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The hexadecapole transition strength distribution is measured for the deformed nucleus "Nd us-

ing the (p,p ) reaction at E~ =30 MeV. The experimental information on B(E4) values in this nu-

cleus and in "Gd is interpreted in the framework of the sdg interacting boson model. It is found

that the main features of the experimental data are fairly well reproduced by a Hartree-Bose
method plus Tamm-Dancoff approximation.

I. INTRODUCTION

The interacting boson model (IBA)' has been shown to
provide a simple phenomenological description of collec-
tive properties of nuclei away from closed shells. Micro-
scopically the s and d bosons in the standard model have
been interpreted as the image of collective nucleon pairs
with angular momentum J=0 and 2, respectively. Some
microscopic studies have shown that for observable
quantities such as moments of inertia, quadrupole mo-
ments, etc., in deformed nuclei the effect of higher L
pairs, especially the G pair (L =4), cannot be neglected.
Although in most cases in the boson space the effect of g
bosons can be absorbed into the s- and d-boson parame-
ters, there are cases that the g-boson degree of freedom
is needed explicitly. For this reason an sdg IBA model
was introduced in which s, d, and g bosons are treated
on equal footing. In this way the presence of odd-E
bands in deformed nuclei, the quenching of B(E2)
value and M1 properties, etc., could be explained.

It is the aim of the present paper to investigate the role
of the g boson for hexadecapole properties in which the
role of the L =4 pair is expected to show up most direct-
ly. To investigate the role of the g boson first E4 transi-
tion probabilities will be analyzed. The E4 transition
probabilities are most directly influenced by the g boson
and the strength of its coupling to the s-d boson system.
Experimental information on hexadecapole transition
rates is rather limited; in the rare-earth region data to
E -2.5 MeV have been reported only for the deformed
nucleus ' Gd (Ref. 9). In order to obtain information on
E4 strength distributions in a transitional nucleus, a
(p,p') experiment was performed at the Kerntysisch Ver-
sheller Instituut (KVI) on the nucleus ' Nd. A common

feature of the experimental E4 strength distribution is its
large fragmentation. %hile the E4 transition to the first
4+ state is the strongest, the remaining strength is distri-
buted over a large number of states. This feature cannot
be explained by the standard sd IBA model, ' since there
are only three low-lying 4+ states that carry E4 strength.
In Ref. 10, where the effect of the coupling of a single g
boson to the sd core was studied for "Gd, the E4
strength was predicted to be concentrated in three states
in the energy region E =1.5-2.3 MeV. In the present

paper we report on a study of E4 properties with no re-
striction on the number of g bosons.

Section II contains a description of the analysis of the
experimental data. In Sec. III, E4 properties of de-
formed nuclei are discussed in the SU(3) limit of the sdg
model. In this limit the energy of the g boson is taken to
be degenerate with those of the s and d bosons, giving rise
to a maximal mixing of the different boson species. A
more realistic situation, corresponding to a perturbed
SU(3) Hamiltonian is studied in Sec. IV by employing the
Hartree-Bose plus Tamm-Dancoff approximation
(HB+TDA) method. Section V contains a microscopic
description of the systematics of the hexadecapole mo-
ments. The influence of the g boson on other physical ob-
servables is studied in Sec. VI. Section VII includes the
discussion and the conclusions.

II. EXPERIMENTAL PROCEDURE
AND DETERMINATION

OF HEXADECAPOLE STRENGTH

A. Experimental procedure and results

The experimental procedure and results for the
"Gd(p, p') reaction have been discussed in Ref. 9 and
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will not be repeated here. However, the data for
Nd(p, p') reaction have been obtained recently and will

be discussed briefly.
A 30.3 MeV proton beam from the KVI azimuthially

varying field (AVF) cyclotron was used to bombard a
' oNd target of 1.2 mg/cm thickness and 93%%uo isotopic
enrichment. The scattered protons were detected by
means of the QMG/2 magnetic spectrograph" using the
newly installed' two-dimensional multiwire detection
chamber (MWDC}. The spectrograph solid angle was set
to EQ =4.3 msr with horizontal opening angle of
58=2.5'. Spectra were measured for angles ranging
from 12 to 80' in steps of 4'. For each angle spectra were
obtained for two magnetic field settings: one to obtain
cross sections for the elastic and low-lying inelastic peaks
at a reduced beam current and another setting at a lower
field so that the elastic peak did not hit the detector. A
spectrum at 8&,b ——32' taken with the lower field setting is
shown in Fig. 1. The spectrum shows rich structure up
to 3.5 MeV excitation. The overall energy resolution was
12 keV. This was still not good enough to resolve much
of the structure above 2 MeV. Therefore, the spectra
were analyzed using a multipeak fitting program. Angu-
lar distributions were determined for many peaks up to
about 3.5 MeV excitation energy. Absolute differential
cross sections were determined by normalizing elastic
differential cross sections to predictions of optical-model
calculations. The uncertainties in the differential cross
sections due to this normalization procedure are estimat-

ed to be less than 5%%uo. The differential cross sections
were compared to distorted-wave Born approximation
(DWBA) calculations (as will be discussed shortly) to
determine the multipolarity and strength of the transi-
tions. Since in this paper we are only interested in hexa-
decapole strength, we show in Fig. 2 differential cross
sections for two representative hexadecapole transitions,
the magnitudes of which differ by almost a factor of 10.

