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The photodisintegration of the deuteron is investigated with emphasis on the differential cross
section D(y, p)n in the forward direction. However the angular distribution as well as the y asym-

metry are also given. The calculation takes relativistic, pion exchange, and 6(1232) corrections into

account. Nonlocal nucleon-nucleon interactions are treated in a manner in which gauge invariance

is respected. The differences between various approximations beyond the Siegert limit are dis-

cussed. The role of the D-state probability of the deuteron in the forward direction is studied and

the difference of two gauges before and after the inclusion of various corrections are presented. Fi-
nally a comparison with experiment is carried out.

I. INTRODUCTION

There is a well-known discrepancy between the
theoretical forward differential cross section for the pho-
todisintegration of the deuteron D (y,p )n calculated in

the nonrelativistic impulse approximation (NRIA) and
the experimental value. ' Partovi wrote the general ex-
pression for the photodisintegration amplitude in the
nonrelativistic impulse approximation for arbitrary mul-

tipoles of the radiation field. However, for photon labo-
ratory energies above 20 MeV, Partovi's prediction for
the forward direction scattering cross section is 20—30%%uo

larger than the experimental values. ' Although the
failure of the simple nonrelativistic impulse approxima-
tion in this energy region is not surprising, the magnitude
of the discrepancy is startling. It signals the importance
of corrections, such as (1) relativistic effects, (2) mesonic
+ b, (1232) effects, and (3) short-range corrections. In

addition, it is commonly stated that the forward direc-
tion differential cross section of the photodisintegration
of the deuteron is sensitive to the D-state probability of
the deuteron. Since the theoretical forward differential
cross section still lies above the experimental value' for a
detailed analysis and calculation with the Paris poten-
tial, we have investigated the possibility of further re-
ducing the theoretical cross section in the forward direc-
tion by using the one boson exchange coordinate-space
(OBEPR) Bonn potential which has a low D-state per-
centage (4.8%) but which was derived from a sound one
boson exchange theoretical model, and gives reasonable
fits to both bound state and scattering data.

Cambi, Mosconi, and Ricci were the first ones to in-
vestigate relativistic corrections. They found that the ap-
plication of the well-known spin-orbit and Darwin-
Foldy' terms in the charge density significantly reduced
the discrepancy between theory and experiment. These
terms were generated through the Foldy-Wouthuysen
(FW) transformation of the relativistic charge density
operator. More recently a more thorough treatment of a
relativistic correction has been carried out by Jaus and
Woolcock. " It is based on a Blankenbecler-Sugar'
reduction of the Bethe-Salpeter equation with the spinor

reduction carried out to O(m~ } for the charge and
current densities. Similar work with different approaches
have been done by other authors. ' We use the results
given by Jaus and Woolcock" in this paper.

The meson and 5 resonance corrections to the process
D (y,p)n have been investigated by various au-
thors. ' ' The pion current correction has been
universally used. Issues have been raised with respect to
pion charge density; all center on the consistent treat-
ment of the pion exchange for both the long distance NN
and the electromagnetic interactions. The pseudoscalar
(PS) and pseudovector (PV) couplings of a pion with a nu-
cleon are equivalent to lowest order in the coupling, as
can be shown by a FW type unitary transformation'
(Dyson transformation). However, the equivalence is
broken in the presence of an electromagnetic interac-
tion. ' Many studies have been gathering evidence in
favor of PV coupling both for the NN interaction, as
well as for the electromagnetic interaction of the NN sys-
tem with the radiation field. ' The leading contribution
from the lm. exchange terms to the NN potential (static
term} are the same both for PS and PV coupling. Howev-
er, the retardation parts are different. These differences
can be compensated by a unitary transformation of the
short-range part of the NN potential such that both the
NN phase shifts and the deuteron properties fit the exper-
imental values. Most of the phenomenological NN poten-
tials do not distinguish between PS and PV coupling; the
retardation is either dropped completely or only partially
included. Even for the OBEPR (Ref. 8) Bonn potential
the retardation part is dropped, although the full model
in momentum space includes all of the retardation in PV
coupling. Fortunately, this unsatisfactory situation can
be circumvented perturbatively in a reasonable way by in-
troducing an additional effective charge density. " How-
ever, a more satisfactory treatment would rely on a more
realistic NN potential (with PV coupling and retardation
effects taken into account). The b, (1232) contribution
also needs to be included for a complete description of
the D (y,p }n reaction. It reduces the difference between
theoretical and experimental values of the angular distri-
bution and the y asymmetry. '
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II. IMPULSE APPROXIMATION

For the photonuclear interaction, the Siegert theorem
is of prime importance at low energies. The theorem
states that

lim H,' = —lim f d x A(x) [Ho, D'"(x)],
qo 0 qo 0

D (x) =xpNat~(x)

(2.1)

(2.2)

where H,' is the interaction Hamiltonian of the radia-
tion field with the nucleon system, pNR&z is given by
(2.3a) below, qo is the photon energy, and Ho is the
strong interaction Hamiltonian of the system.

