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The neutron total cross section for n+ Kr has been measured over the incident neutron energy
range 0.015 to 25 MeV. The average total cross section is obtained for neutron energies from 1 to
25 MeV. For the energy region from 0.015 to 1 MeV, an R-matrix analysis yields resonance param-
eters which provide a complete representation of the neutron scattering functions for the s&/&, p&/2,
and p3/2 scattering channels. From this analysis level densities, neutron strength functions, and
external R functions are obtained for the 1-MeV energy region just above the neutron separation en-
ergy. The backshifted Fermi-gas model provides excellent descriptions of the level densities for the
~+, z, and

2
states. Evidence of intermediate structure is found for the s-, p-, and d-wave scatter-

ing channels.

I. INTRODUCTION

Nuclear structure in the neutron "resonance" region,
which corresponds to excitation energies just above the
neutron separation energy, can be explored experimental-
ly with good energy resolution by time-of-Qight methods.
One pressing need' in nuclear modeling is improvement
in level density formulation. Very reliable level densities
can be obtained for energies just above the neutron sepa-
ration energy by transmission measurements with high
resolution. For some nuclides one can also measure these
densities by observing P decay and delayed neutron emis-
sion spectra from radioactive progenitors; however, those
techniques usually suffer from relatively poor energy
resolution. A comparison of the various types of mea-
surements was a primary motivation for an earlier
n + Kr transmission measurement, which was per-
formed at this laboratory using the same sample as used
here. The analysis of those data extended up to a neutron
energy of 0.4 MeV; the present measurements on
n + Kr are made with better resolution so that the reso-
nance analysis can be extended upward to nearly 1 MeV.

A unique feature of high-resolution measurements is
that neutron-scattering functions can be extracted for in-
dividual partial waves, i.e., for s, p, and in some cases d
waves. Often, such as the present case, the scattering
functions for the first few partial waves can be deduced
from high-resolution transmission data alone, without ad-
ditional differential scattering data, because the interfer-
ence patterns are distinctive for each partial wave. Such
favorable cases require nuclides with relatively large level
spacings such that resonances can be resolved over an en-
ergy region of several hundred keV. With present tech-
niques that is possible for nuclides in three regions of the
Periodic Table, namely, for some light nuclides with
A &60 and for nuclides near the 50- and 126-neutron

closed shells. The Kr target is one of the four stable
spin-zero nuclides which have 50 neutrons.

One interest in nuclides near the 50-neutron closed
shell is that, since their masses are near the 3p size reso-
nance, they present the possibility of measuring spin-
orbit effects in the resonance region. There is abundant
empirical evidence for a spin-orbit potential, not only
from scattering and polarization measurements for
higher neutron energies but also from data at negative en-
ergies, where a spin-orbit term is crucial for the shell-
model interpretation of the bound states. In the reso-
nance region, one would expect spin-orbit effects to be
observed in the splitting of the 3p size resonance. How-
ever, the splitting is not observed because the spreading
widths of the p&/2 and p3/2 components exceed their en-

ergy separation. In a recent work, the splitting of the
size resonance was observed by measuring scattering an-
gular distributions with poor resolution. Those authors
concluded, from a survey of earlier high-resolution mea-
surements, that the spin-orbit effects could not be ob-
served from such measurements, even with the best possi-
ble energy resolution. An alternative conclusion is that
the earlier measurements covered too small energy re-
gions to include a statistically meaningful number of p-
wave resonances. A significant number of p-wave reso-
nances can be observed for n + Kr because of the rela-
tively large level spacing and the large p-wave strength
function. In the earlier measurement at this laboratory
for energies up to 0.4 MeV, the p3/2 strength function
was found to be larger than that for p, /2 as expected
from the spin-orbit splitting of the 3p orbital. In the
present work the measurements and analysis are extended
to =1 MeV.

Once the detailed scattering functions have been ob-
tained for the first few partial waves, they can be individ-
ually averaged over energy for comparison to the scatter-
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ing functions from an optical model. An additional
reason for studying a closed-shell nucleus is that the neu-
tron bound-state structure is relatively simple. A unified
mean-field description of both the bound and unbound re-
gions can be accomplished by invoking the dispersion re-
lation constraint This mean-field description is the sub-
ject of Ref. 7.

In the present paper we discuss the measurement and
analysis of the neutron total cross section for Kr. In
Sec. II we describe the experiment and report the experi-
mental results, which include not only the detailed cross
sections in the resonance region up to 1 MeV but also the
averaged cross section for energies up to 25 MeV. In Sec.
III we describe the R-matrix analysis of the resonance
data and present the resulting parameters of the scatter-
ing functions. In Sec. IV we discuss the energy averaged
scattering functions and describe the level densities for
J =—,'+, —,', and —,

' by use of the backshifted Fermi gas
model. Some of the d-wave properties are also discussed
in Sec. IV. In Sec. V we discuss possible doorway states
in the s-, p-, and d-wave scattering channels and, in Sec.
VI, we state our conclusions.

II. MEASUREMENTS

Using the Oak Ridge Electron Linear Accelerator
(ORELA) to produce a pulsed neutron beam, we mea-
sured the neutron transmission for a gas sample of Kr
through the resonance region, 15 keV to = 1 MeV, where
the energy resolution of ORELA is sufficiently good to al-
low resonance analysis. At the same time we also mea-
sured the transmission with good energy resolution from
1 to 25 MeV, but we present those results only in terms of
the average total cross section.

A. The ~Kr sample

The sample was approximately 3.4 g of enriched
(99.5%) Kr gas contained in a thin wall (0.12 mrn)
stainless-steel cylinder of 1.08 crn diameter and 30.2 cm
length. This cell and an identical empty cylinder were al-
ternated into and out of the neutron beam with a cycle
time of approximately 10 min. The empty cell compen-
sated for the transmission of the end walls of the con-
tainer. Since the sample thickness could be found only
approximately from the area and weight, its precise
thickness n =0.0208+0.0003 atoms/b) was determined
by the requirement that the peak-to-valley cross section
of the large isolated resonance at 137 keV agree with that
for an isolated s-wave resonance.

