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Relativistic nucleon-nucleon interaction consisting of an attractive scalar and a repulsive vector
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Relativistic models which simulate the two-nucleon system are constructed by means of the one-
dimensional two-body Dirac equation, and differences between relativistic and nonrelativistic
descriptions are illustrated. The relativistic interaction is assumed to consist of a Lorentz scalar S
and the zeroth-component V of a vector; the S is attractive and the V repulsive. This interaction
has intriguing features. Unlike the nonrelativistic case, the nucleon-nucleon phase shift can be fitted

easily without assuming that the range of the repulsive V is smaller than that of the attractive S.
Implications for deuteron structure are examined.

I. INTRODUCTION

There are a number of realistic nucleon-nucleon (NN)
potentials which are to be used in the nonrelativistic
Schrodinger equation. These potentials are realistic in
the sense that they describe the NN scattering very well

up to a few hundred MeV and also reproduce the deute-
ron binding energy. Although they differ in detail, these
potentials have one feature in common; they are attrac-
tive at large to medium distances and repulsive at short
distances. The short-range repulsion is required by the
empirical S-wave phase shifts which change sign from
positive to negative as the energy of the NN system in-
creases. In interpreting this feature of the potentials one
usually associates the repulsion with the exchange of a
vector meson and the attraction with the exchange of
something which effectively behaves like a scalar meson. '

The masses of the exchanged mesons are then related to
the ranges of the corresponding parts of the interaction.

The purpose of this paper is to construct relativistic
models which simulate the deuteron and the S& NN
scattering and thereby examine differences between rela-
tivistic and nonrelativistic descriptions. For the relativis-
tic models we use the two-body Dirac equation in one
space dimension. Apart from spin-related effects, this
equation amply illustrates characteristics of the relativis-
tic description. For the two-body interaction we assume
a combination of a Lorentz scalar S and the zeroth corn-
ponent V of a Lorentz vector; the S is attractive and the
V repulsive. This particular combination of S and V,
which is strongly hinted at by the recent success of the
Dirac phenomenology, has some remarkable features.
The two-body Dirac equation can be reduced to a
Schrodinger-like equation with an effective potential
which we denote by 8'. The 8'that stems from the corn-
bination of S and V mentioned above turns out to be
strongly energy dependent, and is very different from the
traditional nonrelativistic NN potentials. The range of
the repulsive V does not have to be shorter than that of
the attractive S. The structure of the simulated deuteron

can be appreciably different between the relativistic and
nonrelativistic models.

In Sec. II we present our relativistic model based on
the one-dimensional two-body Dirac equation. We also
specify the nonrelativistic model with which we compare
the relativistic model. In Sec. III we present the results
of simulation of the S& NN state which contains the
deuteron. Discussions constitute Sec. IV.

II. MODELS

The two-body Dirac equation reads, in natural units,

Hg=Ef, H =H, +H2+ U, (2.1)

where H, is the free Dirac Hamiltonian for particle i
(=1,2). Unless otherwise mentioned, we use the same no-
tation as in Ref. 2. In the one-dimensional version that
we employ, H; =a;p;+p;m. For the Lorentz character
of the interaction there are three parity-conserving types;
scalar, vector, and pseudoscalar. In this paper we consid-
er only scalar S and vector V, i.e., we assume that the po-
tential U is of the form

U =P|P2S(x)+(1—a&a2) V(x), (2.2)

p p+S+2V+ EPq ——0 . —4 4m

E+S—2V F. —S (2.3)

where x =x, —x2 is the relative coordinate. The func-
tions S(x) and V(x) correspond to fs(x) and fv(x)I2 of
Ref. 2, respectively. Note that the total momentum
P =p, +p2 is a constant of the motion. Throughout this
paper we confine ourselves to the center of mass system,
i.e., P=o.

The wave function 1( has four components. Equation
(2.1) can be reduced to an equation for one of the com-
ponents of g, which we choose to be Pz defined in Ref. 2.
We then obtain
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We will set up the interaction such that there is a bound
state which simulates the deuteron. The density in the
bound state is given by

TABLE I. Parameters of the relativistic potential of Eq. {2.8).
The units are mass m for g and m ' for a. The range of the at-
tractive part as ——5m ' is common to all models. Parity refers
to the parity of the solutions used for simulation.

s= X
i =1,4

2m

E —S

'2
d4

(E +S—2 V)'

(2.4)

Model

A

B
A'
B'

Parity

odd
odd
even
even

gs

0.37
0.8
0.035
0.05

&v gv

0.464 87
0.386 82
0.036 635
0.037 634

If we define X by

X=(E+S—2V} '"P&, (2.5) III. SIMULATION

Eq. (2.3}can be reduced to the following Schrodinger-like
equation:

p
2

+W X=
m

E2 —m
4m

(2.6)

where Wis an energy-dependent potential defined by

1 d8'= (E+S——2V)' (E+S—2V)
m dx

2mS 2m EV 1

E —S E(E —S) m 4

(2.7}

In the limit of very large m, Eq. (2.6) reduces to the
Schrodinger equation with potential W =S + V.