A straightforward calculation of the photonuclear pro-
cess with the NRIA charge and current density for point
nucleons, given by

A

pNRtdx)= g e &(x—r }
a=1

(2.3a)

A

JNRIA(x}= g e [&(x—r )p +p 5(x—r )]
mN a=[

A

+ g p V„5(x r))&o—
2mN a=

(2.3b)

For consistency, gauge invariance has to be respected.
The nonlocality of the NN potential breaks gauge invari-
ance and this needs to be restored in a reasonable way.
As shown in Ref. 19 there is no unique way to write down
a gauge invariant NN potential if one does not start from
first principles. Because most of the NN potentials are
semiphenomenological, a choice for restoring gauge in-
variance has to be made. We adopt the choice of Parto-
vi which is called minimal substitution.

In Sec. II we discuss the impulse approximation (IA),
including the Siegert limit, the gauge fixing function, and
the relativistic corrections to the one-body charge and
current densities. Section III deals with one pion ex-
change and b, (1232) resonance contributions to the
charge and current densities. In Sec. IV, the minimal
substitution for the nonlocal NN potential is discussed.
The current density generated from such a procedure is
presented in a general manner. Section V contains a dis-
cussion of our results and conclusions.

Based on the success of the application of Siegert's
theorem, several approaches have been attempted at
higher energies (shorter wavelength) where retardation
effects become important. These approaches can be
classified into two categories: (1) Start with analyzing the
radiation field. ' (2) Start with analyzing the current.
In this paper we examine these approaches from a gauge
transformation point of view.

In quantum electrodynamics (QED) the gauge trans-
formation is

A'= A+ VA,

lim A(x)=e x,
q0~0

(2.6)

the nonrelativistic current (2.3} has the Siegert limit ex-
pressed by (2.1) and (2.2). In deriving (2.1}we have used
the dynamical relation qoD' "(x)= [Ho, D' "(x)],which is
valid for matrix elements. From (2.4), (2.5), and (2.6) it
can be seen that there are an infinite number of gauge
choices which lead to a Siegert limit. In principle, it
should make no difference for the final result at low ener-
gies. However, since in the NRIA J„ is not necessarily
conserved the choice of gauge does become important.

In the following we list several choices for A(x):
a. Foldy gauge:

e ieAy

(P, A), (P', A') should be understood as the matrix ele-
ments of the corresponding field operator between the
vacuum state (0

~

and the transverse photon state

~
qe~), and A is an arbitrary function of x; the time

dependence, e ' ', is suppressed in the following discus-
sion. The interaction Hamiltonian H,

' of the nucleon
system is invariant under such a transformation

H,' = — xA' 'x Jx
=fd'x[ —A'(x) J(x)+P'(x)p(x)], (2.5)

where the superscript T on A indicates it is in the trans-
verse gauge. It is easy to show that if, and only if,

and in the transverse gauge for this radiation field, A(x) =@~.x
e'q "—1

i q.x

A(x) =ee'q *,
P(x)=0,

(2.4a)

(2.4b)

=e, xf 'dse"q*
0

=ez x[1+—,'iq x ——,'(x q) +O(qo)], (2.7)
does not satisfy the Siegert limit as qo~0; it also leads to
too small a value for the matrix elements. Meson ex-
change effects are required to restore gauge invariance.
However, meson exchange processes are not well defined
with a phenomenological potential. At low energies, it is
possible to minimize the effects of meson exchange by use
of Siegert's theorem, ' since the nuclear charge density is
known much better than the current density. The two-
body contribution to p is of order O(qo/mz), where mz
is the nucleon mass, whereas the two-body contribution
to J is of order O(qo/m~).

b. PartoUi gauge:

A( ) ~DJ (0 g ~)
2n(2J+1)
J(J+1)

' 1/2

~ J—1

X
90

1+x jJ(qox}YJ (x)

z a[1+x—,'—iq. x.——,'[q x +(x.q) ]+O(qo)I,

(2 &)



1586 SHUQIAN YING, E. M. HENLEY, AND G. A. MILLER 38

c. Friar and Fallieros (FF) gauge:

2m(2J +1)(J +1)
J,m J

(
~ I—lX,x gz(qox}Y~ (x)2J+1!!

=—el„x[1+—,'iq x ——'(x q) +O(qo)],

' 1/2

(2.9)

ments defined by Eq. (52) of Partovi with those comput-
ed in the FF gauge; they are quite similar at 20 MeV.
From the similarity of the right three and left three
columns of Table I we can see that gauge invariance is
maintained at small photon energies.