B. Neutron source and detector

At the ORELA facility a burst of 120—150 MeV elec-
trons impinges on a tantalum target and neutrons are
produced by the photoneutron process. For the present
measurements the electron beam was pulsed at 800
bursts/s with a nominal burst width of 6 ns for a total
running time of four weeks. A neutron beam was pro-
duced by placing a 0.95 cm collirnator at 10 rn from the
Ta target such as to select the higher energy portion of
the photoneutron spectrum, rather than the lower energy

C. Energy resolution

A digital time-analyzer was used to measure the arrival
time of each detected neutron to within 1 nsec relative to
the arrival of the y-ray burst from the ORELA target.
The neutron energy resolution function has two com-
ponents. One component arises from the uncertainty hL
in flight path due to fluctuations in the positions at which
neutrons are produced in the ORELA target and are ob-
served in the detector. The other component is due to
the finite-time width AT of the electron beam burst. The
beam width AT was measured by including with each
sample in-out cycle a brief time-of-flight measurement for
which the detector gate was opened in order to record the
y-ray burst; additional U filters were inserted in the beam
such that the deadtirne was negligible. The sum of such
spectra over several hours gave the effective AT. The rel-
ative uncertainty in the neutron energy, b,E/E, is expect-
ed to be a combination in quadrature of the contributions
from hL and b, T,

(hE/E) =(2bL/L) +(2b T/T) (2.1)

and has an approximately Gaussian shape. The full
width hE at half maximum (FWHM) of the Gaussian is
given in terms of the uncertainties (FWHM) in neutron
flight path length, hL =2.9 cm, and flight time, AT=6
ns, by

(b,E/E)'=(a+bE)X10 ', (2.2)

where a =8.4 and b =68 MeV '. More nearly complete
discussions of experimental details of ORELA transmis-
sion measurements are found in Refs. 8 —11.

D. Cross sections

The transmission, T(E), was measured for 48000 time
channels corresponding to neutron energies from 0.015 to

part which comes from the water moderator at the
source. Two filters were placed in the beam, 3 cm of
uranium to attenuate y rays and a thin ' B filter to re-
move very slow neutrons that would otherwise overlap
the succeeding neutron burst.

The neutron detector was placed at 201.578+0.029 rn
from the neutron source; the uncertainty includes that
arising from the detector's effective thickness. Neutron
detection was by proton recoil in an NE110 scintillator
coupled to two 8854 RCA photomultiplier tubes operated
in coincidence. The scintillator was 2.54 cm thick in the
neutron beam direction, 8.75 crn high and 5.16 cm wide
along the photomultiplier tubes' axis. Four separate
pulse height spectra were recorded with different lower-
level discriminator settings. These settings, which corre-
sponded to neutron energies of about 0, 0.4, 0.7, and 2.2
MeV, limited the counting of pulses from late light in the
scintillator and also facilitated the measurements of the
various backgrounds. The backgrounds were very small;
the only correction necessary was a small ( &1%) sub-
traction of room background. The correction for the
1104 ns dead time of the analyzer was about 10% for 1

MeV neutrons and much less for lower energies.
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T(E)=exp( —noT) . (2.3)

Figures 1 and 2 present the results for E &1 MeV, i.e.,
the energy region in which the energy resolution and the
multilevel structure are such as to allow an R-matrix
analysis. The statistical uncertainties are less than the
symbol heights. The points plotted near the very narrow
resonances represent the observed cross section, but the
points in regions where the cross section varies more
slowly represent energy averages of the original data.
Our reasons for averaging are to facilitate the R-matrix
analysis and to improve the visual presentation in the
figure. The smooth curves represent the R-matrix pa-
rametrization which is discussed in the next section.

The present measurements also extend to energies well
above 1 MeV. In fact, data were collected in approxi-
mately 10 1 ns channels for 1 & E & 8 MeV and in 430 6
ns channels for 8 &E &25 MeV. At these energies the
multilevel structure is too complex for an R-matrix
analysis; nevertheless, these data provide a firm basis for
deducing the energy-averaged cross section, (cr T(E) ).
The histogram in Fig. 3 represents (o T(E) ) deduced by
averaging over energy intervals which were selected to
yield a relatively smooth plot. The fluctuations are due
to the statistical uncertainties associated with the mea-
surement. For energies up to several MeV the averages
presented in Fig. 3 are more accurate than could be ob-
tained from measurements of averaged transmissions by
an experiment with poor energy resolution. In such mea-
surements one must assume that the average quantities,
(T(E)) and (oT(E)}, are related in the same manner

[Eq. (2.3)] as are T(E) and oz(E) How. ever. , that is a
good approximation only if no z. varies slowly with ener-

gy

25 MeV. The total neutron cross section, o T(E), is found
from the relation
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III. R-MATRIX ANALYSIS

A. R-matrix formalism

SIz(E)=exp[2i51z(E)] . (3.1)

The neutron total cross section for a given IJ is related to
the scattering function,

For the present case of a spin 0 nuclide with negligible
absorption, the scattering function, S&J(E), for a given or-
bital, l, and total angular momentum, J, can be expressed
in terms of a real phase shift, 5'(E),
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or to the real phase shifts,

(3.2)
NEUTRON ENERGY (keV)

oiqT(E) =(4m/k )gJsin [5o(E)], (3.3)

5IJ(E)=yI(E)+tan '[P&(E)R&J(E)], (3.4)

where gJ is the statistical spin factor and k is the neutron
wave number. To fit the data we parametrize the phase
shifts using the R-matrix' formalism,

FIG. 1. Total cross section for n + ' Kr. The points
represent the measured cross section over the interval 18 to 500
keV. Between resonances the cross sections have been averaged
in order to facilitate analysis of the data. The curve represents
the multilevel R-matrix description using the parameters in
Tables I—III and the boundary radius a, =1.453 '
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a, = 1.45 3 ' fm . (3.5)

The R function is a sum over all the observed resonances
plus a smoothly increasing function of energy which de-
scribes the aggregate effect of levels external to the region
of measurement,

where we have set the boundary conditions equal to the
shift factors at all energies and where PI and qI are, re-
spectively, the l-wave penetrability and hard-sphere
phase shift evaluated at the channel radius, taken in this
work to be

20
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where yIJ& and EIz& are free parameters representing the
reduced width and energy of the A,th resonance with an-
gular momentum I and J.