B. CC and DWBA analysis:
Determination of hexadecapole strength

For the 4+ state of the ground-state band (gsb) in
Nd which is strongly coupled to the other members of

the gsb it is essential for the determination of the transi-
tion strength to perform coupled-channel (CC) calcula-
tions to remove contributions of multistep excitations.
The calculations in the axial rotor model were performed
for the gsb with the program Eels (Ref. 13} using the
optical-model potential parameters (in the usual nota-
tion): V=53.8 MeV, r„=1.154 fm, an't

——0.782 fm,
8'=3.73 MeV, 8'D ——7.3 MeV, rr =1.266 fm, al ——0.723
fm, V~=6.0 MeV, r„=1.01 fm, a„=0.75 fm, and

r, =1.2 fm. Good fits (not shown here} to the differential
cross sections of the 0+, 2+, and 4+ states of the gsb
were obtained with P2 ——0.25 and P~=0.059.

For other hexadecapole transitions at higher excitation
energies, which are not strongly coupled to other states,
it was suScient to perform DWBA calculations using
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FIG. l. A spectrum of "Nd at H„b=32' taken with the lower field setting of the QMG/2 magnetic spectrograph. Some peaks
have been labeled with their excitation energies in MeV.
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collective transition potentials of the usual first derivative

type (RdUldr) to obtain good fits to the data. This is
shown in Fig. 2 for the hexadecapole transitions at 1.647
and 2.704 MeV. By comparing the differential cross sec-
tions to the calculated D%'BA cross sections deformation
parameters P~ could be obtained.

Hexadecapole transition rates [B(E4) values] for vari-
ous hexadecapole transitions observed in the experiments
on ' Gd and ' Nd were determined from the deforma-
tion parameters by evaluating' the radial and multipole
moments of the real part of the optical-model potentials.
Inclusion of the multipole and radial moments of the
imaginary parts has little influence on the values of
B (E4)'s for ' Gd, the differential cross sections of which
were analyzed with an optical-model potential with only
a volume imaginary term, but has large effects (of about
40%) on the B(E4) values of ' Nd because of the pres-
ence of a strong surface imaginary term with a large radi-
al moment in the optical-model potential used. Since in
this paper we are only interested in the relative values of
the hexadecapole transition rates, the B (E4) values as
determined above are plotted in Fig. 3.
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III. E4 STRENGTH DISTRIBUTION
IN THE SU(3) LIMIT

OF THE sdg IBA MODEL

The advantage of the study of limiting cases is that re-
sults can be obtained analytically. For deformed nuclei,
the appropriate limit is the SU(3) limit with the Hamil-
tonian
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where the SU(3) quadrupole operator is given by

Q =(dts+stZ) ——"Vi0(dtd )P P 28 P

+ 9 (dfg +g td )(2) 3 ~55(g tg )(2)

(3.l)
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FIG. 2. (a) and (b) Differential cross sections for two
representative hexadecapole transitions observed in an inelastic
proton scattering.
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FIG. 3. The experimental 4+ states and corresponding
B(E4) strengths of "Gd and "Nd. The B(E4) value for the
4+ state of the g.s. band must be multiplied with a factor of 12
and 9, respectively, as is indicated in the figure.
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and the angular momentum operator by

L'" =~60(g g)'"+&10(d d )"' .
P P P (3.2)

In the following subsections the solutions of this Hamil-
tonian will be discussed, using the intrinsic-state formal-
ism.

A. Intrinsic states in the SU(3}limit

For the calculation of observables in the laboratory
system it is convenient to use SU(3) intrinsic states' of
the sdg IBA model. In particular, in the limit of boson
number N~00 the matrix elements in the laboratory
frame can be expressed as intrinsic matrix elements times
a geometric factor (as in the geometric collective model}.
If we restrict ourselves to the irreducible representations
(irreps) (A, ,p} of SU(3) with p, &4, and to the excitations
in which at most one deformed boson is excited, there are
eight SU(3} intrinsic states, ' as discussed in the Appen-
d1x.

