x) is normalized to the total nucleon number,
and the scalar density

p, (x)=4f d HP(x, H)
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The particular form of the collision term is based on
the following assumptions.

(a) The hypothesis of molecular chaos ("Stosszahlan-
satz"), which assumes that the number of two-particle
collisions is proportional to the one-body distribution
functions of the colliding particles.

(b) The difference in the space-time coordinates of the
particles before and after the collision can be neglected.
This is in agreement with the assumption of smoothly

I

varying distribution function and meson fields which is
necessary for the validity of the classical limit.

(c) The quantum mechanical Pauli principle is intro-
duced via the blocking factors

1—(2m )

4

We thus obtain the following relativistic BUU equation:

[ II+'+ [g„II@""+m '( 8"„m '
)]8„"Jf (x, II }

(2n. )' f )
4

—f (x, II)f (x, II, ) 1 — f (x, II')(2n ) 2m 3

(14)

where the Mdller velocity in the c.m. system of the collid-
ing particles has the following form

(15)

and
~

II'~ and II'& depend on II& and (II , O', P') due to
the four-momentum conserving 5 function initially
present in the expression for C(x, II}. The evaluation of
this 5 function was performed for colliding particles with
equal masses which is consistent with the second assump-
tion above.

The factor (2n ) in the blocking factors is due to the
normalization of the Wigner function [cf. Eq. (12)]. The
factor —,

' comes from the spin and isospin degrees of free-

dom, which are not explicitly distinguished in the distri-
bution function f.

One should note that the collision term depends on the
kinetic momentum H and not on the canonical momen-
tum p. This is due to the fact that in the classical limit
the kinetic momentum H is on the "effective mass shell"

P
and is propagated via a classical equation of motion (10).

In a consistent theory the nucleon-nucleon cross sec-
tion should be due to the exchange of the mesons appear-
ing in the theory. In principle, it should therefore be cal-
culated on the same basis as the mean field, also including
medium effects. Since this is beyond the aim of the
present contribution and also a very controversial sub-
ject we use the elastic free N-N cross section as a first ap-
proximation in the following, where we adopt the param-
etrization of Cugnon. ' One should note that in the
present approach only the elastic part of the N-N cross
section can be consistently taken into account. The in-
clusion of inelastic collisions, e.g., 5 excitations, would
require an explicit treatment of the 6 degrees of freedom
in the mean-field part.

III. NUMERICAL REALIZATION STABILITY TESTS

The numerical simulation of Eq. (5) together with (14)
is based on the code of Bauer. The initial configuration
in coordinate space for a single nucleus is obtained by
randomly distributing the test particles within a sphere of
radius R. This radius is determined such that the single
nucleus remains stationary during the time evolution.
The smoothness of the surface is provided since the test
particles also contribute with a certain fraction to the
density at the nearest-neighbor grid points. For the ini-
tialization in momentum space we use a local Fermi-gas
model, where the density is assumed to have a Woods-
Saxon shape. Tests with different initial configurations
show that some observables might be somewhat sensitive
to the initialization. The most accurate way would be to
generate it from the Wigner transform of a self-consistent
solution. However, for the following investigations, the
present initialization scheme is found to be sufficient.

The time integration for the test-particle trajectories is
performed by a predictor-corrector scheme with an error
of O(ht ), where one corrector step is found to be
sufficient. Due to the momentum dependence of the
mean field the predictor-corrector method is necessary to
obtain the accuracy mentioned in contrast to the nonrela-
tivistic case with a pure local mean field. For the bom-
barding energies considered in the following we use a
time step size of At =0.2 fm/c.

The evaluation of the fields and the densities is per-
formed on a three-dimensional grid in coordinate space
with 41&(41&(49 grid points and a spacing of 1 fm. For
this configuration we use 200 test particles per nucleon.
The update of the scalar density after a time propagation
of the test particles via (13) in general leads to a self-
consistency problem since the effective mass depends
again on the scalar density. We therefore iterate Eq. (13)
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FIG. 1. Time evolution of the total energy E„„the nucleonic
energy (including the interactions with the meson fields) E„„„
and the meson field energy E,„ for a collision ' 0+' 0 at 600
MeV/nucleon (b=0). For the matter of representation we have
shifted the zero energy level for E „,„by 32 GeV. The figure
further contains the maximum density p/po reached during the
collision.

once in each update which is sufficient since for Et=0.2
fm/c the density does not rapidly change between two
time steps.

