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Quantum mechanical coupled channels calculation of the Pb+ U(0+, 2+,...,40+) reaction

A. J. Baltz
Brookhauen National Laboratory, Upton, Near York 11973

(Received 20 May 1988)

Coupled channels calculations are presented for the reaction of 1120 and 1400 MeV ' 'Pb ions on
"'U using a deformed optical model. For scattering angles corresponding to the grazing angle in

the 1400 MeV case, the cross-section flux is evenly distributed in a central plateau of final spin

states.

There are several reasons for attempting the full
quantum-mechanical calculation of the ground-state
band inelastic excitation in the reaction Pb+ U
(0+,2+, . . . , 40+ ) near the Coulomb barrier. First, as an
exercise in computational physics it involves the compu-
tation of one of the largest sets of coupled Schrodinger
equations that is likely to arise out of a model as simple
as the K =0 band of the rotational model. Near the
upper limit of possible masses for projectiles, Pb excites
the strongly deformed U to I(: =0 states about as high
in spin as would be excited by any other conceivable pair
of a target and a projectile. In the calculation I include
E =0 states up to 40+. For partial waves I other than the
very lowest, there are I+1 subchannels per spin I state.
That is, the final orbital angular momentum can take on
the values I —I, l —I+2, . . . , I +I —2, I +I. Thus, the
highest spin state of 40+ here leads to a total set of 441
coupled Schrodinger equations.

A second point of interest is the reaction mechanism,
especially the interplay of the semiclassical and quantum
aspects. Of course, this is involved with the computa-
tional method as well, since certain approximations, valid
in the semiclassical limit, facilitate the partial-wave solu-
tion of the coupled Schrodinger equations. However,
the relation between the idea of a trajectory and the
partial-wave summation actually used in a quantum
mechanical solution can also be probed. If the idea of a
trajectory is valid anywhere, it should be valid in this
case, which has such a large value of the Coulomb pa-
rameter, g=Z, Z2e /U. And one can investigate how the
effect of the nuclear interaction affects the semiclassical
aspects.

Finally, there is the interest of the nuclear structure
physics. While the highest spin states have been pro-
duced by the (heavy ion, Xn) reaction, it still might be of
interest to have information from a reaction such as in-
elastic scattering, where the reaction mechanism is well
understood, and as a result information on the parame-
ters of a deformed target can be extracted from the
heavy-ion reaction data.

The calculations here reported on were carried out on
the Cray 2 at the National Magnetic Fusion Energy
(MFE) computer center at Livermore. The fast
quantum-mechanical coupled channels code gUIcc (Ref.
1) was utilized. A deformed optical model was used with
the simple prescription of taking the deformation along

the line joining the center of the Pb spherical projectile
to the center of the U deformed target.
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Optical model parameters, deformation parameters,
and multipole moments for Coulomb excitation are tak-
en from the appropriate literature. Angular momentum
projections of the deformed optical potential were taken
to include L =0, 2, 4, and 6.

VL(r)=2m f sin8d8Y0(8, 0)U(r, 8) .
0=0

(2)

The elastic scattering potential was taken as the prop-
erly normalized L =0 projection, and the off-diagonal
couplings were taken from the other L projections. Thus,
angular momentum states of the target differing by as
much as six units of angular momentum are directly cou-
pled to each other.

It is true that a more proper treatment of the geometry
would be attained with the folding model or the de-
formed proximity model. In practice such an improved
treatment would correspond to an effective nuclear L =2
coupling in the present treatment changed by only a few
percent and somewhat larger percent changes in the
L =4 and 6 coupling. Since such changes are at least of
the order of present uncertainties in optical potential pa-
rameters and would not qualitatively affect the results of
the calculations, I follow the center-line prescription for
simplicity.

The coupled channels code QUtcc (Ref. 1) makes use of
a set of coupled first-order equations equivalent to the
usual second-order coupled Schrodinger equations. The
wave-function solutions in each channel [ru;(r)=X, (r)]
are written in terms of radially varying coefficients, C, (r),
C+(r), of the regular and outgoing f, (r), h,+(r), parts of
the homogeneous (uncoupled) wave-function solutions,

X, (r) =C, (r)f, (r) —C+(r)h,+(r) .