The most general one-body E4 operator can be ex-
pressed as

T„(E4)=a (g s+s g)„' '+a, (dt's)„' '

+/ (d tg+gtg)(4)+~ (gtg)(4) (3.3)

For the calculation of the transition from the L =0
ground state with A, =4N, @=0to the various excited 4+
states we need the intrinsic matrix elements
( IS

~

T(E4)
~
gsb &, where

(
IS & stands for a specific in-

trinsic state. In Table I, the analytic expressions of those
matrix elements for the four terms in Eq. (3.3) are given
separately. One sees that the matrix elements within the
g.s. band are proportional to N while all others are pro-
portional to ~N. This implies that for large boson num-
bers the E4 transitions within gsb dominate over the in-
terband transitions. For not too large values of N, there
is still a considerable amount of strength going to the
other levels. We note that this feature is observed in the
experimental data, both in ' Gd and ' Nd.

B. The structure of E4 operator

Since the E4 operator (unlike the Q' ' operator) is not
an SU(3) generator, the choice for the parameters in Eq.

and

(N) (N) (1y) 0—2N
3

(3.4)

The fact that the parameter ao, in front of the (s g +g s }
term in (3.3), thus has a different N dependence than
those in front of the other terms suggests the following
parametrization for the E4 operator:

Z.(E4) e t(stg+gts }

+p[g (d tg )(4)+g (d tg +g td )(4)

+n3(g'g )"')I (3.5}

where the N dependence of e4, the hexadecapole effective
charge of the bosons, is the same as that of ao [see Eq.
(3.4)], and where all other N dependence of the parame-
ters is absorbed in P (Q && 1},

0—2N
&(Q N)Q— (3.6}

The other parameters g&, gz, and g3 are assumed to be N
independent. The operator (3.3}can thus be applied to a
series of different nuclei with varying e4 and p, but keep-
ing the parameters g; constant. Although care needs to
be taken when using mappings of operators inconsistent

(3.3) is still an open question. One possibility to obtain an
estimate for the parameters in the E4 operator is to use a
microscopic model for the bosons. We will first discuss
the N dependence of the parameters. Most parameters in
the IBA model have a specific mass dependence, includ-
ing those in the E4 operator which accounts for some re-
sidual effects introduced by the Pauli principle. One ap-
proach that gives particularly simple predictions for this
mass dependence is based on the assumption that the
IBA states are the image of fermion pair states in the
seniority scheme; in particular, this means that one can
equate the number of paired fermions in the seniority
scheme to the number of s bosons. Using the well-known
seniority reduction formulas one obtains, following a pro-
cedure that is completely analogous to that given in Ref.
2

ao(N) —&(Q —N ) /( Q —1 )

TABLE I. E4 matrix elements in the SU(3) limit. The various intrinsic states are defined in the Ap-
pendix.
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2 2 4
rl, =5v'2j+ I ' . (3.7a)

with the underlying Hamiltonian (e.g., a seniority map-

ping in the deformed region), as will be seen below, the
first-order results are roughly equivalent to a plausible
deformed operator.

To obtain a zeroth-order estimate for the parameters

g; we use the simplest possible choice, namely the predic-
tion of the single j-shell model. In this case one approxi-
mates the full major shell by a single j shell with the same
multiplicity. The 50—82 major she11, for example, is re-
placed by a single j= —", orbit. In this case the parame-
ters rl; (taking p= 1) can be expressed as

large. However, in the present investigation the qualita-
tive features are more important than the details which
will vary greatly from nucleus to nucleus. Furthermore
we are interested in the E4 strength leading to the
ground state which implies that we need to consider only
one-boson excitations on the ground state. For these
reasons we will use the Hartree-Bose method plus
Tamm-Dancoff approximation. ' As is stated in Ref. 18,
the HB+TDA calculation gives an approximation to en-

ergies of the order I /N. In Sec. IV B a detailed check on
the accuracy of the method is made, both for energies
and wave functions. In the following we will use this
method to discuss the spectra and B (E4) distribution for
perturbed cases.

a similar expression can be derived for g2 and g3,

2 4 4
rl, =3&5&2j+1

J J J

and (3.7b)

4 4 4
r)3=9&2j+1 ' .j J J

For j =—", , we obtain p& ——1.18, p2 ———1.08, and

g3 —1 .03. For realistic multi- j cases one of course ex-
pects deviations from these simple expressions. '

Another possibility for the choice of the parameters in
the E4 operator (3.3) is to take the coefficients equal to
the matrix elements of the r Y' ' operator in the sdg
harmonic-oscillator basis, '

a(l, lz)-(n&1&))r Y' '(9, $)))nzl2),

where (n;, l, } stands for the quantum number of the
harmonic-oscillator wave function. In this way one ob-
tains (taking P= 1)

A. The inhuence of the g-boson energy ( ag ) in TDA

As for the coupling between sd subspace and g sub-
space, the SU(3) limit in the standard sd model and the
SU(3) limit in the sdg model are considered as two ex-
tremes. To investigate in between situations, we need a
scheme in which the coupling between the two subspaces
is adjustable and the smooth transition from one extreme
to another is possible. This can be achieved by varying
the energy of g boson, es, between s = a&

——s, [SU(3) lim-
it of the sdg model] and Eg &&ed (sd model is recovered).