The expressions we used for the electric and magnetic
multipole operators Tz' (q) and Tz 's(q) in the FF Gauge
are

where k is the photon helicity (kl) and the special func-
tion gz(x) is defined in Ref. 23. The three gauges of Eqs.
(2.7)—(2.9) have the same two leading terms for small qo.
Commonly, the Partovi gauge is used; the Foldy and the
FF gauges are the same gauge in di8'erent forms; as was
pointed out in Ref. 23, they have the good theoretical
property that A'(x) projects out from J(x) only the mag-
netic part while other gauges always leave some of the
charge part of J, which can be determined from the
charge density through th(: continuity equation, in the
A'.J term rather than in the charge density. Thus our
knowledge of pNR, ~, the nonrelativistic one-body nucleon
charge density, is optimized in the FF gauge. The Parto-
vi gauge dift'ers from the other two gauges in terms of or-
der qo and higher. In Table I we compare, for the Harna-
da Johnston potential, the reduced electric matrix ele-

I

J—1

Tel
Jm q =

(2J+ I)!!
' 1/2

p(x)x Yz (x )gj(qx)

2 2

+ p(x) Yzz(x)x hz(qx)J+2

Tz 's(q)= fd x J(x) Yzz(x )jz(qx ),
(2.10}

(2.11}

where y(x) = —,'x XJ(x), p(x) = (d /dt)p(x), Y~~(x )

= I l&J (I+ I )LYz, L= i x )&—V„. For the NRIA
charge and current densities (3.3), (2.10) becomes

J—1

Tel
(

' 1/2
/+1—q J

'J Jr, q v'J(J+ I) r
g~( ,'qr)F~ + ——hq( ,'qr}Y~-

q2
h, (-,'qr )[Y,s L)'

2m~ J+2 2

pS/Uq 2

+
2m~ J+2

J
r hz( —,

' )+(J+2) —hz( ,'qr ) [ Yl—gX]
2 GT

J (2.12)

TABLE I. Reduced matrix elements in FF (left) and Partovi (right) gauge. In this table, L is the multipole order, j is the final-state
total angular momentum, and A, labels different couplings.

LjA,

103
112
114
121
123
211
213
222
224
231
233
321
323
332
334
341
343

20 MeV

—11.52
—0.26
38.83

—33.31
21.25

—0.03
—1.76
—0.12

2.84
—2.61
—1 ~ 50
—0.05
—0.16
—0.00

0.23
—0.13

0.19

FF gauge
V' '(Aj)(10 ' Fermi)

40 MeV

—2.28
—0.37

14.95
—3.35
13.56
0.00

—1.39
—0.37

1.62
—2.53
—0.17
—0.07
—0.29
—0.01

0.46
—0.03

0.48

140 MeV

—1.47
—0.37

8.59
1.34

10.94
0.01

—1.17
—0.43

0.97
—2.07

0.39
—0.08
—0.37
—0.03

0.56
—0.01

0.74

Ljk,

103
112
114
121
123
211
213
222
224
231
233
321
323
332
334
341
343

20 MeV

—11.58
—0.25
39.05

—33.59
21.47

—0.03
—1.78
—0.12

2.86
—2.64
—1.52
—0.05
—0.17
—0.00

0.24
—0.13

0.19

Partovi gauge
V'L'(Aj)(10 ' Fermi)

40 MeV

—2.39
—0.37

15.53
—4.36
13.94
0.04

—1.34
—0.37

1.65
—2.54
—0.13
—0.05
—0.23
—0.01

0.38
0.03
0.47

140 MeV

—1.53
—0.38

9.09
—0.06
11.35
0.14

—1.04
—0.41

0.76
—1.99

0.58
—0.05
—0.26
—0.02

0.45
0.09
0.77
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the tensor operator [T»
'

T~
'

] of rank J is defined as

[T 'ST '] = g (ktq, ;k2q2 I
Jrn )T 'T ' .

The quantity X in Eq. (2.12) is X=S&+S2 or S& —S2 de-
pending on the transition, gJ(x) and hJ(x) are defined in
Ref. 23, (k, q„k2q2 I

Jm ) is a Clebsch-Gordan

coefficient, and Tq Tq are tensor operators of rank

k, , k2, respectively. The reduced matrix element of TJ"
and its relationship with the cross section are given in
Appendix A and that of TJ 'I can be found, e.g. , in Ref.
2. The relativistic correction to the charge and current
densities needs to be included, and leads to an important
reduction of the forward differential cross section. There
are two kinds of relativistic corrections: (1) terms gen-
erated from the spinor reduction of the charge and densi-

I

pRc(x) =pRc(x)+ p2Rc(x),

JRC(x) JRC(x)+ JRC(x)

with

(2.13}

ty operators (FW transformation), and (2) terms generat-
ed from the boosting of the initial deuteron wave function
from the rest frame to the c.m. frame of the reaction in
which the deuteron moves with a velocity q/Mz. This
transformation can be treated effectively as an additional
current density between the initial and the final state
wave functions in the c.m. system. For a low-energy pro-
cess, the second correction is expected to be very small.
Therefore, only the first part of the relativistic correction
is considered in this paper. The coordinate space charge
and current densities to 0 (m ) in the c.m. systems are

zc ~~ r 2K&+e& r
2

p", (x)=e, 5 x ——+ V„5 x —— .o, Xp,
8m~ 2 4~~ " 2

(2.13a)

zc r
J) (x)= —

2 iV„5 x ——+25 x——icr, X p
4 2 x

e, r 2 r r+, —25 x ——pp +V„5 x —— pcr~Xp+o~XV„5 x——p
4mN

X

K) r
V» 5 x— po' ) 'p,

4m~3

(2.13b)

and where p = i V, e, =——,'(1+v;, ), Ic; =—,'(ic, +N„r,, ),
1+a., =1M +Ic„,1+~„=IM —I2„. The quantities pz and

