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Predictions of the macroscopic model of nuclei: Barriers to fusion and to light fragment. emission
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Fission and fusion barriers have been calculated for decay or formation of the composite nuclei

Tb and ' Hg* via the Yukawa-plus-exponential-finite-range macroscopic model. The predicted
properties of these barriers are used for comparisons to measured total kinetic energies for the emis-

sion of light fragments (2&ZL (9) and to empirical systematics of s-wave fusion barrier heights.
The fusion barriers are consistent with the model. Values of total kinetic energies were calculated
with the assumption of no energy loss into excitation beyond the saddle point. For each light frag-

ment, the observed values of total kinetic energies are smaller than those calculated. The deviation
increases with ZL and is correlated with the nuclear shape at the corresponding conditional saddle

point. It scales with the neck thickness and the fragment deformation, as does the error involved in

our approximation. This suggests (at least for the higher ZL values) that this macroscopic fission

model might apply for light-fragment emission. Dynamical eFects must, however, be included.

I. INTRODUCTION

In recent years, macroscopic descriptions of nuclei
have been greatly extended and refined. Starting with the
basic ideas of the liquid-drop model, Krappe, Nix, and
Sierk' included the finite (nonzero) range of nuclear
forces by means of a Yukawa-plus-exponential attractive
potential. The main effect of this refinement on a system
undergoing fission or fusion was to reduce its energy,
especially in the vicinity of the scission (or touching)
point. In the framework of this model, Sierk considered
the role of rotational motions, and Davies and Sierk ad-
dressed mass asymmetric fissionlike breakup. The model
has improved the predictions of fission barriers ' ' that
were previously overestimated by the standard rotating
liquid-drop (RLD) model, and has accounted for the
trend of these barriers for very asymmetric nuclear
divisions. ' %e will denote this refined macroscopic
model as the YEFR model (for Yukawa-plus-exponential
finite range).

The YEFR model can also predict barriers for nuclear
fusion if one makes an assumption concerning the shapes
of the collision partners. For simplicity we will assume
that each of the fusing nuclei retains a near-spherical
shape until the distance of approach coincides with that
for the potential energy maximum. To allow a direct
comparison with experiment, fusion barriers are usually
defined relative to infinitely separated target and projec-
tile nuclei Bf"„,. By contrast, fission barriers are defined
relative to the ground state of the fissioning nucleus Bf,„.
The energy difference between these two reference states
(for zero potential energy) is the Q value for the reaction.
Alternatively, one can define fusion barriers relative to
the compound nucleus ground state Bf„s or fission bar-
riers relative to the ground state of the separated frag-
ments Bf"„,. These quantities are indicated schematically
in Fig. 1. This figure illustrates the potential energy
(solid curve) for fission into a particular pair of nuclear

fragments (ZL, AL, ZH, AH ) and also the potential energy
(dashed curve) for the same pair as collision partners in
fusion, These barrier heights are different because we
have assumed that the fusing nuclei are spherical at the
fusion barrier in contrast to fission that is assumed to
pass through a saddle-point configuration of shape equi-
librium.

The aim of the present study is to compare the predic-
tions of the YEFR model with two observables: (a) the
empirical fusion barriers for the formation of the com-
posite nuclei ' Tb' and ' Hg', and (b) the measured to-
tal kinetic energies (TKE s) for light-fragment emission
from the same nuclei.

II. BARRIERS TO FISSION

To describe axially symmetric nuclear shapes in this
macroscopic model, a Legendre polynomial expansion of
p (z) has been used (with terms up to seventh order in
z ). Constraining the mass asymmetry degree of freedom
to a given value, the saddle point of the resulting six-
dimensional potential energy surface was found. The en-
ergy of this conditional saddle-point nucleus (relative to
that of a spherical nucleus) represents the conditional s
wave barrier to fission. It is calculated with only the
macroscopic, shape-dependent terms (i.e., surface and
Coulomb). Figure 2 shows calculated fission barriers B„„
as well as Bf"„,versus mass asymmetry parameter g

[i)=
~

(AH —AL)
~

/(AH+ AL)]

for the composite nuclei ' Hg* and ' Tb*. The YEFR
model gives substantially smaller fission barriers than the
RLD model, as mentioned in the Introduction. This
reduction is much more pronounced for the lighter com-
posite nucleus and for the very asymmetric mass
divisions (i) & 0.6). It is difficult to extract unambiguous
fission barriers from the experimental data available for
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fus

configuration. For very asymmetric mass splits, the
YEFR model indicates that saddle-point and scission-
point configurations become very similar and even ap-
proach that for two touching spheres. (See Fig. 3, as dis-
cussed herein. ) Thus, one might expect that the TKE
values (after correction for effects of temperature and
spin) would approach BP, and, in the limit, the Bs„
would approach Bf"„,.