One then immediately obtains from the second-order
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coupled Schrodinger equations two sets of coupled first-
order equations in C, (r) and C,+(r),

d C;(r)= —h,+(r) g V; (r)f (r)C (r)
1
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each partial wave never exceeded six to achieve an accu-
racy of one part in 10000. In contrast, the brute force
method would have required 441 independent sets of
solutions of the set of 441 coupled equations followed by
solving the appropriate set of 441 simultaneous equations
for the scattering amplitudes. The fast methods used al-
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The first equation is integrated inward, beginning by
ignoring the second term on the right-hand side and us-

ing the asymptotic initial condition of only incoming flux
in the elastic channel [C;( ~ ) = 2i6, o—] for the first term.
Next, the second equation may be integrated outward be-
ginning with the approximate but very adequate physical
boundary condition that C+(ro)=0 for small ro. The
process is then iterated to convergence.

The variation on the method which I have developed
for the Coulomb excitation region is to break the prod-
ucts of homogeneous wave function on the right-hand
side into rapidly oscillating and smoothly varying parts.
The rapidly oscillating parts may then be discarded in all
orders of the iteration, allowing a large step size for the
solution in the long-range part. ' However, in the nuclear
interaction and turning point region the equations are
solved exactly.

Calculations were carried out for two energies. At
1120 MeV there was little effect of the nuclear optical po-
tential; even for scattering of 180', 92% of the flux was
transmitted. For the 1400-MeV case, however, the nu-
clear deformed optical potential came fully into play.
The quarter point (0.25 of the Rutherford cross section)
for the sum of cross sections to all states came at about
104', and the cross sections were highly absorbed at
larger angles. For both cases 10000 partial waves were
included in the Legendre polynomial sum for the final
cross sections. However, only 87 were actually calculated
for the lower energy case and 65 for the higher. The oth-
er scattering amplitudes were then obtained by interpola-
tion for the partial-wave sum. Fewer partial waves actu-
ally had to be calculated for the higher-energy case be-
cause of the absorption of the low partial waves which
did not occur for the lower energy case.

The strengths of the method used for this problem are
that it is iterative and that it allows solutions of the equa-
tions in the long-range Coulomb excitation region with a
crude step size. Both of these features seem necessary to
make the present problem tractable, as will be shown in
the following. Solution of the equations was carried out
to 400 fm. With the mesh size used in the turning point
region (0.01 fm) a brute force second-order Schrodinger
equation approach would have required nearly 40000 ra-
dial mesh points. By the technique of keeping only the
smoothly varying parts of the effective long-range cou-
pling in the first-order equations, the number of mesh
points used was limited to about 500. The number of
iterations needed to solve the 441 coupled equations for
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FIG. 1. Angular distributions for 'Pb+ ' U at 1120 MeV.
Curves are labeled by the final state of '"U excited in the inelas-
tic reaction. Cross section sigma" is in units of the ratio to
Rutherford scattering.
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FIG. 3. Angular distributions for ' 'Pb+ "'U at 1400 MMeV. Symbols are cross section values taken from dm in iv1 ua partial waves.
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FIG. 3. (Continued).
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FIG. 4. Cross sections as a function of final spin state at 84
(full circles), 88 {open circles), 92' (crosses), 96' (triangles), 100
(full squares), and 104' (open squares).
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FIG. 5. Cross sections as a function of final spin state at 102'
(full circles), 104 (open circles), 106 (crosses), 108 (triangles),
110' (full squares), and 112' (open squares).
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We have previously presented a calculation of the
1120-MeV case at 180' based on this relation by taking
the 5-matrix elements for each of the final states from the
partial wave l =0. Since the semiclassical idea of a tra-
jectory certainly has validity here, we may then simply
write down the cross section (in units of the Rutherford
scattering cross section) as'

lowed a full angular distribution to be calculated in about
ten hours on the Cray 2 for each of the two beam ener-
gies.

The calculation at 1120 MeV retains the features of
Coulomb excitation. In effect, the nuclear interaction is
only a relatively small perturbation on the Coulomb exci-
tation, even in the backward direction where its largest
effect is to reduce the sum of the cross sections to various
final states by no more than 8% from the Rutherford
scattering result. The distance of closest approach is 18
fm, corresponding to ro (208'~'+238'~ ) with ro equal to
1.5. Only the tails of the nuclear densities overlap, even
at the distance of closest approach.