With this setup we find that a static nucleus remains
numerically stable for a period of at least 30 fm/c which
is relevant for the collisions considered in the following.
Its total energy changes by 1% and the rms radius by
3/o. This change is somewhat more pronounced than in
a nonrelativistic calculation. This is due to the fact that
in a relativistic model the nuclear potential, especially in
the static case, is obtained as the sum of the two large
contributions from the scalar and the vector field which
nearly cancel.

In Fig. 1 we present the energies together with the
maximum density for a head-on collision of ' 0+' 0 at
600 MeV including two-body collisions. We see that dur-
ing the maximum overlap of the nuclei the meson energy
decreases, which is due to the vanishing z component of
the co field in the overlap zone. This is balanced by the
increase of the nucleon-co interaction energy contained in

E„„,. The observed fluctuation in the total energy is also
present in the pure Vlasov case. As already mentioned, it
is due to the limited numerical accuracy in the treatment
of the meson fields. However, since this fluctuation is

maximally 1% of the total energy and small compared to
the changes in the different energy contributions, the en-

ergy conservation is sufficient for the processes of in-
terest.

where QHD I leads to nuclear matter saturation at

po ——0.19 fm, an effective mass m'=0. 56M and a
compressibility of E=540 MeV, and (NLQHD) to
po

——0.145 fm, m *=0.83M and E=380 MeV. The cor-
responding EOS are given in Fig. 2.

In Fig. 3(a) we show the nucleon density during a
head-on collision of two ' 0 nuclei at 600 MeV/nucleon
in the lab system. Here it is interesting to compare with
the quantum mechanical mean-field calculation by Cus-
son et al. ' As in their work we observe an expanding
system with decreasing density in the final state. Howev-
er, the expansion is less isotropic and a target-like and
projectile-like region can still be identified. This is also
consistent with the momentum space distributions shown
in Fig. 4, where the two Fermi spheres remain almost un-
changed during the collision. The difference compared to
Ref. 21 may thus be due to the classical limit or the local
density approximation considered, especially since the
latter neglects possible retardation effects.

We have further evaluated the transverse momentum
in the reaction plane versus the longitudinal momentum
to investigate the collective fiow. In Fig. 5(a) we see that
for the parameter set (QHD I) we obtain a high max-
irnurn value of about 1.2 fm ' for the transverse rnomen-
tum which is in agreement with Ref. 21. For the parame-
ter set (NLQHD) one obtains a significantly reduced
transverse momentum as also shown in Fig. 5(b). For the
latter case, the maximum p, =0.4 fm ' and is thus com-
parable to results with a Vlasov equation based on a non-
relativistic Skyrme interaction (cf. e.g. , Ref. 3). Thus, the
high p, obtained for QHD I is not due to the relativistic
description of the collision as already pointed out in Ref.

100—

IV. RESULTS

A. The time evolution in the Vlasov limit
t I i I t I i I I i I

We first focus on the results for the pure Vlasov part,
i.e., the mean-field limit. Here we have used the follow-
ing set of parameters from Refs. 9 and 13:

(QHD I): g, =9.57, m, =2.79 fm

0.0 0.1 0.2 0.3 Q. 4

q /' fm3
0.5 0.6

FIG. 2. The equations of state corresponding to the parame-
ter sets (QHD I) and (NLQHD) taken from Refs. 9 and 13.
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8, but rather has its origin in the dynamical properties of
the Lagrangian density. This can be understood by the
investigation of the maximum densities during the col-
lision shown in Fig. 6. Although the two EOS do not
differ significantly up to 2po we see that for NLQHD a
higher maximum density is reached. This clearly shows

that the collision dynamics cannot be understood by the
static properties of the EOS alone. The difference in the
maximum densities must therefore be due to the more
repulsive momentum dependence of QHD I
(rn ' =0.56M) compared to NLQHD (m '=0.83M).
This difference in the momentum dependence especially
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FIG. 3. Time evolution of the nucleon density for ' 0+ ' 0 at 600 MeV/nucleon, (a) Vlasov limit, (b) including the collision term.
The contour lines correspond to the following densities: 0.001, 0.005, 0.01, 0.015, 0.02, 0.04, 0.06, 0.12, 0.18, and 0.24 fm
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FIG. 4. Momentum space density fdp„p(p„p, p, ) for the

initial and final state of ' 0+' 0 at 600 MeV/nucleon in the
collisionless case (VLASOV) and including two-body collisions
(RELBUU). The contour lines correspond to densities 0.01,
0.05, 0.1, 0.2, 0.3, and 0.4 fm .