To investigate the inhuence of cg numerically, the fol-
lowing Harniltonian is investigated in a HB+ TDA
scheme

a=a, q, —~g"'g"', (4.1)

where Q'~' stands for the SU(3) quadrupole operator [see
Eq. (3.2)]. The intrinsic states are expressed as (see Ap-
pendix)

~

gsb) = (coo)+
~

0), for the ground-state+band
&N!

rl( ——p&5, g2= —
—,', & l l, r!3———,', &l l. 13 .

With this E4 operator the following E4 strength distribu-
tion is calculated,

and (4.2)

( gsb
~

T(E4)
~

gsb ) -6N

(P
~

T(E4)
(
gsb)'- —,'N,

(y (
T(E4)

(
gsb) ——,'N,

"others" =0 .

(3.9)

These results also follow from the fact that the operator
T(E4) with the parameters as given by (3.8) is a pure
SU(3) (2,2) tensor, which forbids the transition from the
SU(3} irreps (4N, O) (ground-state band} to any irreps
(A, ,p } with p ~ 2. It is interesting to note that the values
of rl,. thus obtained are quite close to those in Eq. (3.7}.

for the excited band,

g = W,~s'5„,+ W jd „'+W,~g„',

with

(4.3)

where in the SU(3) limit g„stands for o 0, o+z, p+2, p+3,
50, 5+&, and 5+4 (see Table III in the Appendix), respec-
tively. These are appropriate to model systems in the
large-N limit. The structure of the general deformed bo-
sons can be expressed quite generally as

coo ——A, s + Ad"dt+ A~g~

32+ Ad2+ 32=1 (4.4)
IV. E4 STRENGTH DISTRIBUTION

IN A PERTURBED SU(3)

In realistic cases, the SU(3) symmetry is broken and a
diagonalization in full sdg space is needed. However, for
large-N values the number of basis states is prohibitively

The behavior of the coefficients Pg (Ag ) and-—
P~~=( Ag ) as a function of E using the Hamiltonian (4.1)
are shown in Fig. 4. The spectra of the bandheads are
shown in Fig. 5. We note that with increasing cg, the
probability of the g boson in the ground state P decrease
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gradually. In particular, for c. =0.8 MeV, P =0.10,
which is roughly the microscopic estimate for the proba-
bility of a 6 pair in the wave function of the ground
state. When cg ) 1.6 MeV, the intrinsic boson excitations
can be grouped in two categories: excitations of
(o ~+crz+co~+ ) bosons and (5o+5z+54+p&+pz+ ) bosons. The first

group is dominated by the sd bosons and corresponds to
the ground-state band P, and y bands in the sd IBA mod-
el, respectively; the second group consists of rather pure
one-g-boson states and corresponds to the bands which
do not exist in the sd IBA model. For simplicity we refer
to the second group as one-g bands. When cg is large,
care should be taken with the interpretation of the HB-
TDA spectra since multiboson excitations (i.e., p-p or
y-y), not calculated in TDA, can lie below some of the
TDA bands.

When e &yed the position of the p and y bandheads
becomes independent of s, whereas the bands based
upon one g boson increase linearly with eg. To obtain a
splitting between p and y bands one needs some other
symmetry breaking terms like sdRd.

B. The accuracy of HB+TDA

In order to get an idea about the accuracy of the TDA
in the intermediate coupling region we have made a com-
parison with an exact calculation. Since an exact calcula-

1.00

tion requires the diagonalization of large matrices, we
have limited ourselves to the case with N =6 bosons.

In the exact calculations the Hamiltonian was diago-
nalized in the m scheme using the I.anczos procedure.
With this procedure only the lowest eigenstates and
eigenvectors can be calculated accurately.

The comparison between the two calculations is made
for a set of parameters which closely resembles those
used later in the paper, cd ——0.3 MeV and cg

——0.8 MeV.
The strength of the quadrupole interaction has been in-
creased to a =0.029 MeV in order to locate the p and y
bands at an excitation energy of about 1 MeU. In com-
paring excitation energies from the two calculations it
should be realized that in the TDA approach only intrin-
sic states are constructed and their energy therefore
should be regarded as some mean energy of all levels in
the band. In order to minimize the rotational energy
splitting in the bands, we choose the parameters of the
L"'L'" force in the exact calculation such that the mo-
ment of inertia of the ground-state band is infinite, i.e., all
levels are degenerate. As can be seen from Fig. 6 the po-
sitions of the p and y bands are accurately predicted in
TDA to within 100 keV. However, due to the finite value
of cg the moment of inertia of these higher bands is

different from that of the ground-state band. In addition
there is some mixing between the higher-lying bands,
which makes a definite band assignment impossible. The
nature of the 4+ level which lies above those of the p and

y bands is not clear. It probably should not be con-
sidered as the bandhead of a E"=4+ band since its struc-
ture resembles more that of a member of a E =0+ band
instead.
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FIG. 4. The variation of the g-boson probability in the intrin-
sic states. The boson number is N =14, and the Hamiltonian is
given by Eq. (4.1) with a ~=0.020 MeV.