J2 are obtained from Eqs. (2.13a} and (2.13b) by the
transformation 1~2, r~ —r, and p~ —p. The c.m.
coordinate has been removed from the 5 function; it gives
total momentum conservation. The first term in p is
known as the Darwin-Foldy term and the second one as
the spin-orbit term. For a detailed multipole analysis in
the long wavelength limit, we refer the reader to Appen-
dix C of Ref. 26.

currents are

2

J(SG)= i
2
—(r) X r2),

.fnNN

m

ol(o2 k2)

co (k2) ——,'qo co (k, )——,'qo
(3.2)

2 cr, k, o2 k2
J(mC)=i (r, Xr2),

m„ [(~'«i) ——,'qo )][~'(k2)——.'qo }1

III. ONE PION AND 5(1232) CONTRIBUTIONS

X (k) —k2), (3 3)

Both pion and b,(1232) current contributions are im-
portant for a consistent and reliable treatment of the elec-
tromagnetic interaction with the nuclear system. As has
been discussed in Sec. II, the two-body contribution to
the charge density is of O(mN ') times smaller than to the
current density. Thus in considering these terms, more
care has to be taken in order to keep the calculation con-
sistent. In the PV coupling scheme the pion contribution
is expressed by the diagrams of Fig. 1.

The pion current is the summation of the seagull con-
tribution, Figs. 1(a) and 1(b) and the pion current contri-
bution, Fig. 1(c)

(a)

I N
P, T

I

my kp
I N

Pp

N Ii
Pl

N II
Pp

(b)

N ii
Pl

II
Pp

I N
Pl T

1

N g N
Pp

(c)

N N I
P,

Y "kl~l
N, ~2 N

P, —
P&

JPv=J(SG}+J(mC) . (3.1)

In the c.m. system, to leading order in m~ ' these

FIG. 1. One pion exchange contribution to J," . (a) and (b)
are the seagull term contributions and (c) is the pion current
contribution.
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where k, =p", —p'„k2 ——p2' —p2, and p' (p,') are the final
(initial) momentum of the ith nucleon, co (k)=k +m„;
the ——,'qo term in the denominator is an approximation
that results from the on-shell treatment of the nucleon in
the deuteron. We expand J(SG) and J(AC) in terms of
the photon energy qo, keep only terms up to 0 (qo ), and
use variables p, q which are related to k„kz by

p+ 3.
2

'

p+ 3.
2

'

where q is the momenta of the photon and p is the
difference between final and initial relative momenta of
the two nucleons. The result of the expansion is

f2

J(SG)= &'(T1XT2), j(crio2 p+cr2cr, p)[co '(p)+ —,'(qo —q')co '(p)+(p q)'co '(p)]
m~

+(o lo2'p o1 po2)p "q (p) (o lo2'p o2o 1'p)~ (p}

—2(oio2 q+oi qo2)p q~ '(p}I
22f NN . —4J(nC)= —.

2
i( T, XT2),p[[ rc, po2. p —

—,'(cr, .pcr q —o, qcr2. p}—,'cr, .qcr2 q]co (p—}

(3.4}

+ o1 po2 p('qO q~) (p)+o 1 pcr2 p(p. q}'co '(p}J

Following Ref. 26, the one pion exchange charge density with PV coupling in the quasipotential formalism is

P( 1 m E ) =P(SG)+P(m C)+ bP, +DP2

2fnNN
I T1 T2co ('p )( cr, po 2 q —o, qcr 2 p )

4m„m'

+ 2 (T1 +T2, )co (p}(cr, pcr2 q —o, qo 2 p)+ —,'(T„—T2, )co (p)(o, pcr2 q+cr, qo 2 p)

+—„(T1 —T2 )[co (p)(cri pcr2 q+cr, qo 2 p }—2' (p}cr1 pp q]

——,'i(T1 XT2),co '(p)[o, .qo 2 (2p'+p)+o, (2p'+p)o 2 q]

+i(T1XT2) ~ (P)[2P q(o1 Po2 P+ol P o2 P+ol Po2 P } ol Po2'P(2P +P}'q]I

+(f~NN lm'„}i(T1XT2)z gqo[co '(p)(cri'pcr2 q+cri'qcr2'p) —4co '(p)cri'pcr2'pp'q]

(3.5)

(3.6)

Here p(SG) and p(m. C) come directly from the diagrams of Fig. 1, hp2 is the piece of the effective ln charge density
that results from the 2m exchange contributions in the quasi-potential formalism, part of which is important for the
conservation of the total current (See Refs. 11 and 26), and Ap, is the effective charge density resulting from the pertur-
bative modification of the In. part of the potential (Bonn potential in this paper) by adding the terms of order mN in
the 1m exchange potential between nucleons. "

The b, (1232) contribution to the current is expressed diagrammatically in Fig. 2. The b, propagator used in this pa-
per takes the form

i(Y P +m)a
D Ap' —m'+is (3.7)

1
Apv= gi v+ g YpYv+ 2

('Y PYpPv+PpYv'V P)