For S(x}and V(x}we assume

—(x/as ) —(x/av)S(x)= —gse, V(x) =gve (2.8}

For the range parameters we (arbitrarily) keep as fixed at
5m ' while we try two values for av, 3m ' and Sm
Note that if m= 1 GeV, lm '=0.2 fm. In choosing the
values of the strength parameters gz and g v, we impose
two constraints:

(a} There is a bound state with binding energy
B =2)&10 m. For m=1 GeV, B=2 MeV, and this
bound state simulates the deuteron.

(b) The scattering phase shift changes sign from posi-
tive to negative at the center of mass kinetic energy of

0. 15m. In this way we simulate the S, NN phase
shift.

We compare the results of our relativistic model with
those of the nonrelativistic model with a potential of the
form

In one dimension there are two "partial waves, " with
even and odd parity. Although it may sound odd, we
prefer the odd-parity state for simulating the S state of
the NN system. If we denote the Schrodinger wave func-
tion for an S state in three dimensions by P(r), the func-
tion u(r)=rP(r) obeys an equation which is identical to
the Schrodinger equation in one dimension and the
boundary condition on u (r) at the origin, i.e., u(0) =0, is
the same as that for the odd-parity wave function in one
dimension. A similar situation holds for the two-body
Dirac equation. For cotnpleteness we will also try (rather
unsuccessfully) to simulate the NN system by means of
the even-parity state of the one-dimensional model.

For the odd-parity state we consider three models, two
(designated by A and 8) are relativistic and the third one
(C) is nonrelativistic. The corresponding models with
the even-parity state are designated by A ', B', and C', re-
spectively. The parameters of the potentials of the rela-
tivistic models are listed in Table I, and those of the non-
relativistic models in Table II. Note that, in models A
and A ', S and V have different ranges, whereas in models
B and B' the ranges of S and V are equal. The strength
of the potential, in particular gz of model B, is very large.
This can be reduced by choosing a larger range. The
nonrelativistic potentials in models C and C' of course
consist of short-range repulsion and long-range attrac-
tion. The range of the attractive part is assumed to be
the same as that of S of the relativistic models.

I.et us begin with the simulation by means of the odd-
parity state. Figure 1 shows the scattering phase shifts
for models A, B, and C. They are all very similar to each
other and to the empirical S& NN phase shift. These
phase shifts start with m. at the threshold E =2m and de-

UNR(x } ~R @bR

(x/bA )" 6)( Ix I

—bs» (2.9)

where 8(x)= 1 (0) if x & 0 ( & 0) and the subscripts A and
8 refer to the attractive and repulsive parts, respectively.
We tried various different forms such as a potential with
two Gaussian terms, but without any noteworthy
difference.

Model

C
C'

Parity

Qdd

even

h

0.278
0.0252

bg

2.5
0.15

hR

2.1186
0.362 02

TABLE II. The parameters of the nonrelativistic potential of
Eq. (2.9). The units are mass m for h and m ' for b The range.
of the attractive part b„=5m ' is common to the two models.
Parity refers to the parity of the solutions used for simulation.



1580 Y. NOGAMI AND F. M. TOYAMA 38

1.5
I. '

I

1.0

0

—0.1

—0.5

2.0
I

2.1

) I

2.2
E/m

I

2.3 2.4 0
I

6
x/m '

I

8 10

FIG. 1. The odd-parity phase shift 5(E). The solid, dashed,
and short-dashed lines are for models Q, B, and C, respectively.

crease with increasing energy. It is clear that fitting the
empirical phase shift does not differentiate models A and
B. If we were to use more general functional forms for
the potentials, these curves could be made indistinguish-
able from the empirical S& NN phase shift.