Cl g

Composite Nucleus Separate Fragments

FIG. 1. Schematic diagram of potential energy curves for
fission (solid curve) and fusion (dashed curve) for a particular
fragment pair. Symbols for various quantities are indicated.
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these systems. However, for similar systems, measured
fission excitation functions (symmetric fission) are con-
sistent with calculations that employ barriers calculated
by the YEFR model. The fact that the observed TKE's
in fission are smaller than the calculated values of Bf"„,
has long been interpreted as a signal for a viscous descent
from the saddle point to a more distended scission-point

III. TOTAL KINETIC ENERGIES
FOR EMISSION OF LIGHT FRAGMENTS

Kinetic energy measurements have been reported' for
emission of light fragments (2 & ZI & 9); they can also be
used to test the conditional saddle-point properties pre-
dicted by the model. To calculate the final kinetic ener-

gy, one has, in principle, to simulate the dynamical evolu-
tion of the fissioning system from the conditional saddle
point through scission and on to fully accelerated frag-
ments. However, even without such a detailed dynamical
treatment, one can deduce an "upper limit" for the TKE
from the conditional barrier height and the saddle-point
shape. This calculation is termed an upper limit because
energy dissipation and further deformation are neglected.
Two methods have been used for this purpose both in
conjunction with the YEFR model: (a) the Q-value
method and (b) the two-sphere approximation.

(a) The Q-value method.
From Fig. I (for a nonrotating system) we see that

BP„=Bs +ssQ; the macroscopic model allows us to cal-
culate B„„aswell as Q and thus BP,. The (TKE)
value, as observed in a particular reaction, will be driven
mainly by Bf"„,. For a hot rotating nucleus there will also
be contributions from the rotational motion bE„„from
the thermal energy, i.e., the initial kinetic energy in the
fission decay mode AE,h, as well as a contribution AB
from the perturbation of the shape of the saddle-point nu-
cleus due to angular momentum

&TKE~=B'„,', +Q+b~.,+bZ,„+bB .
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The correction terms hE„, and EE,h are dependent on
assumptions concerning the dynamics of the reaction
process. Typically, one views fission as a process of one-
dimensional decay along an axis of deformation. This
axis can be taken as essentially perpendicular to the spin
L of the composite nucleus. Then one can estimate AE„,
from the condition of rigid rotation
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FIG. 2. Fission barriers B„„(thick lines, left-hand scale) and
Bf"„,(thin lines, right-hand scale) vs mass asymmetry parameter
g for the composite nuclei ' Hg* (top) and ' Tb* (bottom).
Solid curves were calculated by the YEFR model and dashed
curves by the LD model.

where 2& and Jz are moments of inertia calculated for
spherical fragments, p is the reduced mass, and D is the
fragment separation distance at the saddle point. Simi-
larly, the value of AE,„ is taken from Ref. 11 to be
(vrl4) T, which is obtained using Kramer s stationary
solution of the one-dimensional Fokker-Planck equation
for nondissipative motion. ' The value of Q is calculated
with only the macroscopic terms of the model (as are Bs„
plus b,B). It is the calculation of Q „„... that distin-
guishes this approximation for (TKE) from that de-
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scribed next.
(b) The two-sphere approximation.
A second estimate has been made by focusing on the

calculated shape of the saddle-point configuration. This
shape is approximated by two spheres with centers
separated by a distance D; the YEFR model is then used
to estimate the nuclear plus Coulomb energies of the ro-
tating system. The sum of these potential energies is
identified with Bs„+b,B and replaces Bs„+Q+b,B in

Eq. (l). As the two-sphere approximation underestimates
both the nuclear attraction and the Coulomb repulsion, it
is not a rigorous upper limit. However, these errors tend
to compensate. As before, this method also neglects
dynamical energy losses, and both methods, in this sense,
give upper limits to (TKE).

Both methods were applied to the compound nuclei
Tb' and ' Hg*, and the results are compared to the

observed average energies in Figs. 3 and 4. The asym-
metry coefficient g of each saddle-point shape was con-
strained to the value defined by the measured final atomic
(or charge) number ZL. This means that the calculated
points correspond to emission of light fragments with ini-
tial N/Z ratio of the compound nucleus (since the model
assumes a constant N/Z ratio for the whole nucleus from
formation to scission). Table I gives these primary aver-
age masses AL for each fragment atomic number ZL.