FIG. 6. Maximum density vs time for a collision ' 0+ ' 0 at
600 MeV/nucleon and b=2 fm calculated in the Vlasov limit:
solid curve, QHD I; dashed curve; NLQHD.

explains the very large maximum p, for QHD I. It
strongly dominates over the higher static repulsion which
should be felt by NLQHD because of the higher density
reached. We note, however, that due to the linear energy
dependence of the nucleon-nucleus optical potential this
momentum dependence is overestimated for QHD I be-
cause of its low effective mass at bombarding energies
above 250 MeV/nucleon.

Figure 5 further shows in the Vlasov limit for both pa-
rameter sets a flat momentum distribution around

p „=0. This is different from the result in Ref. 21 and
indicates that the final configuration obtained within a
pure Vlasov description does not contain any particles
that are completely stopped which is also observed in the
final momentum distribution in Fig. 4.

B. Results with the collision term

The effect of the collision term on the time evolution of
the nucleon density for ' 0+' 0 at 600 MeV/nucleon is
shown in Fig. 3(b). It turns out that, in 'contrast to the
Vlasov case, the expansion after the collision is more iso-
tropic and the density has strongly decreased. Thus the
inclusion of two-particle collisions leads to a more
thermalized final state and significantly reduces the tran-
sparency observed in the pure mean-field description.
This is also obvious in the final momentum distribution
(Fig. 4), where we observe a filling of the midrapidity re-
gian which indicates that particles have been stopped in
the center-of-mass system. In the transverse momentum
distribution (Fig. 5) this leads to the disappearance of the
flat distribution around p „=0.

The maximum transverse momentum is slightly re-
duced (QHD I) or remains constant (NLQHD) when the
collision term is included (Fig. 5). This might be due to
the increased stopping generated by the two-body col-
lisions which leads to a reduced relative momentum of
projectile and target when they overlap. Because of the
momentum dependence of the mean field this then results
in a less repulsive potential energy compared to the pure
Vlasov limit. It is thus understandable that the effect is
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more pronounced for (QHD I) than for (NLQHD).
To investigate the effects of possible medium correc-

tions for the nucleon-nucleon cross section, we have re-
peated the calculations with twice the value of the free
N-N cross section for o.zz. In Fig. 5 we see that this re-
sults in a slight increase of the maximum p, of about 5%
for QHD I and a larger enhancement ( =20%) for
NLQHD. This raise in the transverse momentum is
much smaller than observed by Bertsch et al. In their
calculation for Ca+ Ca at 400 MeV and b=3 for the
mean transverse momentum was doubled when the as-
sumed N-N cross section was multiplied by a factor of 2.
However, this result was obtained for a momentum in-
dependent mean field. Thus, this observed enhancement
of p, is, in our case, compensated by the increased stop-
ping which results in a less repulsive mean field. Due to
this mechanism it turns out that for the two EOS con-
sidered and for 0&ozz &20.&z the transverse momen-
tum distribution is much more affected by the properties
of the mean field, especially its momentum dependence,
than by the nucleon-nucleon cross section. Although the
inclusion of the N-N collisions can significantly alter the
reaction process as seen from the densities (Figs. 3 and 4)
this is hardly seen in the maximum of the transverse
momentum distribution.

In Fig. 7(a) we show the final rapidity spectrum in
beam direction for the two different interactions. For the
two cases no significant difference is observed. On the

other hand, the rapidity distribution is much more sensi-
tive to two-body collisions as demonstrated in Fig. 7(b),
where we show results for o ~+ ——0 (Vlasov), a N~=a +~,
and o.~z ——2o.&z. We find that an increase of the cross
section leads to a stronger equilibration, i.e., a filling of
the midrapidity region. A qualitatively similar result has
been formed by Rosenauer et al. within the nonrela-
tivistic quantum molecular dynamics model.