FIG. 5. The variation of one-boson-excitation bandheads.
The boson number and Hamiltonian are the same as in Fig. 4.
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FIG. 6. A comparison between an exact calculation (com-
plete spectrum) and TDA (bandheads only). The parameters
used are in the text.

A similar comparison is made for the E4 and E2 ma-
trix elements. We found that these matrix elements for

~
gsb) ~ gsb) and

~ gsb) ~
~ y ) transition in the TDA

agree reasonably well with those in the exact calculation.
In the exact calculation, however, the E4 strength to the
higher-lying states is concentrated in the gamma band
with very little spreading. The multiphonon
configurations and the residual interaction neglected in
the simple mean-filed theory have led to beta, gamma,
and other bands mixing to concentrate the E4 strength.
The E4 strength distribution is extremely sensitive to
small changes in the Hamiltonian, either in the parame-
terization of Q' ' or in the addition of a small hexade-
capole force which immediately spreads the E4 strength.
Although this implies a caveat on trusting the TDA re-
sults, it is an extensive procedure to fit general forces to
data in the shell model for large N. The band mixing ma-
trix elements in general will scale as N ' and become
generally smaller as N increases. The mean-field model
should be a better approximation for N =15 than proven
for N =6 in comparison with the shell model and the
TDA model will be accepted for simplicity. It is clear
that interpretation of TDA results, in detail, in the pres-
ence of multiphonon states is uncertain and that large
scale exact calculations should incorporate a hexade-
capole force for spreading stability.

and sd values are chosen such that the energy of the
bandheads of the P and y bands are reproduced. The
8 (E4) values are calculated using the E4 operator of Eq.
(3.5) which leaves only one adjustable parameter P. In
the spectra, eight 4+ states are given, representing the
one-boson-excitation bands given by TDA. The calculat-
ed E4 strengths are given in Fig. 7 for ' Gd and ' Nd.

A comparison between experiment (Fig. 3) and calcula-
tion (Fig. 7) shows that, as far as gross feature is con-
cerned, the agreement is reasonable for both the spectra
and the 8(E4) strength distribution. The fragmentation
of strength over many high-lying 4+ states is reproduced.
In ' Gd and ' Nd, c and cd take the values 1.2,0.2 and
1.0,0.3, respectively. The experimental and calculated
levels cannot be put into one-to-one correspondence,
since for the higher states and the K values are unknown.
It should be noted that the strength to the P band is
overestimated in TDA by a considerable factor, as can be
deduced from the calculations presented in Sec. IVB.
This is due to residual mixing of the P and y bands. A
cranked random phase approximation (RPA) calculation
is now in progress to improve upon this point.
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D. The ordering of the one-g boson bands

For large values of cg, the ordering of the bands in the
one-g-boson multiplet can be calculated by rewriting the
quadrupole operator Q„'

' as

Q(2) Q(2)+ 9Q(2) 3 ~gag(2)

C. E4 strengths for realistic cases

20- x9

This subsection deals with the E4 strengths in two
specific rotational nuclei ' Gd and ' Nd, for which sys-
tematic data on the E4 strengths distribution are avail-
able. Since the full phenomenological sdg model Hamil-
tonian contains too many parameters we will use a Harn-
iltonian of the same simple form as used in the previous
sections,

H=e, h, +E,e, —~,g") g'". (4.5)

For the Q' ' operator we have taken the SU(3) form. As
an estimate we will use kg =1.0 MeV which makes the
system intermediate between the SU(3) limit of the sdg
model and the "sd core plus one g boson" picture. The ~

10-

0

0 2.00.5 1.0 1.5
E (MeV)

FIG. 7. The calculated 4+ states and 8(E4) values in "Gd
and ' Nd. For ' Gd the parameters cd ——1.2 MeV, cd ——0.2
MeV, @=0.015 MeV, and P=0.7 have been used, while for

Nd cg =0 8 MeV, cd ——0 3 MeV, ~=0 0192 MeV, and
P=0.0192 MeV, and P=0.75 have been used. The B(E4) value
for the 4+ state of the g.s. band must be multiplied with a factor
of 12 and 9, respectively, as is indicated in the 6gure.
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where

Q(2) (dt&+&td )(2) () i/10(dfd )(2)
sd p 28 P (4.6b)

is very close to the quadrupole operator in the SU(3) limit
of the sd IBA model [therefore we can use sd SU(3) wave
function for the sd core], and

Q~
' and Qgg' correspond to

the (d g+g d)' ' and the (g g)' ' terms, respectively.
When cg &1.6 MeV, the intrinsic wave function of the
one-boson excitation can be written as

~g X[N —1](2N —2,0)L;IM) . (4.7)

The splitting of the states with different K values will

mainly come from the term in the Hamiltonian arising
from the product of the first and third terms of Eq. (4.6a).
The K dependence of the energies of the bandheads, in-

troduced by this term is:

established mapping method to determine the boson-
model parameters from a microscopic theory. Therefore,
we use the schematic single-j shell model, outlined in Sec.
IIIB and restrict ourselves to two extreme cases, the
seniority scheme and fully aligned scheme.