The data points show ZL and ( TKE ) for the final frag-
ments with no correction for particle evaporation. Such
a correction would increase both ZL and (TKE), but
leave the trend as shown. For each final fragment, the
average angular momentum L of the parent system was
obtained from the anisotropy of the measured angular
distribution. ' The temperature of the composite nucleus
was calculated for fission as the first step of deexcitation;
values are given in Ref. 10. The assumption of fission be-
fore neutron emission is not crucial here because the tem-
perature and the calculated barriers change only slowly
with neutron number. The very steep excitation func-
tions for these fragments do, nevertheless, give evidence
that the very asymmetric fission occurs prior to any ap-
preciable cooling.

Most striking in these figures is the increase with ZL of
the deviations between the calculated upper limits to
( TKE) and the experimental values. Examination of the
shapes in Figs. 3 and 4 clearly shows that this increase is
correlated with the extent of the distention of the nuclear
shape at the conditional saddle point (i.e., the neck size
and fragment elongation). Such a correlation suggests
that the saddle-to-scission dynamics may be responsible
for this pattern of deviations. If these light fragments are
essentially fission fragments, then an increase of the mass
asymmetry should give an approach of the conditional
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FIG. 3. Comparison between experimental TKE's (Ref. 10)
and their estimated upper limits (using YEFR model) for light-
fragment emission from ' Hg . Triangles are used for the Q-

value method, circles for the two-sphere approximation, and
squares for the experimental data.

FIG. 4. The same as Fig. 3 except for the composite nucleus
149Tb +
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TABLE I. Average light-fragment mass AL assumed by the model for each light-fragment charge
number ZL.

ZL

AL (Tb)
AL (Hg)

4.58
4.85

6.88
7.27

9.17
9.70

11.46
12.12

13.75
14.55

16.05
16.97

18.34
19.40

20.63
21.82

saddle point toward the scission point and the neglected
dynamical effects should tend toward zero. This trend
does seem to be followed in Figs. 3 and 4.

For the very largest asymmetries (e.g. , ZL ——2), there is
a special sort of dilemma. The a particle is an excellent
quantum object (it has small size and strong shell effects).
Hence, its emission is not expected to be well described
by a purely macroscopic model. Moreover, such an ex-
tremely asymmetric saddle-point shape is at (or beyond)
the limit of applicability for the current shape parame-
trization. Therefore, the agreement, in this case, can be
taken as fortuitous.

It is interesting, however, that this treatment of He
emission does strongly reduce the well-known problem of
a surprisingly low emission barrier. ' ' This result is
largely due to our approximation for the magnitude of
the temperature-driven part of the TKE. In this treat-
ment one uses a value of (m/4)T for b,E,„ for one-

dimensional motion along a single fission decay mode.
By contrast, treatments of particle evaporation have al-
lowed the emitted particles to have three-dimensional
motion in their decay (directions perpendicular as well as
parallel to the symmetry axis at scission). These three
translational degrees of freedom (equivalent to Hauser-
Feshbach coupling' ), give bE,&=2T. ' ' ' ' ' This
difference in the dynamical assumptions attributes an ad-
ditional energy of =( —,')T to the thermal-energy driven

part of (TKE).
There are two experimental observations for a-particle

emission that are well described by the Hauser-Feshbach
coupling commonly used in evaporation models. ' The
first is the Maxwellian shape of the observed energy spec-
tra; the second is the increasing anisotropy with +-
particle energy, which is driven (in the model) by the spin
dependence of the level density. ' Hence, we should
probably have added =2T instead of (rrl4)T and the re-
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FIG. 5. (a) Fusion barriers Bf„, (left-hand scale) and Bf"„s
(right-hand scale) vs g for the composite nucleus ' Hg*. The
dashed curve is from the empirical systematics of Ref. 19. (b)
The parameter d is the calculated distance between equivalent
sharp-surface nuclei at the top of the fusion barrier. (c) Calcu-
@ted nuclear potential Vz at the top of the fusion barrier.

FIG. 6. The same as Fig. 5 except for the composite nucleus
I49Tb*
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suiting (TKE) would be, in this case, higher than the
measured a-particle energy. As there are no dynamical
effects expected for this extreme mass asymmetry to
reduce these values, one could infer that, at least for al-

pha particles, the real emission barrier is lower than the
calculated saddle-point barrier.

IV. BARRIERS TO FUSION

Figures 5(a) and 6(a) show calculated fusion barriers

8&„, and 8&"„, versus mass asymmetry in the entrance
channel g. Also shown is a dashed curve taken from
empirical systematics of experimental fusion barriers. '

The close agreement indicates a reasonable consistency
with the YEFR potential and the assumption of spherical
nuclei at the fusion barrier.