The external R function, R'"', is to be parametrized to
describe the effects, within the experimental domain

(E& ——0.015 MeV, Ez ——0.96 MeV), of all levels lying out-

side of the domain. If the actual discrete levels for all en-

ergies are replaced by a continuous density of reduced
width, i.e., a strength function s&J(E), then a smoothed
real R function can be defined, '

RIJ(E)=PIsIJ(E')dE'/(E' E), — (3.7)

I I 0 I I I ~ ~ ~ I I I ~ ~ I ~ I ~ ~ I 0 ~ ~ I8

where P denotes the principal value integral. The exter-
nal R function is then found by subtracting the contribu-
tions from levels within the experimental domain,

RIJ '(E)=RIJ(E) JXIq(E')d—E'/(E' E) . (—3.8)

This formulation provides a good description of the
effects of levels just outside the experimental domain,
provided that the strength function is reasonably chosen.
We parametrize' ' s&J(E) and RIJ(E) in the domain

[E„E2]by
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FIG. 2. Same as for Fig. 1 except the energy interval is 500 to
1000 keV.

E (MeV)

FIG. 3. Average neutron total cross sections for n+ ' Kr
from 1 to 25 MeV. The cross sections have been averaged over
suitable energy intervals in order to produce a relatively
smooth plot. The error bars represent the uncertainties due to
counting statistics.
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and

s(~(E)=aIJ+pIJ(E E—), (3.9)

RIJ(E)=a~. +b(J(E E—)+cij(E E—) (3.10)

where E is the midpoint energy, 0.48 MeV, and the
coeScients are free parameters for fitting the data. The
choice of strength function follows an iterative pro-
cedure; in the final analysis it is chosen to give a good
description of the observed ratio, (y~z)/D~. , i.e., the
average reduced neutron width per energy interval, as we
discuss in Sec. IV. The parametrization of the external R
function in terms of a smooth R function and strength
function provides a simple procedure for averaging of the
scattering function for comparison to the optical model,
as discussed in Sec. IV E.

lower energies. The presence of the broad p3/2 reso-
nances makes it possible to identify very narrow p3/2 res-
onances by their interference patterns, even though their
widths may be less than the resolution width. Interfer-
ence of broad p &/2 resonances is also important; the com-
plicated structure observed near the center of the energy
region of Fig. 4(a) requires the two interfering resonances
shown in Fig. 4(b). The summation of these intricate par-
tial wave patterns yields the complicated curve of total
cross section.

Having determined all of the resonance energies, IJ as-
signments, the R'"' functions, and also having deter-
mined the reduced widths to good approximation, we
made final small adjustments of the widths by solving
Bayes' equations using a program SAMMY, which is a
modification of an earlier program MULTI. '

B. Determination of multilevel parameters

With the excellent energy resolution of ORELA, the
detailed energy dependence of the cross section can be
used to determine the R matrix parameters and, thereby,
to deduce the scattering functions. We wrote a computer
code to analyze the data using the R-matrix formulation.
The program includes Doppler broadening of the calcu-
lated cross section, with an effective nuclear temperature
of 330' K, and experimental resolution broadening of the
resulting transmission. An essential feature of the pro-
gram is that it displays both partial and total cross sec-
tions on a screen for visual comparison to the experimen-
tal cross section. Thus, we are able to examine the good-
ness of fit and, if the fit is not good, be guided by the par-
tial cross sections as to which parameters may be in er-
ror. In interpreting the partial cross sections, it is impor-
tant to recognize that the phase shift 51J is a continuous
function which increases by m at every resonance. There-
fore, for each IJ, the partial cross section in the neighbor-
hood of every resonance passes through a minimum of
zero and a maximum of 4gjm. /k . Overlapping reso-
nances of the same IJ have complicated shapes because of
interference. These effects may not appear so pro-
nounced for very narrow resonances which are broadened
by experimental resolution; nevertheless, even such nar-
row resonances may be asymmetric because of interfer-
ence with a nearby strong resonance of the same lJ.

These effects are illustrated in Fig. 4 for 775 &E & 825
keV. In Fig. 4(a} the points represent the measured cross
section, with appropriate off-resonance averaging, and
the curve shows the R-matrix fit, for which the partial
cross sections are shown in Fig. 4(b). The s , p-, and d--
wave partial cross sections are represented, respectively,
by short-dash, solid, and long-dash curves. For s waves
each resonance appears as a simple interference minimum
because the potential phase shift is about m/2 at these en-
ergies. The nonresonance s-wave contribution is accu-
rately determined by fitting at the energies of selected

p3/2 interference minima, where the p3/2 cross section
must be zero and where the contribution of other partial
waves is very small. The very broad p3/2 resonance with

Eg ——775.3 keV influences the p3/2 interference patterns
throughout the energy region of the figure, as well as at

C. Multilevel parameters

15

10

p ~ ~

0

10

5

790 $00 810
NEUTRON ENERGY (keV)

FIG. 4. An example of the complex multilevel spectrum in
n+ Kr. In the upper panel (a) the points represent the ob-
served cross section and the solid line the R-matrix fit including
the effects of Doppler and resolution broading. In the lower
panel (b) are shown the contributions from partial waves up
through d3/2 excluding the broadening effects.

The final R-matrix parameters are included in Tables
I—III. Table I lists the resonance parameters, Ez, I, J,
gJy&, and gJI &„. We list the product gJy&, rather than
simply y&, because only the product is determined for
those resonances where the lJ assignments are uncertain,
as indicated by parentheses in the columns of I and J.
Tables II and III include the parameters required in Eqs.
(3.9) and (3.10) in order to calculate the R'"'(E}. Using
these parameters with the assumed boundary radius from
Eq. (3.5), we calculated the total cross sections for
0.015 & E &0.96 MeV. The solid curves presented in
Figs. 1, 2, and 4(a) represent these cross sections with the
effects of resolution and Doppler broadening included.
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TABLE I. Resonance parameters for Kr~ n.