Figure 2 shows the energy-dependent potential 8'
defined by Eq. (2.7} for model A for various values of the
energy; the nonrelativistic potential UN„(x) of model C is
also shown for comparison. Figure 3 shows the same for
model B The po. tential W depends strongly on energy; it
changes from attraction to repulsion as the energy in-
creases, and the switch over from attraction to repulsion
takes place approximately at the energy for which the
phase shift changes sign from positive to negative. The
mechanism of the sign change of the phase shift in the

FIG. 3. The energy-dependent potential 8'(x) for model B
and UNR for model C. The upper four curves are for the 8 s

for four different energies; E/m =2.0, 2.1, 2.168, and 2.25 (from
bottom to top). At E/m=2. 168, the phase shift changes sign.
The dotted line depicts UNR. Note that the vertical scale differs
between Figs. 2 and 3.

relativistic models is therefore quite different from that
for the nonrelativistic model. A close examination of Eq.
(2.7} shows that, as the energy E increases, the effect of S
is reduced and that of V enhanced. In order to have such
strong energy dependence of 8'it is crucial that S and V
are individually very strong while S+Vis rather weak.

It should be noted that the II/'s for A and B are very
different from each other and that they are both very
different from the nonrelativistic potential UN„(x) of
model C. The deuteron structure in the relativistic mod-
els is determined by the F' at the deuteron energy
E =1.998m. This 8' is indistinguishable from the 8' at
E =2m which is shown in Figs. 2 and 3. Note that 8'
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FIG. 2. The energy-dependent potential W(x) for model A

and UNR for model C. rhe upper four curves are for the 8"s
for four different energies; E/m =2.0, 2.1, 2.166, and 2.25 (from
bottom to top). At E!m=2.166, the phase shift changes sign.
The dotted line depicts UNR.
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FIG. 4. The density distribution p(x) in the deuteron in units
of mass m. The solid, dashed, and short-dashed lines are for
models A, B, and C, respectively.
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TABLE III. The root mean square radius r in units of m

Model

rm 9.84 9.80 9.77 8.28

B'

8.11

C'

8.24
0.3 -p

I

F(q )=f dx p(x)e'~"=2 f dx p(x)cosqx .—00 0
(3.1)

(E = 2m ) is entirely attractive in model B, whereas it has
a mild repulsive part at short distances in model A. Po-
tential UNR is typical of the realistic potentials which are
in common use. It consists of a strong attraction at large
to medium distances and a very strong repulsion at short
distances.

Figure 4 shows the density distribution in the deuteron
for models A, B, and C. The density does not vanish at
x=0 in the relativistic models. This is because of the
term with dg2/dx

~

of Eq. (2.4). The difference be-
tween the densities of models A and B at short distances
is an outcome of the difference between the W's discussed
above. The densities in models A and B are appreciably
different from that in model C. Table III lists the values
of the root mean square radius r =((x/2) )'~ of the
deuteron for models A, B, . . . , C'. Because the poten-
tials for models A, B, and C are very different, one might
expect that r varies appreciably from one model to
another. On the contrary, we find that r remains almost
the same; it decreases only very slightly from A to B and
then to C. In order to examine the properties of the
deuteron in detail, however, one must fine tune the poten-
tial such that the scattering data are more accurately
fitted.

The differences between the models will manifest them-
selves through the deuteron form factor (at not very
small momentum transfers) rather than through r . Let
us define the form factor as the Fourier transform of the
density,

2.0
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I

2.2
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2.3 2.4

FIG. 6. The even-parity phase shift 5(E). The solid, dashed,
and short-dashed lines are for models A ', B', and C', respective-
ly.

Figure 5 shows F(q ) for models A, B, and C. It is clear
that the differences between the models are noticeable for
q ~0. 1m . Note that F(q ) defined above corresponds
to F„(q ) of Ref. 2. There is a small relativistic correc-
tion to the form factor as pointed out in Ref. 2, but we do
not discuss it here.

The results of the simulation by means of the even-
parity state are presented in Figs. 6-9. Figure 6 shows
the phase shifts. Unlike the odd-parity case, the even-
parity phase shifts start with m i2 at the threshold. 7 This
is because of the boundary condition on the even-parity
wave function at the origin, which is different from that
on the odd-parity wave function. Clearly such a phase
shift is unsuitable for simulating the 3St NN phase shift
which starts with rr. This is the main reason why we
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FICs. 5. The form factor F(q ) defined by Eq. (3.1). The
solid, dashed, and short-dashed lines are for models A, B, and
C, respectively.