The yX —+5 vertex is

I $„= ie (YÃ— Yqgi.„)Y, , —NLL - y Nh
(3.9)

and the A~Nm vertex is

phdP
fa.N

m
(3.10)

where p, q, and k are the 4 momenta of 6, y, and m.. For simplicity the isospin operators have been suppressed in Eqs.
(3.7)—(3.10). There are no contributions from Figs. 2(a) and 2(b) because the initial deuteron has total isospin zero; thus
only Figs. 2(c) and 2(d) are needed. The current and charge densities in the c.m. system follow from the b, propagator
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and vertices. After making the spinor reduction, keeping only the leading order terms in m&
' and in m &

' but quadra-

tic in q and q0, we obtain

f~]v]vf.]vlf Twc,
3mMa

2m~q0
2 2

my —mN

and

X [~-'((p)[—aiqXp(o] —o2) p —bp q(o]o2 p —o] po2)+bp(o] qo2 p —o] po2 q)]

+co (p)[ ——,'aiqXp(cr]+cT2) q+ —,'bp q(o]cr2 q+cr] qo2)

—bpcr, qo'2 q ——,'bq(o, qo2 p+cr] po2.q)+ —,'(bq —2bqo)(cr, o'2 p+o'] po2)]

+a] (p)[ap.q(iqXp)(cr, +o2) p —b(p q) (cr, cr2.p+cr, pcr2)+bp(p q)(cr, .qo2 p+o, po2 q)]I,
(3.11)

f wxf ]vcfrwc, , 2m]veo
1z T2z

m ~Nmg m g —m]v

Xco '(p)[a]q (pxp')(cr]+o2) p —bp q(cr] p'cr2 p+o] pcr2 p') —( bp' p+—pe')

X(o] qo2 P+o] Po2 q}—dp qo] Po2 P blomN(o] qo2 P+o] Po2 q}] (3.12)

where

2Q= 1—
3

mN
1+

mg

1 1—
3 m&

t —1

1 m~e= —1+
6 m~

The multipole decomposition of the charge and current
densities (3.4), (3.5), (3.6), (3.11), and (3.12) are given in
detail in Ref. 26. [There is a misprint in Eq. (2.15) of that
reference. The sign for the term linear in q should be re-
versed. ]

IV. MINIMAL SUBS'i'11UTION
IN NONLOCAL ISOSPIN DEPENDENT POTENTIALS

(o) (b) (c)

P
Pl

wi kp

] N ' N I(

N 11

Pl
N

Pl Pl
IN

Pt T
I

l

IN ~&] N 0
Pp p

— pp
I

Pp

N li

u ) N ~& N I
Pp Pp Pp

The electromagnetic interaction of the nucleon can be
generated by the minimal substitution c)&~c)„+ieA„ in
the nuclear Lagrangian of the model. Gauge invariance
js guaranteed by such a substitution. However, most of
the realistic NN potentials are not derived from a funda-
mental Lagrangian, but are, at least partially, phenome-
nological in nature. The nonlocality of the potential at
short distance breaks gauge invariance and it is necessary
to restore it in a reasonable way. In the case of a single
particle moving in an external nonlocal potential, the
nonlocality of the potential can be related to a momen-

I

turn dependence through

O(r, p)= f d r "d r'5(r r"}O(r",r—')

Xexp[ip (r' —r")], (4.1)

or
II

O(r",r')=O(r", r')exp ie f A(x') dx'
r'

(4 3)

with e =P3e, I'3 2(1+T3).
The form of (4.2) is convenient to use whereas (4.3) is

conceptually transparent. The path of the line integral is
arbitrary. The minimal substitution corresponds to the
choice of a straight line between the two end points.

However, there are problems with the above pro-
cedure. If the operator 0 is not diagonal in isospin space,
(4.2) and (4.3} will no longer be gauge invariant. Partovi
has shown that if one removes the isospin projection
operator P3 from e and multiplies the end points of the
line integral by P3, then the resulting operator is gauge
invariant regardless of the isospin dependence of the
operator. We therefore write

O(r, p) =f d x 5(x—P3r)O(r, p)

where p in the exponent is the momentum operator, i.e.,
p= iV —Wit.h the minimal substitution p~p —eA(r)
in the exponent and use of the Baker-Hausdorf formula

e" "=e"Sexp ' se-' e'
0

where the symbol S stands for ordering of the operators,
in the expansion of the exponential, one obtains the gauge
invariant operator corresponding to 0, namely 0
O(r, p)= fd x 5(x—r)O(r, p)exp ie f A(x') dx'

r

(4.2)

FIG. 2. L(1232) contributions to J," .
Xexp ie A x' .dx'

P&r
(4.4)
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or

P3r"
0(r",r')=0(r", r')exp ie A(x'). dx'

pr ~t
(4.5)

The final and initial states are given by Xf ——
~
pn ) and

X; = I/&2(
~
pn ) —

~
np ) ). If the momentum depen-

dence of the nonlocal part of the NN potential is expand-
ed to order 0(p ), it has the general form

In (4.5) P3 acts to the left and P3 acts to the right. Ap-
plying (4.4) to the nonrelativistic kinetic operator
T=p /2m we get the convectional contribution to (2.3)
for a linear approximation in A, except for the spin con-
tributions in J.