E (eV)

19.238

27.863

36.920

43.945

49.680

54.410

68.674

78.930

79.452

88.329

92.189

124.67

125.05

125.10

137.50

142.21

156.95

157.80

158.13

169.60

178.33

188.89

195.60

206.92

211.64

223.30

224. 10

227.50

237.90

248.95

267.58

270.42

270.60

272.18

286.75

293.85

307.30

309.70

313.10

316.75

317.11

318.30

330.30

339.73

350.95

352.17

1

(1

0

1

0

(1

(1

(1

(1

(2

1

1

(2

(1

0

1

1

0

(1

1

(1

1

(2

0

1

1

(2

1

(1

(2

0

1

(2

(1

0

1

1

2

—,')
1

2

1

2

1

2

—,')
—,')

—,')
—,')

—,')
3
2

1

2

—,')
—,')

1

2

3
2

3
2

1

2

—,')
3
2

—,')
1

2

1

2

1

2

3
2

I

2

3
2

1

2

3
2

3
2

—,')
1

2

1

2

3
2

—,')
3
2

—,')
—,')

1

2

3
2

—,')
—,')

1

2
1

2

3
2

1

2

gyz„(eV)

1133'

741

151

2870

73

6512

327

838

123

3616

4820

1981

892

155

3088

2948

4359

1268

152

2285

114

4878

311

3456

8247

4201

1438

101

5459

10 550

688

1354

1127

379

1024

21 782

117

658

2066

256

3514

147

856

220

4474

399

gI „(eV)

17+2

18+2

55+3

130+5

45+1

400+8

28+3

87+9

13+2

9+2

615+12

380+8

5+3

30+5

3180+64

665+15

1120+22

1400+28

645+13

20+2

1575+47

380+19

4370+44

3060+60

1660+50

570+30

135+20

2330+50

4750+50

48+24

1960+40

560+28

190+20

35+6
11 880+120

70+11

40+6

3210+32

150+15

185+18

88+16

1370+50

140+14

2975+30

265+19

E (eV)

375.15

390.30

390.40

392.95

397.63

397.63

411.75

414.80

415.58

428.96

434.50

441.82

443.45

448.60

454.50

458.70

466.90

481.75

485.30

492.90

498.85

504.50

506.51

508.10

513.16

515.98

517.20

523.00

524. 15

526.12

532.15

533.20

534.30

537.70

539.75

540.05

546.00

547.85

548.60

555.57

558.30

567.30

567.50

569.00

573.70

585.90

2

1

(2

1

1

(2

1

(2

(2

1

2

2

(2

1

0

2

1

(2

0

1

1

1

(1

(1

2

(2

(2

1

(1

0
1

3
2

1

2

1

2

3
2

3
2

3
)

1

2

3
2

—,')
3
2

—,')
—,')

1

2

3
2

3
2

1

2

3
2

—,')
3
2

1

2

3
2

1

2

—,')
I

2

1

2

1

2

3
2

—,')
—,')
3
2

—,')
—,')
3
2

—,')
1

2
1

2

3
2

3
2

3
2

1

2

3
2

1

2

1

2

3
2

1

2

1

2

gyz„(eV)

8868

781

452

4682

2048

1901

1423

32 876

930

616

1320

559

272

4953

4242

432

2824

373

2850

172

4896

4762

583

1043

158

121

9318

207

25

33 432

872

2414

2169

65

22

169

879

1971

7073

370

3578

1153

1022

11 558

218

1421

gI „(eV)

6340+65

1355+50

340+17

395+20

1560+50

165+25

1125+56

26 175+260

90+19
510+25

140+20

60+12

230+25

560+28

3715+80

815+40

350+17

50+12

2670+50

335+34

695+25

4640+120

85+17

2065+75

155+17

120+15

9310+100

210+30

25+12

5320+100

140+30

395+50

2240+70

70+10
45+15

175+10

150+22

340+30

7490+150

400+20

3855+70

1260+50

2140+150

12 685+200

240+20

1605+30
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TABLE I. (Continued).

E (eV)

363.30

365.58

366.45

366.80

373.00

619.00

622.98

624.38

625.00

626.14

631.35

641.20

643.65

645.55

648.04

657.20

665.30

670.50

6SO.OO

680.70

684.50

686.25

694.25

695.20

700.60

701.20

707.00

710.50

718.80

718.25

721.80

726.00

726.42

728.80

730.40

732.50

734.30

736.20

741.00

745.20

748.50

749.50

752.46

755.00

760.00

761.20

2

(0

(2

1

2

1

0

1

1

(2

1

0

2

1

(2

(2

0

1

1

1

1

2

1

2

1

(2

0

2

1

3
2

3
2

—,')
—,')

1

2

3
2

1

2

1

2

3
2

3
2

3
2

1

2

3
2

1

2

—,')
1

2

3
2

3
2

1

2

3
2

3
2

—', )

—,')
1

2

1

2

3
2

1

2

3
2

3
2

1

2

3
2

3
2

—,')
1

2

3
2
3
2

1

2
5
2

3
2

1

2

3
2

1

2

—,')
1

2

2

3
2

gy'„(ev)
7877

1381

14

1429

7899

730

1839

176

55 784

2218

445

525

432

5177

661

1087

19285

33016

83

901

32 645

870

850

258

636

8226

10 140

3240

1212

425

1049

4920

1208

1188

3832

9398

5021

478

1951

8267

4570

1462

736

3507

10 124

gI „(eV)
5440+55

100+10

25+5

105+30

5615+110

160+32

2200+90

385+60

67 000+1350

505+76

540+80

1170+120

535+60

6415+60

160+40

1370+85

24 585+740

42 395+850

190+15

245+73

42 735+850

240+72

240+72

600+80

850+100

11015+330

13 680+550

4390+440

365+90

580+87

320+32

6800%68

370+37

2820+500

1190+83

13095+850

7015+490
150+10

2750+82

865+180

11 750+ 1200

6505+780

480+48

1780+375

5055+650

14 610+1320

E (eV)

593.00

593.25

595.17

596.80

608.82

817.60

820.30

825.90

828.40

829.80

831.10

832.00

836.40

843.00

842.80

851.00

852.50

852.80

860.05

861.55

866.78

868.50

871.80

874.00

875.00

877.75

880.00

880.25

885.05

887.85

889.25

891.30

893.70

898.00

902.50

903.00

905.30

908.60

910.30

913.63

914.94

918.80

923.60

923.65

924.60

929.00

1

1

0

(1

0

(2

(2

1

(2

1

0

1

(2

(1

(1

1

(2

1

0

(2

(2

1

(2

1

1

(0

1

1

(2

(2

1

(2

(2

(1

(2

(2

(2

1

1

(2

0

3
2

3
2

3
2

3
2

1

2

3
2

1

2

—,')
1

2

—', )

1

2

—', )

3
2

—', )

3
2

1

2

3
2

—,')
cf12)

—,')
3
2

—', )

3
2

1

2

—', )

—', )

1

2

—,')
3
2

3
2

—,')
3
2
1

2

—,')
—', )

3
2

—,')
—,')
—,')
—', )

3
)

—,')
1

2
3
2

—,')
I
2

8053

1806

3730

237

2997

873

301

35

62

593

56

647

12 548

9268

5955

126

955

441

618

898

2334

607

7006

37

4523

491

1769

452

3183

520

32

657

1133
AAAP

946

34073

1334

476

138

1097

2641

1409

270

2255

1217

867

gI „(eV)
9200+150

370+20

765+40

270+30

3510+70

1345+270

760+190

55+16

160+45

235+40

145+43

260+40

19700+1000

3790+380

9410+1410

325+97

1525+380

185+56

995+300

1450+180

3780+570

260+60

11405+900

98+20

1985%200

215+22

2905+435

200%60

5250+525

860+70

85+42

1090+110

1885+190

20451510

440+70

57 190+3900

625+180
225+78

235+70

520+78

1260+126

675+170

465%115

3860+770

591+160
2322+550
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TABLE I ~ ( Continued).