Angular distributions are shown in Figs. 1 and 2. The
usual multiple Coulomb excitation patterns are evident.
The lack of smoothness in the backward direction for the
cross sections to the ground and first excited inelastic
(2+ ) state seen in Fig. 2 is no doubt due to the truncation
of the partial-wave series at 10000: even for this high a
partial wave, one part in 400 of the scattering flux (cross
section) goes into the 2+ state, indicating the level of
inaccuracy of the truncation.

It is interesting to consider the correspondence be-
tween the partial wave angular momentum and the
scattering angle through the semiclassical relation.

proach corresponds to an ro of 1.2, well into the complex
optical potential. Angular distributions are shown in Fig.
3. For the angles forward of about 90', the calculation
shows the usual Coulomb excitation pattern correspond-
ing to trajectories which do not penetrate the nuclear in-
teraction, and for forward angles the semiclassical
correspondence between angle and partial wave 1 [Eq. (3)]
holds very well, as is also seen in Fig. 3. A characteristic
of this pure Coulomb excitation region is a "picket fence"
pattern in the excitation probabilities for the various final
states at a given angle. Such a pattern is seen for 84', full
circles (connected by solid lines to guide the eye), in Fig.
4.

It is interesting in Fig. 4 to contrast the situation at 84'
which is Coulomb dominated (sum of the flux=0. 92)
with that at 104' (open squares), which is near the quarter
point in total Aux. The effect of the onset of the nuclear
interaction with increasing angle is to smooth the distri-
bution of Aux between the different final states. A situa-
tion is reached in the region of 102' and greater, where
there is a broad plateau of final spin states with close to
the same cross section (Fig. 5). This broad plateau is in
contrast to the analogous physical situation with two nu-
clei of about half the mass each: 690 MeV ' Xe+ ' Sm.
In that case, " with a quarter point at 98', the cross sec-
tions fall smoothly from a maximum at I =2 to I = 14.

What causes the smoothing in Fig. 5 can be understood
from Fig. 6. In this figure three cross-section distribu-
tions are compared, all of which have a sum equal to
about 0.2. The open circles are the 104' distribution seen
in Fig. 5. The full circles correspond to the l =348 cross
section and indicate how a full partial-wave summation is
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o (180')=
I ~i=o I—:

I

CI+( ~ )+~ro1o I

where go is the homogeneous scattering amplitude in the
elastic channel. We here extend the procedure to higher
partial waves and correspondingly more forward angles.
In general, the cross section will involve a sum of the
squares of the subchannel states allowed for each I cou-
pled to a nonzero orbital angular momentum. Figure 2
also shows cross sections calculated in this one partial-
wave semiclassical method as compared to the full Legen-
dre polynomial summation. The symbols indicate all the
partial waves actually calculated except in the region of
171 —180' where only five symbols are shown, corre-
sponding to I of 0, 10, 20, 30, and 40, while actually every
low partial wave was calculated. The semiclassical
scheme does not show the small bumps at 180', which we
assume arise from the truncation at l = 10000. Using the
semiclassical relationship, the l = 10,000 partial wave
corresponds to a scattering angle of 6'. The sharp trun-
cation reduces the accuracy right around angles of 6' and
less, and at 180.

The situation at 1400 MeV fully involves the nuclear
part of the interaction. Here the distance of closest ap-
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FIG. 6. Comparison of 1400-MeV cross sections whose sum
is about 0.2: 104' cross section as in Fig. 5 (open circles), I =348
cross section (full circles), and 102 cross section calculated with
no off-diagonal nuclear interaction (crosses).
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needed in this quarter-point region to obtain the full

width of the plateau. But the biggest difference is seen
between the cross section, represented by crosses, without
the off-diagonal nuclear interaction (but with a spherical
complex optical potential) and the cross sections with the
off-diagonal nuclear interaction. The smoothing is
caused specifically by the off-diagonal part of the complex
nuclear optical potential.

In summary, it has been shown that the quantum-
mechanical coupled channels method can be successfully
implemented in a heavy-ion reaction involving 441 chan-
nels and 10000 partial waves. The general validity of the
semiclassical correspondence between orbital angular

momentum and scattering angle has been shown, as well
as the utility of a full Legendre polynomial summation
for nonfor ward, non-Coulomb-dominated angles of
scattering to obtain the highest level of accuracy. Final-
ly, the onset of the off-diagonal complex nuclear interac-
tion has been shown to lead to a great simplicity in the
distribution of cross section among the final states.
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