The current generated by the two-body isospin depen-
dent potential is given by Eq. (35) of Ref. 20. It takes the
form

J(x)=ie f1 y. f" 5(x—x')dx'[V5(y —
—,'P3"r)]

i/2P("r
3

+f „,5(x—x')
—1/2P3 I

b, V(r, p)=V 0(r)+0(r)V +0 (r)L S,
0(r)=0, (r)+02(r)v, r2,

0 (r)=0, (r)+02 (r)r, rz,

(4.7a)

(4.7b)

(4.7c)

J(x)= — O(r)&„+20(r)V
2 dr

where L is the angular momentum operator and S is the
total spin operator.

The isospin dependence in (4.7b) and (4.7c) is obtained
from charge independence of the NN interaction. A little
algebra converts (4.6) to

X dx'[ V, 5(y+ 2
P~3 I r)] .

+iO (r)SXr 5 x ——
2

(4.8a)

(4.6)

in the linear approximation in A, where
P3"———,'(I+r'3"), P3" ———,'( 1+~3 '). The c m co.or.dinate
has been taken to be zero in (4.6).

0(r) =30~(r),

0 Ls( r) =30 Ls( r)

(4.8b)

(4.8c)

The multipole decomposition of (4.8a) in the FF gauge
gives

'JJ+1
Tz' (q) = — 0(r) — hi( ,'qr )[Y—J@L ] +20 (r)

&2(J+2)(2J+1)!! 2

' J+2
hj( —,'qr }[Y~S]~ (4.9}

Tz 's(q}= — 2 jJ( ,'qr )[YJ [ Y—,L ],] +0 (r)rj J( ,'qr )[YJ[ Y—,SS]&]V3J(J+1) r
(4.10)

The reduced matrix elements of TJ' and Tz'I are
given in Appendix B.

V. RESULTS AND DISCUSSION

In the nonrelativistic impulse approximation, the
different gauges in which we perform the calculation
affect the final results because the IA is not current con-
serving. A comparison of the forward differential cross
section in the Partovi and FF gauges are shown in Fig. 3.
The difference vanishes at small photon energies and is of
order qo and higher [see Eqs. (2.8) and (2.9)]. The
difference does not disappear when the meson exchange
contributions are included. One reason is that the matrix
element for meson exchange is evaluated in the long
wavelength approximation, i.e., jz(x)~1/(2L +1)x
when the multipole decomposition is made. Therefore,
only the leading term in qo of each rnultipole operator for
the meson exchange contribution is considered. We keep
terms up to I.=4 in our numerical work. The other
reason is that the current is expanded in a power series in

qo and only terms of order qo term and lower are kept.
So we do not expect the differences of order qo and
higher between the two gauges to diminish when meson
exchange effects are included. The difference may be re-

I

garded as a rough estimate of the theoretical uncertainty
of our calculation. The FF gauge gives lower values for
the forward differential cross section, closer to experi-
ment. Due to this practical advantage and the theoretical
advantages discussed in Ref. 18 and Sec. II of this paper,
we suggest use of the FF gauge in future calculations of
the electromagnetic interaction with nucleons and nuclei
especially when only a simple IA is employed for small or
moderate momentum transfers. This argument is
strengthened by recent work, e.g. , FF.

One reason for undertaking this work was the belief
that a reduction in the D-state probability might resolve
the discrepancy between the theoretical and experimental
forward differential cross section. This is suggested by
the work of Ref. 6. Thus it was hoped that the use of the
Bonn potential, which has a smaller D-state probability,
would produce a theoretical cross section closer to exper-
iment. We find little dependence on the D-state probabil-
ity for a fixed asymptotic D/S ratio of 0.026. From Fig.
4 it can be seen that, when all of the corrections are in-
cluded, the final result is almost identical with that of the
Paris potential of Ref. 26, which has the same asymptotic
D/S ratio. Thus, despite the suggestions of Ref. 6, the
forward differential cross section is not very sensitive to
the D-state probability of the deuteron. Indeed, other re-
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FIG. 3. Comparison between the FF gauge and the Partovi gauge. The dotted line is calculated in the Partovi gauge in NRIA; the
dashed line is calculated in the FF gauge in NRIA; the dash-dotted line is calculated in the Partovi gauge with relativistic corrections
(RC), meson-exchange corrections (MEC), 6, and gauge corrections taken into account. The solid line is calculated in the FF gauge
with RC, MEC, 6, and gauge corrections taken into account. Open triangle points are from Ref. 29, filled triangle points are from
Ref. 30, open square points are from Ref. 1, filled square points are from Ref. 31 and circle points are from Ref. 32.
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cent studies confirm this finding; in Ref. 18 the forward
differential cross sections for various potentials are found
to be insensitive to the potential choice when the wave
function of the deuteron is adjusted to fit static proper-
ties, including the asymptotic DiS ratio. The reason for
this insensitivity is that the matrix elements of the elec-
tromagnetic interaction at low energies depend only on
the low order multipoles, i.e., (El,MI, E2. . .). Among
these, only M1, which is not very important in our ap-
proach and in the energy range considered in this work,
is sensitivity to the short-range part of the deuteron wave
function, because it connects initial to final S states. We
have made a numerical comparison of the reduced elec-
tric and magnetic matrix elements between the Bonn and
the Hamada Johnston potentials; the results confirm the
argument. In addition it shows that for the same mul-

tipole, e.g., E1 or M1, the difference is larger for those
final states coupled by tensor forces than for the uncou-
pled ones. However the work of Leidemann and
Arenhovel has a much larger (by more than a factor of
2 at our highest energy) Ml contribution and this in-

crease may account for the larger sensitivity to PD ob-
tained by Wilhelm, Leidemann, and Arenhovel.