E (eV)

775.30

777.00

786.00

787.20

791.50

797.30

802.50

813.20

(2

1

3
2

1

2

3
2

—,')
1

2

1

2

3
2

3
2

v)

20 962

107

7284

903

2381

6561

2246

1242

gl „(eV)

30 755+2500

265+80

10820+650

325+5

3560%35

9870+98

3400+50

1905+34

E (eV)

932.30

934.20

934.75

938.85

939.90

942.00

941.00

946.50

1 J
(2

(2

1

(2

1

1

(2

(2

—,')
—,')
3
2

—', )

3
2

1

2

—,')
—,')

gy „(eV)

1125

1025

1907

3536

7878

795

1020

gI „(eV)

554+160

507+160

7961+900

952+280

6144+ 1200

13 714+2000

398+120

517+150

'All values of gyq„and gl „calculated for the R-matrix channel radius a, =6.4 fm.

We emphasize that the partial cross sections, and the cor-
responding phase shifts and scattering functions, have
been determined with little ambiguity for the s&/2, p&/2,
and p3/2 partial waves.

Also listed in Table I are the products gJI &„.

g,r,„=2P,(E, )g,y,'„. (3.11)

IV. AVERAGE PROPERTIES

The average properties of interest from the R-matrix
analysis are the level spacings, the strength functions, and

This quantity is often referred to as the observed width of
the resonance at Ez„. Actually, I &„may be quite
different from the observed width if there is strong in-
terference with nearby levels. For example, the —,

' reso-
nance with E& ——789 keV has I &„——5.41 keV but, as
shown in Fig. 4(a), this "width" is not easily identified
with an observed feature in the complicated multilevel
structure. Even in the absence of resonance-resonance
interference, the quantity I &„may not be independent of
the assumed boundary radius. Another consequence of
multilevel interference is that the "observed" resonance
energy may differ somewhat from E&, even though the
boundary condition has been set equal to the shift factor,
and that E& also depends on the assumed boundary ra-
dius. Even so, the scattering functions are well deter-
mined and are not functions of the boundary conditions.

the R'"' functions. The interest is related to statistical
and optical models.

A. Level spacings

An accurate measurement of the level spacings for
each J is dificult because the levels with widths smaller
than the experimental resolution width may not be ob-
served and, even if observed, may be assigned an in-
correct J in the subsequent analysis. In the present
case, however, the excellent energy resolution and small
backgrounds for ORELA, and the relatively large level
spacings apparent from Figs. 1 and 2 are such that few
missed or spuriously included resonances are expected for
the J"=—,'+, —,', and —,

' resonances. Therefore, the fol-

lowing corrections to the observed level spacings have lit-
tle uncertainty.

To correct for the missing levels we assume that the
observed reduced widths are drawn from Porter-Thomas
(PT) distributions and that no resonances are missed with

yz„greater than (yz„)/4. To perform this test's one

forms a subset of resonances with given J", beginning
with the largest y&„, and successively includes the next
smaller reduced width until the ratio of ( y&„) to
((y&„)'~ ) is the result expected for a sample obtained by

drawing widths larger than —,
' the distribution mean from

a PT distribution. The results of this test for the s, /2,

p&/2, and p3/2 resonances are shown in Fig. 5, where the

TABLE II. Average parameters for n+ ' Kr.

1+
21—
3—
2

1=2

Nobs

32
47
62
59

Nm

3'
3

4

Ij (keV)

26.2(21)'
18.8(14)
14.0(10)
14.8

0.022(6)
0.094(20)
0.27(5)
0.024'

SIJ

p(J (MeV ')

0.155
0.51

gobs
3

03
0.6
0.4

'Estimated number of missed levels, N, used in calculation of D». The numbers in parentheses are the
uncertainty estimates, e.g., 26.2(21)=26.2+2. 1.
See text for energy subintervals for which 63 was calculated. The expected 63 is 0.3(1) in every case.

'The best estimate for the d-wave strength function is r= g~ gJy'zl(5N' 'D&~).
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1+
21—
23—
2
3+
2

—0.16
0.65
0.95
0.0

R
b (Mev ')

0.07
0.1

—0.42

~ (MeV-')

—2.1

TABLE III. Parameters of the smooth R function, R.

0.02
0.2
0.05
0.2

DI~ =(E2 E—, )/(N'b'+N 1)—. (4.2)

versus energy for the s&/2, p»2, and p3/2 partial waves.
We have corrected for missing levels by including, for
each histogram, N levels selected arbitrarily from the
resonances in Table I with unassigned J .

Table II includes the number N' ' of observed reso-
nances, the number N of missed levels, and the average
level spacings defined by the equation

'Uncertainty in R at the midpoint of the region [E„Ez].

histograms are the observed distributions and the solid
curves are from the PT distributions deduced from the
above test in which the histograms are fit for

()'2) 1/2) (()'2) ) I/2/2 (4.1)

From the extrapolation of the solid curves to x =0 we
find N =3, 3, and 4 missed resonances for the —,'+, —,

'

and —,
' data sets, respectively. The dashed curves are the

expected distribution assuming no missed resonances.
Thus, even for the smallest data set (s, /z), fewer than
10% of the resonances expected in the 0.015 to 0.96 MeV
energy range appear to have been missed. The histo-
grams in Fig. 6 represent the cumulative number of levels

U=E+(S„—Uo), (4.3)

where S„ is the neutron separation energy, i.e., 5.2 MeV
for n+ Kr. The total density summed over J is

These average spacings are consistent with those report-
ed for other nuclei in this mass region.