FIG. 7. The energy-dependent potential 8'(x) for model A '.
The curves are for the 8"s for four different energies;
E/m=2. 0, 2.1, 2.213, and 2.25 (from bottom to top). At
E/m =2.213, the phase shift changes sign.
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IV. DISCUSSIONS
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FIG. 8. The energy-dependent potential 8'(x) for model 8'.
The curves are for the 8"s for four different energies;
E/m=2. 0, 2.1, 2.152, and 2.25 (from bottom to top). At
E/m=2. 152, the phase shift changes sign. Note that the verti-
cal scale differs between Figs. 7 and 8.
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FIG. 9. The density distribution p(x) in the deuteron in units
of mass m. The solid, dashed, and short-dashed lines are for
models A', B', and C'.

prefer the simulation by means of the odd-parity state.
The phase shift for model B' is rather different from
those of models A' and C'. We did not try hard to make
them closer.

Figures 7 and 8 show the energy-dependent potential
8' for models A' and B', respectively. Note that these
potentials are much weaker than those for the odd-parity
state. In the even-parity state such very weak potentials
are capable of supporting a bound state. This is another
reason why the even-parity state is unsuitable for simulat-
ing the S& NN system. Figure 9 shows the density distri-
bution in the deuteron for models A ', B', and C'.

By means of one-dimensional models which simulate
the deuteron and S& NN scattering, we have illustrated
characteristic differences between relativistic and nonre-
lativistic treatments. The relativistic interaction can be
transcribed into an effective potential 8' for the
Schrodinger-like equation (2.6). This 8'turned out to be
strongly energy dependent. This is due to the particular
combination of S and V such that S and V are individual-
ly very strong while S+V is much weaker. This energy
dependence of 8'is the main mechanism behind the sign
change of the phase shift (from positive to negative) in
the relativistic models. This feature, i.e., the strong ener-

gy dependence of the relativistic interaction, will certain-
ly remain valid when the dimension is increased from one
to three. In the nonrelativistic treatment, the sign change
of the phase shift requires a combination of a short-range
repulsion and a long-range attraction. In the relativistic
case the ratio of the ranges of S and V, az/av, has large
latitude. Depending on this ratio, 8' varies significantly.
The variation of 8', in turn, is rejected in the structure of
the deuteron. We examined the form factor F(q )

defined by Eq. (3.1) and found that the differences be-
tween the models are detectable through F(q ) at
q ~0. 1m . We should note, however, that there is a
subtle difference between one and three dimensions. The
F(q ) of Eq. (3.1) can be expanded as

2( —1)"q "(x ")/(2n)!,

whereas its three-dimensional counterpart is

&( —1)"q'"& '"&/(2 +1)!.

This means that the F (q ) of one dimension corresponds
to the three-dimensional F(q ) with a larger value of q .

If one assumes that the NN interaction derives from
meson exchanges, the ranges of S and V are related to the
masses of scalar and vector mesons, respectively. For the
vector meson, m and p are the natural choice, but there is
no such clear candidate for the scalar part. It is interest-
ing in this respect that there is large arbitrariness regard-
ing the range of S.

As compared with the usual nonrelativistic NN poten-
tials, relativistic interactions at low energies are much
softer, particularly at short distances. They are compara-
ble or softer than the super-soft potential of Srivastava
et al. They may have significant consequences regard-
ing many-nucleon systems. For infinite nuclear matter,
for example, the relativistic models could lead to a satu-
ration density larger than that obtained from nonrela-
tivistic calculations. This is interesting in view of the
failure of all nonrelativistic models in reproducing the
"empirical" values of the saturation density and the bind-
ing energy of infinite nuclear matter. ' In this connec-
tion let us mention that Satpathy recently raised a ques-
tion about the reliability of the traditional values of the
empirical saturation density and binding energy of nu-
clear matter. "

In our relativistic models we considered only the com-
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bination of a Lorentz scalar and a vector. In the actual
NN interaction there is a pseudoscalar component which
contains the one-pion-exchange (OPE) eff'ect. The OPE
potential is not a very strong part of the nonrelativistic
potential, but this does not necessarily mean that the
pseudoscalar component is unimportant in the relativistic
interaction. Rather we suspect that the pseudoscalar
component could be as important as S and V. In the lim-
it of a very large nucleon mass, the effective potential 8'
still reduces to S+ V, and the effect of the pseudoscalar
component begins to operate in the order of m ', but if
the mass is not very large (as compared with the poten-
tials), the efFect of the pseudoscalar interaction could be
significant. In a more realistic model of the relativistic
NN interaction one must include a pseudoscaiar com-
ponent.

The two-body Dirac equation that we have used is not
exactly covariant. Also the equation has abnormal
bound-state solutions (with E=0) as discussed in detail
recently. However, the energy region (E &2m ) that we
are concerned with is very far from the region in which
abnormal solutions show up. We therefore believe that
the two-body Dirac equation adequately describes "low-
energy" phenomena such as those discussed in this paper.
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