As is discussed in See. III 8, a mapping procedure in
the seniority scheme gives rise to the E4 operator of the
form given in Eq. (3.5). A similar result can be obtained
for the E2 operator, the N dependence being the same as
in the E4 operator (but with different i),. values}. A sim-

ple calculation using the SU(3) wave function gives the
following expectation values for quadrupole and
hexadecapole-matrix elements:

Mz ——(gsb
~

Q' '
~ gsb }

=ezN[0. 676&0—2&0—N +0 407(Q. 2N]—,

E=3.18/cX6
3K —20
&7911 (4.8)

M4=(gsb
~

Q' '
~
gsb)

(5.1a)

which is of the same form as that given in Ref. 10 but
with the opposite sign. The induced splitting according
to Eq. (4.8) is around 0.8 MeV between the I(.

' =0 and the
K =4 one-g bands in Gd. This is similar to what is
shown in Fig. 6 obtained by a numerical calculation un-

der the Tamm-Dancoff approximation.
The discussion above also shows that the pattern of the

ordering of the bandheads with different K values mainly
depends on the relative signs of the sd part and g part of
the quadrupole operator (4.6a} and (4.6b}. One may no-
tice that in the ' Gd case the experimental 4+
(E=1.462 MeV) is not reproduced by the Q Q interac-
tion with an SU(3) Q' ' operator. If we choose an alter-
native quadrupole operator, which differs froin (4.6) by
an opposite sign of the (g g)' ' term, the overall pattern
of the E4 strength distribution remains essentially un-

changed while the 4+ (E=1.462 MeV) is reproduced
well. The importance of this sign can be understood in
the following way: when cg —1.0 MeV, the sd + 1g
scheme is about to emerge, and the g subspace is nearly
decoupled from sd space. The sign therefore represents
the relative phase between the quadrupole deformation in
the sd sector and that of the g sector. Whether or not the
4+ (E=1.462 MeV) of ' Gd is indeed a one-g-boson
state is crucial for determining this relative phase. It can
be checked that the opposite sign from Eq. (4.6a) corre-
sponds to what has been assumed in the calculation of
Ref. 10.

V. HEXADECAPOLE-MOMENT SYSTEMATICS

=e~N[0. 427VQ 2&0 —N+0. —864(Q —2N)],

(5.1b)

where Q=j+—,', N is the number of the nucleon pairs in

the valence shell, and e2 and e4 are the effective charges
for the quadrupole and hexadecapole moments, respec-
tively. We note that M4 represents the full hexadecapole
moment, namely a combination of p4 and p2 which is pro-
portional to Mz. Following Ref. 24 we can write, to
second order in P2..

p4 a4M4 ——gp2 a4M—4 g——a 2M 2,—2 — 2 2 (5.2)

0.06' 0.3

0.2

02
0.1

g is the ratio between contributions to the hexadecapole-
matrix elements from p4 and pz, respectively. Utilizing a
geometrical model analysis and neglecting the surface
diffuseness correction, we have az ——[(3/4m. )Ze2R0]
a~=[(3/4m )Ze4RO] ', and /=0. 7. Choosing ez and e~
such as to reproduce (P2),„and (P4),„, the N depen-
dence of Pz and P4 are calculated as given by the labeled
curves in Fig. 8. We note that since in obtaining Eq.
(5.1a) and (5.1b) an SU(3) wave function is used, the
agreement of calculated N dependence with experi-

The mass (N} dependence of the hexadecapole mo-
ments P4 in the rare-earth region is of much experimental
interest. ' ' Theoretically one has explained this
dependence in the polar cap model' ' and the IBA
model. 2 Since in experiment the extracted value of pz
is closely correlated with that of the quadrupole moment
P2, in the present paper we investigate simultaneously on
a microscopic basis the N dependence of p4 and p2 of the
ground-state band in the IBA model.