Actually, it is clear from the slopes of the histograms
in Fig. 6 that the level spacings decrease with increasing
energy. These three data sets are among the most nearly
complete sets of resonances of known J available over a
suSciently large energy region that the expected energy
dependence in level density models can be studied. In
describing nuclear level densities, most works ' have
concentrated on the backshifted Fermi-gas model for
which the excitation energy U is measured from a fictive
ground-state energy Uo,

40

20

/0
A

xI-
50

v) 40
30

o~ 20
]0

0

60
50
40
30
20
10
0

0.5

0.5 1.0

1.0 1.5

1.5 2.0 2.5 3.0

40
LU

30

20

&0

0 0
70

60

La)

~ 4o
LLI

30

2O
C3

30

0
0.2 0.4 0.6

E (MeV)

0.8 1.0

1.0 2.0 3.0 4.0 5.0
&/2

x (kev )

FIG. 5. Porter-Thomas test for missing resonances. The his-
tograms represent the number of s, /2, p&/2, and p3/2 resonances
in n+ Kr with (yz)' greater than the abscissa. The dashed
curves correspond to results expected if widths are drawn from
Proter-Thomas distributions assuming no missed levels. The
solid curves are for 3, 3, and 4 missed resonances for s, /2, pl/2,
and p3/2 respectively.

FIG. 6. The cumulative number of observed levels vs neutron
energy for each partial wave, sl/2, p, /2, and p3/2 The curves
are calculated using the backshifted Fermi-gas model for the
nuclear level density. The level density parameters 0=8.5

MeV ' and UO=0. 25 MeV were determined by fitting the total
number of p3/2 resonances from 18 to 1000 keV and the low-

lying excited levels in 'Kr from 1.5 to 2.5 MeV above the
ground state. The dashed curve in (b) is obtained by adding
eight resonances to the solid curve for p, /2.
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X exp [—(J+ 2 ) /2cr ] . (4.5)

The energy dependence of the spin cut-off factor o. is
modeled as

o =0.0888&(aU)A' (4.6)

where A is the nuclear mass number. The two pararne-
ters a and Up can be adjusted to fit the observed number
of levels in two selected regions of excitation, one above
and the other below S„. For the bound region we use the
total number N'" of low-lying states reported by Raman
et al. for excitation energies between 1.5 and 2.5 MeV.
For the unbound region we could take the total number
of levels N( J"),corrected for missed levels, from any one
of the three distributions in Figs. 5 or 6; we choose
N( —,

'
) because the uncertainty due to missed levels is the

least for J = —,
' . Thus, the parameters a and Up are ad-

justed to satisfy the two equations,

N'" =f dU p„,( U) = 16, (4.7)

and

N( —,
'

) = ,' f d U—p3/2(U) =65, (4.8)

where the integrations are over the experimental domains
described above. The factor —,

' in Eq. (4.8) is a result of
the assumption that both parities for a given J are equally
represented. We find a =8.5 MeV ' and Up =0.25
MeV; the solid curves in Fig. 6 represent the resulting
calculated cumulative number of levels for J =—,'+, —,

'

and —',
We emphasize that, since the parameters of our model

have been chosen to fit the p3/2 histogram, the curves for
s&/2 and p»2 are predictions. The quality of the predic-
tion for each curve can be judged by comparison to the
error bar, which represents the uncertainty expected for a
Wigner distribution of levels spacings. We see that the
prediction is good for s&/2, however, for p, /2 there is an
excess number of resonances in the region from 500 to
600 keV which produces a step in the cumulative number
of observed resonances which is not described by this
model. One possible explanation of this failure of the
model could be that the model J dependence is incorrect.
On the other hand, the failure could result from an
unusual nonstatistical behavior in this energy region. In
fact, in the following paragraph we show that the distri-
bution is nonstatistical. If we assume that to be the case
and add eight resonances to N( —,

'
) at 600 keV we find

the cumulative number of resonances represented by the
dashed curve in Fig. 6(b), where the level density above
the step is calculated using the same level density param-
eters as for the solid curve below 500 keV.

The above statistical analysis based on the PT distribu-
tion gave no hint of an unusual behavior in the 500—600
keV region because that test is insensitive to the reso-

p«, (U) =(12&2o ) 'a ' U ~ exp[ —2v'(aU)], (4.4)

and the density for a given J is

pJ( U) =(2o') 'p«, ( U)(2J +1)

nance spacings; however, the Dyson-Mehta h3 statistic
is sensitive to the spacings. For this test one assumes that
the levels of a given J are drawn from a population
(Wigner distribution) of level spacings with constant
mean. Since the level density varies with energy, we
divide the region 0 to 960 keV into three subintervals and
apply the h3 test to each subinterval, namely, 0—300,
300—600, and 600—960 keV. The resulting average h3
statistics are given in Table II. For J =—,

'+ and —,
' they

are consistent with the results expected if few resonances
are missed or spuriously included in those data sets. For
J =—,', however, the value of 63——0.6 is twice the ex-
pected value, 63——0.3+0.1; this is a consequence of the
unusual density in the region from 500 to 600 keV. In
fact, any subinterval including the 11 resonances between
500 and 600 keV results in values of h3 approximately
four times the expected value. We have carefully studied
the R-matrix fits in this region and conclude that the two
resonances at 523 and 524 keV might be other than —,

'

but, if so, they must have J& —,
' because those two do not

show interference with the nearby broad —,
'+ resonances.

The assignments for these two resonances are marked as
uncertain in Table I but are included as —,

' in the follow-

ing discussion since removing either or both does not im-
prove the h3 statistic. The possibility of a doorway in
the p»2 channel near 550 keV will be discussed in Sec. V.

With the exception of the unusual "step" in the p&/z
cumulative number of levels, the backshifted Fermi-gas
model is seen to give an excellent description of all three
data sets. The values for the parameters a and Up found
here are consistent with systematic trends ' in this
mass region. The present value of a is significantly small-
er than the value 9.7 MeV ' found by Raman et al.
based on their measurements and analysis over a smaller
neutron energy range, 0 & E & 0.4 MeV.