In the YEFR model the fusion barrier can be
represented as follows:

Br"„,=(Zz ZHe )/[ra( AL + AH )+d]+ Vz(d), (3)

V. DISCUSSION AND CONCLUSIONS

It is very important to understand the mass asymmetry
dependence of the properties of nuclei during fission or
fusion. For example, it has been suggested that mass
asymmetry enables one to distinguish fast fission from

equilibrium fission following compound-nucleus forma-
tion. Furthermore, statistical-model descriptions of
fission and particle decay have been based on rather
different assumptions concerning the shapes, excitation
energies, and orientations of the transition-state or
decision-point nuclei. (See, for example, Refs. 17—19 and

where r0 ——1.16 fm, V& is the nuclear interaction energy,
and d is the distance between equivalent sharp surfaces at
the barrier maximum. The value of d (for the barrier
maximum) was determined by evaluation of Br"„, (Eq. 3)
as a function of d. The resulting d values are shown in

Figs. 5(b) and 6(b); they vary monotonically from d =0.8

fm for g=O to d=2. 2 fm for g=0.95. This indicates
that, in order to fuse, mass symmetric collision partners
must approach one another more closely than mass
asymmetric ones. However, Fig. 5(a) (for '9 Hg") shows
a shallow minimum for 8&„, at q=O. This means that
symmetric fusion (il =0}gives a slightly less excited com-
posite nucleus than does the more asymmetric case of
il =0. 5 (for the same entrance channel energy with
respect to the barrier height). Fusion with very large
mass asymmetry (i}=0.95) can give a composite nucleus
of even lower excitation energy because of the very small
Coulomb contribution to the fusion barrier. Figures 5(c)
and 6(c) show the nuclear interaction energy V~ between
fusing nuclei at the maximum in their potential curve.
This nuclear potential energy is calculated to be about
9% of the Coulomb energy for both systems and the
whole range of g values.

references therein. ) In particular, some models for nu-
clear fission have been constructed by assuming that sta-
tistical weighting at the saddle point ' controls the de-
cision process; others have assumed that the statistical
control is determined at the scission point.

For the case of symmetric fission of a heavy nucleus,
the saddle-point and scission-point configurations are
quite different and the choice between them is essential
for a model. ' For very asymmetric fission or for light
fissile nuclei, the saddle-point configuration approaches
that for scission. Therefore, the problem of this choice is

seemingly reduced. In addition, for g &0.85 the saddle-
point shapes approach those of two touching spheres, and
thus the fission barriers BPSS (Fig. 2) and the fusion bar-
riers Br"„,[Figs. 5(a) and 6(a)] become much closer.

In this work we have calculated fusion barriers with
the YEFR model (assuming spherical shapes at the bar-
rier maximum) and showed that they compare well with
empirical systematics. Also, we have calculated (TKE)
values for the emission of light fragments, assuming no
dynamical energy dissipation beyond the conditional sad-
dle point. Our calculations of (TKE) overestimate the

experimental results, with the following trend for the de-
viations: it is negligible for ZL ——2 and then increases
with ZL. This trend is indeed what one expects from our
macroscopic fission model with no dynamical effects, and
it suggests that this model might be applicable for light
fragment emission. However, the dynamical effects (in
particular, the amount of precision dissipation and frag-
ment deformation at scission) have to be quantitatively
estimated before a definitive conclusion on this point can
be drawn.

As discussed in Sec. III, it seems that at least for
ZL ——2, a fission model with one-dimensional decay is not
appropriate, Several experimental papers' ' ' have
shown consistency with three-dimensional decay
(Hauser-Feshbach coupling), and in this context the ob-
served values of (TKE) require surprisingly low emis-
sion barriers (i.e., 10—30% less than our calculations for
Br"„,). This result also seems to imply dynamical distor-
tions (shape, size, vibration, etc. ,) of the emitting nuclei
away from the idealized configurations of equilibrium.
An important current challenge is to understand these
exit-channel energies, the associated barriers, and their
relationship to macroscopic models.

One should stress that some discrepancies between
theoretical and experimental values of the fission barriers
are to be expected as there are some important approxi-
mations in the current macroscopic approach. Apart
from the usual shape-dependent terms (i.e., surface and
Coulomb) the macroscopic masses are calculated from
several terms that are dependent on nuclear size or nu-
cleonic composition. At scission there is a discontinui-
ty, and both the constant and Wigner terms double their
contributions (which for ' Hg* is = 12 MeV). It would
be more reasonable to assume that during the fission pro-
cess all these binding energy terms vary continuously
from the value corresponding to the fissioning nucleus to
that of the fission fragments. Such a variation would im-
ply an additional "shape dependence. " The present (and
other existing macroscopic} fission models consider only
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one or the other of these two extreme situations, and thus
implicitly adopt a discontinuous transition at scission be-
cause of these so-called shape-independent contributions.
An assumption of continuous variation of the nucleonic
binding during fission would modify the deformation
dependence of the potential energy, especially close to
scission. This would affect both the dynamical descent
towards scission as well as the exit-channel barrier
heights for light or very asymmetric systems.
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