For deformed nuclei there does not yet exist a well-

-0.0('
—-0.2

-0.06
0 16 24 32

FIG. 8. Mass dependence of hexadecapole and quadrupole
deformation parameters P4 and P2, calculated from microscopic
single-j shell model in the seniority scheme.
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ments' ' is only qualitative. The mass dependence is,
however, very similar to that of the polar cap model. '

For a deformed system an alternative way of mapping
is developed by Otsuka and co-workers. ' Following
the procedure given in Ref. 3, the intrinsic state for the
ground-state band can be expressed as a condensate of N
fermion pairs;

~

gsb) =g '(A )
~
Q),

where the pair creation operator At can be expressed in
terms of multipole pair creation operators

1/2

(
5 )1/2 N N

1 —— 2——
Q Q

and

by minimizing the Hamiltonian. If the pairing interac-
tion in the intrinsic Hamiltonian is neglected and a pro-
late shape is assumed, one finds

1/2
N

X
Q

AJ —— —(aj &&aj )' ',
J

N Q2 N2 3Q2 7N2x4-( —')
Q Q Q

(5.3)

A =gxJ Aq .
J

The multipole expansion parameters xJ can be obtained
I

The expectation value of the quadrupole and hexade-
capole operator, in the intrinsic system can be expressed
as

J J A, J J
&gsbllQo" llgsb&=n '«"llano"'ll~"&-»(2)+i)X«»+l)(2J'+l)

Q Q Q J' J ' XJ+I
JJ' 0 0 0 J' J (5.4)

Restricting ourselves to J,J'&4 and using Eq. (5.2), we
can obtain the N dependence of both quadrupole and
hexadecapole deformation parameters as given by the la-
beled curves in Fig. 9.

In both the seniority system and the fully aligned
scheme, the N dependence of P2 and P4 is qualitatively
reproduced from the mapping procedure. The reality of
deformed nuclei is probably lying in between these two
extremes, and the mass dependence of both quadrupole
and hexadecapole properties can thus qualitatively be un-
derstood in a sdg model.

paragraph we will only discuss the magnetic dipole tran-
sition strength to states of mixed neutron-proton symme-
try (not studied in detail in this paper). This strength ap-
pears to depend sensitively on the g-boson content in the
gsb. Barrett and Halse have shown that in the SU(3)
limit the inclusion of the g boson gives rise to a doubling
of the B(Ml f ) strength.

In the IBA-2 model, where neutron and proton degrees
of freedom are considered explicitly, the M1 transition

VI. OTHER OBSERVABLES

In this section we will discuss the inhuence of the g bo-
son on observables that are not related to the hexade-
capole operator. 8.0

sdg-SU(3)

0.06 i
0.3

A. Magnetic dipole properties

A general discussion of the structure of 1+ levels in the
sdg-IBA model can be found in Ref. 26. In the present

~g 6.0

CCI

0.04

04
0.02

0.2
02
0. &

4.0

-0 02 -0.1

2.0

-0.04

-0.06
0 32

-0.2
0

0
I

0.5
I

1.0
c {MeV)

I

1.5

FIG. 9. Same as in Fig. 8, but the intrinsic deformed system
is used to derive the mass dependence of the parameters.

FIG. 10. The relation between B(M1;Oj+~1+;)and the ener-

gy of the g boson.
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TABLE II. The summed E2 and E4 strengths of "Nd.

B(E2)
(in 10 efm)

Expt.
Theor.

I
gsb ~

I
gsb )

175
175

Ig»-
I p y)

7.6
4.3

~
gsb) ~

~
higher states)

7.5
0.11

B(E4)
(in 10 e fm)

Expt.
Theo r.
(Theo r.

171
171
171

3.3
55
17.7

85.1

80.1

89.2)

operator is given by

T„(M1)= g &3/4n[gq, &10(dg, )„'"

8N„N8 (M 1,0+~ 1+;)= (g —g„) (p~ ),
4m N

where

(6.1}

gd ~+ ggT
g, = ' ' (r=n. , v) .

If in the case of ' Gd, the free G values g = 1 and g„=0
are used in Eq. (6.1), an Ml strength about 8pz is pre-
dicted, which is large compared to the experimental value
( -2IJ,N ).

The influence of g boson on the magnetic dipole transi-
tion strength from the ground state to the scissor state
(1„;)is investigated using the Hamiltonian of Eq. (4.5)
with the same parameters (e, ez, and az), as are used in

reproducing the E4 data discussed in Sec. IV for the case
of ' Gd. Figure 10 shows that with the increase of e,
the 8( Ml; &0+~1+;) is reduced from -8pz to -4pz
when the energy of g boson varies from 0 to 1.6 MeV.
This reduction improves the agreement with experiments
considerably. The two dotted lines in Fig. 10 are the
8 (M 1;0&+~1+;)values in the SU(3) limit for the sd and
sdg models, respectively. The decrease of 8(M1} is due
to the decrease of the g-boson probability (Ps ) both in the
ground state and in the scissor state. Since in the calcula-
tion of Fig. 10, there is no Majorana interaction included,
the position of the 1+ levels are unrealistic, and it is not
further discussed in this work.