B. Strength functions

The strength functions sIJ are the slopes of the cumula-
tive reduced width versus energy distribution shown in
Fig. 7 for s-, p-, and d-wave resonances. We have not
corrected these strength functions for missing levels since
our estimate of the effect of missing a few small reso-
nances is less than 1% of the observed strength. We
present in Table II for J =—,'+, —,', —,

' and for l =2 the
strength function parameters a&& and P~z [see Eq. (3.9)].
We note that for s waves a constant strength is an ade-
quate description of the data while for the the p waves an
energy dependence is required. The increase, PIJ &0, in
the p-wave strength functions is expected if the 3p single-
particle state is just unbound at mass 87. In fact, the 3p
state is bound near mass 95, i.e., where the p-wave size
resonance has its maximum. Qualitatively, the effect of
the spin-orbit interaction is to move the 3p3/p size reso-
nance downward in mass toward Kr and the 3p&/2 reso-
nance upward away from Kr. Thereby, the p3/2
strength function is increased relative to that for p»2. As
discussed in Ref. 7, the observed difference in strength
apparent from Fig. 7(b) is about 50% larger than predict-
ed from a model with a standard spin-orbit term.
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In Fig. 7(c) the histogram labeled d is the quantity

gy&/(2I +1) summed over l =2 resonances, except for
the broad d3/2 resonance at 526 keV. In other words, the
sum extends over all resonances which have definite I =2
assignments but which could be assigned either d3/2 or

d5/2. The curve represents a linear approximation to the
histogram and the slope of this curve is an estimate of the
d-wave strength function. Since there are no definitive
assignments with J=—,', this slope provides the best esti-

mate for the d5/2 strength function. It ~ould also pro-
vide the best estimate for d3/2 if the broad d3/2 resonance
at 526 keV had not been in the range of this measure-
ment. The histogram labeled d3&z in Fig. 7(c) includes
the d3/2 resonance at 526 keV. The line is a linear fit to
the histogram, and the slope of this line is an estimate of
the d3/p strength function. Clearly, the reduced width of
this single resonance is unusually large; it corresponds to
about 2% of the Wigner limit. The probability of draw-

ing a level of such large width from a PT distribution is
less than 0.05%. We made many attempts to fit this ob-
served resonance pattern by replacing the d3/2 level by
other combinations of levels and assignment; however, we

found it impossible to fit in this region with any other as-
signment. In Sec. V this resonance is discussed as evi-
dence for a doorway state in the d3/2 channel.

C. Conventional de6nition of the strength function

In reporting strength functions it has been convention-
al to report a quantity, ( I'„)/DIJ, which is proportional
to the product of the boundary radius and the strength
function,

(I '„)/D,J=(4.39X10 )(A/A+1)a, s,J . (4.9)

For s-wave neutrons at low energies this definition has
the virtue of being independent of the boundary radius.
In general, even for s waves, that invariance does not
hold at energies of a few hundred keV; however, it does
hold approximately in the present case. Furthermore, it
is reasonable to assume the s-wave strength function to be
independent of energy for n+ Kr. Hence, for s waves
we find the conventional strength function,

So ——( I'„)/Do ——(0.61+0.17) )& 10, 0 & E & 1 MeV .

(4.10)

10

(a}

This result agrees with the estimate by Raman et al. ,
(0.9+0.4) && 10—'.

For p waves, the invariance with respect to a, does not
hold at any energy, except perhaps by accident. At very
low energies, for example, the imaginary part of the p-
wave scattering function is a definite quantity and is ex-
pressible as

Im(SIJ ) =2trk a, s&J, (4.11)

I
UJ

lU

N
IQ~

150-

100-

(b}

~ ~ I

leading to the conclusion that the invariant quantity for
I =1 at low energies is (a, s&z), not (a,s,z). At higher en-

ergies the dependence on the boundary radius is different.
Thus the "observed" energy dependence in s&J(E) de-
pends in part on the chosen boundary radius. For Kr
the optical model analysis presented in Ref. 7 makes clear
that the observed tiz(E) increases too rapidly with energy
to be describe by an optical model with any reasonable
boundary condition. This is discussed in Ref. 7 as evi-
dence for a doorway in the —,

' scattering channel.

D. g and R'"' functions

(c}

10-

0
0 400 600

E (keV}

FIG. 7. Cumulative reduced widths for s- and p-wave reso-
nances. The histograms show the summation of observed re-
duced widths and the smooth curves are least-squares fits of the
integral of the strength function, Eq. (3.9), to the cumulative re-
duced width. The parameters alz and P&J are listed in Table II.

The solid curves in Fig. 8 represent the external R
functions R'"'(E) which are calculated from Eq. (3.8) for
the s, /2 p]/2 p3/2 and d3/2 partial waves using the pa-
rameters listed in Tables II and III. Those parameters
were deduced primarily from the observed interference
patterns for a few broad resonances for each partial wave.
Reliable parameters are found in this manner even if only
one or two large resonances exist in the region of
analysis, as in the case of the d3/2 resonances at 525 and
834 keV. The uncertainties in R'"', which are represent-
ed by the vertical bars in Fig. 8, have been estimated
from the change in resonance asymmetry andjor off-
resonance cross section resulting from small changes in
the assumed parameters. Shown in Fig. 8 as dashed
curves are the smooth functions RIJ(E). For p waves the
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0$—

)~ 0- S1/2

strength function, which comes from the average reso-
nance parameters, is closely related to the imaginary part
of the mean field whereas the R function, which comes
from the nonresonance scattering, is more closely related
to the real part of the field. Further discussions relating
these empirical functions to the mean field of Kr are the
subject of Ref. 7.

U. DOORWAYS

1.0—

0.5—

0-
I

2M
I

400
I

600
I

800

E {keV)

FIG. 8. Empirical external R functions R'"' (solid curves),
deduced from the R-matrix analysis, and the corresponding
smoothed R functions R (dashed curves). The curves represent
Eqs. (3.8) and (3.10) and the parameters aIJ, b~J, and cI& are list-
ed in Table III. Representative error bars for R'"' are shown at
selected energies.

R'=a, [1—R, I/2(0)]=7. 62 fm, (4.12)

and is independent of the choice of the boundary radius
a, . This value of R ' agrees well with the values reported
for other nuclei in this mass region.