In Fig. 5 we present our theoretical curves with various
corrections added step by step in the FF gauge. The
minimal substitution in the nonlocal part of the Bonn po-
tential does not make a significant contribution. As can
be seen from Fig. 5, the absence of this term is indistin-
guishable from the solid curve. The solid curve for the
forward differential cross section as a function of photon
energy is higher between 20 to 80 MeV and lower for
higher or lower energies than that of Ref. 6, but it quali-

tatively agrees with the results of Ref. 18 at all energies.
Our final solid curve calculated in the Bonn potential
shows that the discrepancy between theory and experi-
ment remains a mystery.

In Figs. 6—9 the results for the angular distribution at
energies of 30, 60, 100, and 140 MeV are presented. The
experimental data are the same as Ref. 6. One can see
that theory and experiment are quite close together, for
E (100 MeV. At E =140 MeV the agreement be-
comes poor. This is in contrast to a recent publication by
Leidemann and Arenhovel, who find that inclusion of
the 6 in a coupled channel calculation or in other ways
which enhance its contribution leads to an increased M1
contribution and to a much better fit to the data at
E~=160 MeV. The y asymmetry, X, for E~=30, 60,
100, and 140 MeV are presented in Figs. 10—13. The ex-
perimental data points are the same as Ref. 6. The agree-
ment between theory and experiment is good at E~ =30
and 60 MeV, but at 100 and 140 MeV it becomes poor.
The much improved agreement found by Leidemann and
Arenhovel (see also Ref. 45) suggests that the presently
used theory remains inadequate in this energy region.
The work of Ref. 45 with a different treatment of the 5 in
the photodisintegration leads to a considerably enhanced
M1 matrix element for energies E~ ~ 100 MeV. Thus, it
appears that even below the pion production threshold,
their N-6 coupling treatment enhances the M1 contribu-
tion over our work. In Figs. 9 and 13 we show the im-
proved angular distribution and gamma asymmetry ob-
tained if our M1 matrix element at 140 MeV is multiplied
by an arbitrary factor of 2. The forward differential cross
section is hardly affected, but, particularly the gamma-
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ray asymmetry is altered drastically by this change.
However, even Leidemann and Arenhovel do not obtain
a good fit to the forward differential cross section as a
function of energy.

There are some other possible explanations of the
disagreements with experiment obtained in this work.
First of all, it must be remembered that the sensitivity to
the percentage D state is based on a fixed asymptotic
D/S state ratio. If this ratio is lowered, there is a con-
comitant decrease in the forward differential photodisin-
tegration differential cross section. We have investigated
the sensitivity to the asymptotic D/S ratio. In Fig. 14 we
show that the forward differential cross section agrees
perfectly with experiment, if the asymptotic D/S ratio is
lowered by 10% in the following way:

u ~(1+PDe)u, w ~(1 e)w, e=—01.
from the value predicted by the OBEPR Bonn potential
(0.0260) and measured by Ref. 47, namely 0.0271
+0.0008. We have also examined the effect on the angu-
lar distribution and asymmetry of the reduction. In both
cases, the disagreement is made worse; the differential
cross section's shape is unchanged, so that the magnitude
is smaller, whereas the asymmetry is even larger with the
change. Of course it is inappropriate to simply change
the D/S ratio without making other related changes. We
urge our experimental colleagues to redetermine this ra-
tio as accurately as possible, since the theoretical
disagreement with experiment is clearly very sensitive to
this ratio.

Another possible source of the discrepancy between
theory and experiment is the electromagnetic spin-orbit
interaction, which enters in the relativistic correction,

Eq. (2.12a). We have also investigated the effect of
changing the spin-orbit term, and find that a 20% reduc-
tion of mz in the spin-orbit transition operator leads to
agreement with the forward differential cross section, as
shown in Fig. 14. In order to further investigate the
effect of this change, which may also be suggested by rel-
ativistic calculations of NN scattering, we have reexam-
ined the angular distribution and asymmetry at 140 MeV,
and find, again, that the agreement is made worse in that
the theoretical asymmetry becomes even larger. Of
course, as with the D/S ratio, it is necessary to readjust
other parameters in order to make certain that the fit of
the deuteron's static properties and of the N-N phase
shifts is not spoiled. It is interesting that in a report just
received Wilhelm, Leidemann, and Arenhovel examine
the effect of the same spin-orbit interaction. They also
note the importance of the two-body spin-orbit effect. As
already mentioned, they obtain better agreement with the
experimental angular distribution and asymmetry at 160
MeV than we do at 140 MeV by treating the N and 6 as
coupled channels.