B. E2 transitions

In this subsection, the pattern of the B(E2) strength
distribution is studied briefly and compared with that of
the 8 (E4). In Table II, the summed E2 and E4
strengths of ' Nd are listed separately for three different
classes:

~

gsb)~
~
gsb),

~
gsb)~ ~P, y), and

~
gsb~

~

higher states), in which "higher states" stand

+gs ~+60(g~g~)~ ],
where gd and gg are the gyromagnetic ratios for L =2
and 4 pairs, respectively. For collective bosons the spin
contribution to the magnetic moments largely cancel,
yielding gd -gg „=0and g„„=gg = 1p~.

In the SU(3) limit of the sdg model the M 1 strength to
the mixed-symmetry (scissor mode) state is

TABLE III. SU(3) intrinsic boson operator. This table is
taken from Ref. 15.

Notation

COp

p+1
0'p

0+p

p+3
5p

g+z
6+4

Operator

&1/5s +&4/7dp+ &8/35gp
+(&4/7d~+, —&3/7g f+) )

&4/15s +&1/21d p
—&24/35gp

&1/7d+ +&6/7gy
+g+3
&8/15s t —&8/21d +&3/35g&

&6/7d+p —&1/7g+p

g+4

for the 2+ and 4+ states above the pand y bands. In the
experimental data excitation energies above 2.5 MeV
(2+) and 2.75 MeV (4+), are excluded. A prominent
feature of the data given in Table II is that for the transi-
tion

~
gsb) ~

~

higher states) the E2 strength is negligi-
ble, whereas the E4 has a considerable amount of
strength (-30% of the total). The calculated summed
E2 and E4 strengths are given for a comparison. The
difference between the 8 (E2) and 8 (E4) strength distri-
butions is reproduced in the calculation. As is pointed
out in Sec. IVB, the B(E4) strength to the 4&+ is too
large compared to exact calculation and this is partly due
to the inaccuracy of TDA. If one includes a hexade-
capole interaction in addition to the quadrupole one, the
strength of

~
gsb) ~4&+ ) is considerably reduced, which

is shown in the row within the parentheses in Table II.
As far as the higher states are concerned, especially for
the summed strength, the TDA prediction is reasonably
accurate. We note that all the parameters we used for
the calculation above are the same as used in Sec. IV C
for ' Nd reproducing the B(E4) distribution. From
Table II it is clear that the E2 and E4 strength distribu-
tions are qualitatively different. For the E2 most of the
strength is concentrated in the lowest few states. In both
the sd and sdg models this is reproduced since the 1 bo-
son, included in the model, carries most of the E2 collec-
tivity. For the E4 distribution much of the strength is
positioned at higher energies. This, as we have shown in
this paper, can only be reproduced in a model which ex-
plicitly includes a g boson, the degree of freedom that
carries the E4 collectivity.
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TABLE IV. SU(3) intrinsic states for one boson excitation in

leading order in N.

SU(3)

(4N, O)

(4N —4, 2)

(4N —6, 3)

(4N —8,4) I

irreps
(A.,p);K

K=1

K=0
K=2

Band

~
gsb)

~IC, &

lgo&

Expression

&N!
(coot)

i
0) =

i
N)

rro
)
N —1)

'
(~t+,y~', ) ~N —1)

&2

&- (p' i+p-i) IN —1&+

&-(p+3+p 3) IN —»+

5', iN —»
(5t+, +5t, )

~

N 1)—+2

(5~4+5t 4)
~
N —1)+4

VII. SUMMARY AND CONCLUSIONS

In this paper we have investigated the role of the g bo-
son in several observables of the IBA model. A realistic
coupling of the g boson to the s-d bosons is determined
from the observed E4 strength distribution. To repro-
duce the experiment a situation intermediate between the
strong and weak coupling schemes for the g boson is pre-
ferred. The percentage of g bosons in the ground state is
around 10%, of the same order of magnitude as obtained
from more microscopic calculations.

Including the g bosons in the basis gives rise to the pre-
diction of relatively low-lying (E„—1.5 MeV} I(. "=4+
and 3+ bands. These bands are equivalent to one-phonon
excitations in a more conventional RPA language, which

is in agreement with recent calculations of Soloviev.
We have also shown that qualitatively the calculated

mass dependence of P4 is in agreement with experiment
and the polar cap model of Bertsch. ' It has also been
shown that the B(MI 1) strength, which has a strong
dependence on the number of higher I. bosons included
in the model space, is in good agreement with the data.
The effect of including the g boson in the model space is
balanced by the finite g-boson energy. Including a g bo-
son in the model space is crucial for explaining the ob-
served hexadecapole strength distribution. We have
shown that this can be done with rea1istic parameters and
without spoiling the agreement for other observables.
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APPENDIX: INTRINSIC STATES IN SU(3}

In the SU(3) limit of the sdg model the intrinsic states
can be constructed following the procedure given in Ref.
15. First one defines intrinsic bosons as given in Table
III. In terms of these intrinsic bosons, the intrinsic states
can be written as in Table IV. It should be noted that in
Table IV only the leading order contribution is given.
Orthogonality conditions and rotational invariance will
introduce 1/N corrections.
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