E. Average scattering functions

The primary interest in the function R (E) and in the
strength function s&z(E) is related to the average scatter-
ing function (S&z(E) ) because (SIz(E) ) can be calculat-
ed to a good approximation' ' from a simple expres-
sion in R (E) and s&z(E):

where

[1+iPI(E)R(J(E)]
IJ E (4.13)

RIJ(E)=RIJ(E)+inslJ(E) . (4.14)

Qualitatively, the empirical functions R(E) and sIJ(E)
play parallel roles in determining the average scattering
function; both are needed to determine both the real and
imaginary parts of (SIJ(E)). In like manner, both are
needed if one wishes to interpret (S&J(E)) in terms of a
mean field, i.e., an optical-model potential. Often the

energy dependences of these functions are correlated with
that for the parametrization of the strength functions
s&z(E); however, for s waves, there is little uncertainty in
R.

The s-wave potential scattering radius R is determined
from the R function evaluated at E=0,

An unusually large concentration of reduced width in a
relatively narrow energy interval is often associated with
doorway structure. In fact, concentrations of reduced
width are observed in Fig. 7 for s&/z (E=0.125 MeV),

p, /z (E=0.7 MeV), p 3/z (E=0.6 MeV), and d 3/p
(E =0.525 MeV). In the case of the p3/2 the concentra-
tion of reduced widths near E=0.6 MeV tends to be ob-
scured in the figure by the smooth curve. However, this
curve is empirical; it is based on a strength function [Eq.
(3.9) and Table II] with a large energy coeScient which is
inconsistent with an optical-model description. The
more reasonable strength function calculated from an
optical model increases much more slowly with energy
and is consistent with the observed strengths both above
and below the "doorway. " The most likely —,

' doorway
would arise from the 1g7/2X3 particle vibration. The
deformation parameter for the 3 state at 3.10 MeV in

Kr is quite large, 0.142. Coupling with the large g7/2
fragment at —3.00 MeV in Kr would produce a door-
way, in first approximation, near 0.1 MeV. A —,

' door-
way would also be expected from the 1g7/2 &(3 particle
vibration; however, there is only a small concentration of
p, /2 reduced widths observed near E=0.7 MeV. On the
other hand, in Fig. 6 there is observed an unusually high
density of p&/2 levels near E=0.55 MeV. However, in
this case the resonances are very narrow. In fact, the
average reduced width of the eight smallest of the eleven
observed p, /2 resonances between 0.5 and 0.6 MeV is less
than 10% of that for the full energy region.

The small reduced widths in the possible p-wave door-
ways can be understood to result from the fact that the
p-wave radial wave functions for E=0.6 MeV neutrons
have nodes near the nuclear surface. In Fig. 9 the curves
represent the s , p-, and d-wav-e radial functions calculat-
ed at E =0.6 MeV for the real part of the optical-model
potential which is developed in Ref. 7. There are two
curves each for p- and d-wave neutrons as a consequence
of the spin-orbit interaction. The vertical line is drawn at
the radius of the real Woods-Saxon potential. Since the

pl/2 function has a surface node, the reduced width for a

p»2 doorway is expected to be small because the
particle-vibration coupling is concentrated near the sur-
face. For the same reason, the p3/2 doorway woold be ex-
pected to have somewhat larger, but still small, reduced
widths. This significance of the position of the radial
node was pointed out by Horen et al. in connection
with a coupled-channel analysis of the n+ Pb reaction.
The appearance of narrow, closely spaced resonances due
to a weak residual interaction is similar to the fine struc-
ture reported ' in isobaric analogue states excited in
(p,p) reactions. In the case of isobaric analogue states it
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FIG. 9. The radial wave functions for p waves (solid), s waves
(short-dashed) and d waves (long-dashed) calculated at 0.55
MeV for the real part of the optical potential developed in the
Ref. 7. The figure demonstrates that the p-wave functions have
nodes, whereas the s- and d-waves have antinodes, near the nu-
clear radius, which is represented by the vertical line.

is the weak coulomb interaction which is responsible for
the large number of observable levels with small widths. '

As shown in Fig. 9, the s- and d-wave radial wave func-
tions have antinodes in the vicinity of the nuclear surface.
Hence particle-core interactions would be expected to
produce relatively large reduced widths in the doorways.
Both —,

'+ and —,
'+ doorways could be formed near 0.3

MeV by coupling the 1g7/2 single-particle fragment with
the 4+ state reported at 3.33 MeV. In the case of s»z
the strength function near 0.125 MeV is more than twice
that above 0.4 MeV. In Fig. 7(c) for d waves the in-
creased reduced width at 0.526 MeV is concentrated in a
single resonance rather than distributed over several reso-
nances. This suggests that the interaction is so strong
that the spreading of the underlying levels exceeds their
spacings such that their amplitudes add to give a "single"
resonance. It is reasonable to expect a corresponding in-
crease in the d5/2 channel, but none is observed in Fig.
7(c). An alternative interpretation is that the isolated
d 3/2 resonance is a fragment of the single-particle 2d 3 /2
state, which is concentrated mostly at about —2.5
MeV. The resonance has about 2% of the single-
particle width.

The neutron transmission measurement reported here
provides the total neutron cross section from 15 keV to
25 MeV. For these data, R-matrix analysis provides
strength functions, external R functions, and level densi-
ties just above neutron binding in the n+ Kr system.
The reduced widths y& and the external R function
Rt'J"'(E) provide a precise description of the scattering
functions StJ(E) for the s, &2, p, zz, and p3r~ scattering
channels. The scattering functions for p&/2 and p3/p
show the effects of the spin-orbit potential and also the
effects of the 3p single-particle orbit, which is just un-
bound for nuclei in this mass region. In Ref. 7 the aver-
age scattering functions (Stj(E) ) are found to be well de-
scribed by an optical model which is based not only on
analyses of scattering data at energies of several MeV but
also on the known level structure of the bound stat;es in

Kr.
Statistical arguments show that very few s»z, p &/2, and

p 3/2 resonances have been missed in the high-resolution
experiment or misassigned in the subsequent R-matrix
analysis. Therefore, the observed level densities in these
three channels make a detailed analysis possible in terms
of the backshifted Fermi-gas model.

Evidence is found for possible doorway states near
E=0.55 and 0.65 MeV for the p»2 and p3/2 scattering
channels, respectively. However, these two structures ex-
hibit very different characteristics. The p3/2 structure
has the familiar doorway character of a concentration of
reduced width; however, the p&/2 structure is a local con-
centration of levels with quite small reduced widths. This
difference in character is interpreted in terms of the
difference in radius of the nodes in the radial wave func-
tions for the two partial waves.
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