In conclusion, we have examined the deuteron photo-
disintegration with the Bonn potential for an energy re-
gion below the delta resonance. We find an insensitivity
to the deuteron D-state probability as long as the asyrnp-
totic D/S ratio is kept fixed. The forward differential
cross section is very sensitive to this asymptotic ratio as
well as to the spin-order force. Our forward differential
cross section remains somewhat high relative to experi-
ment. To fit the angular distribution and y-asymmetry
above —100 MeV, it appears that a calculation which im-
proves the treatment of the 6 and enhances the M1 con-
tribution is required.
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APPENDIX A: MATRIX ELEMENTS FOR EXTENDED SIEGKRT THEOREM

I s J
Define the radial integral II, I [F] as

fsfJfII, J [F]=— dr u&, J (kr)F(r)vI, J (r) (A 1)

and the reduced matrix element as

J; J Jf
&Jfmf IOJ. I

Jm;&=( —I) ' '
m m m (JfllO IIJ &

I

where k is the relative momentum of the p and n and F is a function of r. The reduced matrix of TJ is

(A2)

(Jf(If sf )II TJ IIJ;(l s; ) )

g
J —1

(2J+ 1)!!

' 1/2J+1—g Il I gJ( ,'qr) (Jf(l—fsf)II YJIIJ;(l s; ))

+ II I h.J( 'qr) & J—f(lfsf )II YJIIJ (l s;))q [J(J+I)]'~2 IfSfJf r

J
2

+ II g I — hj( ,'qr) ( Jf(—lfsf )Il[Y&L] IIJ;(l s, ))

+ II, z r — hJ( —,'qr)2 — hj( —,'qr ) ( Jf(l;s;)II[YzX] IIJ, (l;s; ) )

where p' "=p' or p' depend on the isospin transition,

lf Jf s;
(Jf(lfsf)IIYJIIJ(ls;))s =( —1) ' ' JJf(lfll Yell!;)

'

J
l

If f; K 1 J
&Jf(lfsf)ll[YrcsL] IIJ(ls;))' =( —1)' ' 'J, JfJ(lfllY, lll, &&l, llLlll, & J

(A3)

lf l; E
(Jf(l s;)Il[Y+X] IIJ(l s;))i =J JfJ(lfIIY+IIl;)(sfllXlls, ) sf s, 1

Jf J; J

L is the angular momentum operator, X= (S,+S2 ) and L =&2L + 1. We use the phase convention of Partovi, includ-
ing the i' factor in front of Yl and the sign difference between e and the BB convention. The relationship between
TJ" and the matrix element defined by Eq. (52) in Ref. 2 for the deuteron is

Jf
(sm,

I

E
I

md ) = g [4n(2lf+I)]'~ (lfosfm, I Jfm, )e UIf, z(lmd, Jm
I

zJms)( fJl TIIJlll
XJflfsf

(A4)

& Jf~llT i"Ill & =
1/2

akm~(2J+ 1)

2q g UI s x (Jf ( 1 f sff f
f i

(A5)

where a is the fine structure constant, m~ is the nucleon mass, and q the photon energy, and (l, m „l2mz I
Jm ) is the

Clebsch-Gordan coeScient. The magnetic part of the matrix element is the same for all gauges. It can be found else-
where.
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APPENDIX B: THE CONTRIBUTION OF CURRENT GENERATED
FROM THE NONLOCAL PART OF THE POTENTIAL

We follow the convention in Appendix A. The reduced matrix elements are

(Jf ( lfSf ) II TJ
I I J, ( l, s, ) &

J+1
f
'&J (l ~ )ll[Y I ]'ll& (l;)&I"+2'& J (l )III Y ~]'IIJ;(l;;) &I"I,

&2(J +2)(2J +1)!!
(B&)

& J,(l;,)IIT;"IIJ,(l, s, ) &=( O'&—4~
J 1 J

X & &II Jll'& ) ~ )
"

& f( f f)ll[Y~L]'IIJ;(l;;)& Ip
K=J+1

where

(Jf(lfsf )II Y&IIJ,.(l, s, ) &,

(Jf(lfsf)II[Y„L] IIJ;(I;s;)&,

& J, II[ Y,s]'IIJ, &,

J 1 J
X «&IIYJII»'q ~ q

l'&Jfll[Y, s]'IIJ, & I,
K=J+1

(B2)

and are given in Appendix A. Also, we have

a) T
I& ——— dr uj I, (kr)O(r) — hz( ,'qr)vj &—,(r),

k p fff 2 I I

J+2

(B3)

I'= —f "dr u (kr)O (r)
p f f'f 2

hJ( ,'qr)vJ I, (r)—, (B4)

mIP = — druJ I, (kr)O(r)jz( ,'qr)vJ &, (r)—,
k o l

(B5)

I2 ——— r d ruJ &, (kr)O (r)jJ( ,'qr)vJ &, (r),—k o fff l

and the operators 0 and 0 are related to the nonlocal part of the potential by

V„,„)„,) VO(r)+——OV +0 (r)L S .
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