C. Application to hard photon production

We have further applied our model to the production
of high energy photons in heavy-ion collisions. Follow-
ing the work of Bauer et al. we assume that the pho-
tons are produced by incoherent p-n bremsstrahlung.
For the elementary pn ~pn y cross section we adopt the
hard-sphere collision limit as in Ref. 24. Inclusive double
differential photon yields then are evaluated by summing
over each individual p-n collision as described in Ref. 24
and integrating over the impact parameter. In Fig. 8 we
show the results for ' 0+ ' 0 at a bombarding energy of
250 MeV/nucleon, remaining below the energy range
where the 6 excitation has to be taken into account. For
low y energies the cross section obtained with QHD I is
somewhat larger than for NLQHD, whereas at higher y
energies the difference totally disappears. However, even
at small energies this difference is not very significant and
is due to the cancellation of different effects. On one
hand, the increased stopping for QHD I leads to smaller
relative nucleon momenta available for the photon pro-
duction. On the other hand, the semiclassical pn ~pny
cross section is proportional to the square of the proton
velocity. Since, for a given momentum, the particle with
the lower effective mass has the higher velocity, this in-
creases the photon yield for QHD I such that the de-
crease due to the stopping is compensated and a small net
enhancement remains. We therefore obtain a different re-
sult than in a previous work' where this effect was not
taken into account.

The different effective masses further result in different
momentum distributions for the boosted systems. Since
the momentum in beam direction II,' of a boosted nu-
cleon is obtained from II, and IIo in the rest frame of the
nucleus via

I
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~ I

~ el .l~
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~
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FIG. 7. Final rapidity spectrum for ' 0+ ' 0 at 600
MeV/nucleon for impact parameter b=2 fm; (a) u+& ——o.»,
solid line, QHD I; dotted line, NLQHD. (b) QHD I; solid
curve, crN& ——0 (Vlasov); dotted curve, o.zz ——o zz, dashed curve,

free
~+NW

(16)

the higher effective mass for NLQHD leads to a higher
Ho and thus to higher momentum tails. For high photon
energies this then compensates for the larger elementary
production cross section for QHD I and leads to the same
y yield for both EOS.

V. SUMMARY AND CONCLUSION

We have presented a covariant transport theory based
on the O. -co model and a collision term introduced along
the line of relativistic classical kinetic theory. The model
is thus appropriate for the investigation of heavy-ion col-
lisions at high energies (SIS and BEVALAC regime) and
allows for a consistent inclusion of a momentum depen-
dence of the interaction. We have obtained an insight
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FIG. 8. Photon cross section vs photon energy at 8~,b
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into the effects arising from a relativistic mean-field
description and the inclusion of two-body collisions. In
this context the most striking result is the importance of
the momentum dependence of the interaction for the
transverse momentum distribution. We find that the high

p, obtained with the parameter set QHD I can be
significantly reduced with the parameter set NLQHD in-

volving a higher effective mass which leads to a less
repulsive momentum dependence. Therefore, the higher
transverse momentum for QHD I is not mainly due to
the relativistic description but rather stems from the
repulsive momentum dependence of the mean field which
is in agreement with the results obtained by Ko et al. '

The inhuence of the collision term on the p, spectrum is
less pronounced, at least for the relative light nuclei con-
sidered. Even an increase of the N-N cross section by a
factor of 2 only leads to a slight increase of the maximum

p, . This result is due to an interplay between the in-

creased stopping, which leads to a reduction of the trans-
verse momentum, and a direct increase of p, due to two-
particle collisions as observed in a calculation with a
momentum independent mean field.

The high-energy photon spectra calculated with the

two parameter sets showed a difference for the lower y
energies which has its origin in the sensitivity of the ele-

mentary production cross section to the effective mass.
This leads to the, at first sight, astonishing result that
more photons are produced for the more repulsive EOS
(QHD I). However, one should note that this difference
is not very pronounced and a quantitative comparison
with experiment requires further investigations, e.g., on
the elementary production cross section.

In summary, our results show that the observables
from high-energy heavy-ion collisions are sensitive to

various parameters which enter into the description.
Thus a serious determination of the EOS requires much
further effort. Especially the interplay between the
nucleon-nucleon collisions, e.g. , the N-N cross section
and the momentum dependence of the mean field, is
essential for extracting information about the EOS from
measured transverse momentum distributions. Here the
presented approach can serve as a good starting point in
this direction, since it is formulated covariantly and con-
tains the momentum dependence in a consistent way. In
principle, it can further be extended to include a more
consistent and theoretically founded collision term.
However, this will require more insight into the medium
corrections of the nucleon-nucleon cross section. Also
the momentum dependence of the optical potential at
higher densities has to be investigated carefully and ad-
justed to the experimental data. The underlying field
theoretical model should also be extended to include the
delta resonance and further mesons, especially the pion.
Finally one has to investigate the effects of the full solu-
tion of the corresponding meson field equations, i.e., rela-
tivistic retardation effects, as well as distortions in the
negative energy sea during the collision process.
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