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We show that the coupled channel equations are exactly transformed into the T matrix of the

multistep process. The consistency with empirical models is discussed.

Since Gell-Mann and Goldberger' have formulated the
distorted-wave Born approximation (DWBA), it has been
successfully used in analyses of quantum scattering in

various fields of physics. This method is based on a per-
turbation expansion in the residual interaction (the origi-
nal interaction minus the distorting potential). The
DWBA model used conventionally in nuclear reactions is
also able to reproduce measured cross sections even with

a strong characteristic interaction for which the pertur-
bation expansion does not converge. This is generally
understood as follows: The entrance and exit distorting
potentials are replaced by empirical optical potentials
which contain the contribution of higher-order terms in

the interaction. Hence, the perturbation expansion in the
DWBA interaction may be diverge because of over
counting. This model cannot be viewed as the first-order
model in a perturbation expansion. Here we call this
method the conventional DWBA (CDWBA).

There have been some exceptions reported where the
CDWBA fails in fitting certain kinds of reactions such as

Ca(' 0,' 0) Ca'(3, 2+, 5 ). Ascuitto et al. have
shown that these reactions can successfully be described
in terms of the so-called asymmetric DWBA (hereafter
referred to as ADWBA) proposed by Satchler, which
uses for the exit channel the bare potential, i.e., the un-

perturbed potential without coupling effects (the
entrance-channel distorting potential remains the empiri-
cal optical potential). Ichimura and Kawai have pointed
out that the success of ADWBA does not depend on the
strength of the coupling between the entrance and exit
channels. Kubo and Hodgson have studied how to
determine the bare exit-channel potential from the empir-
ical optical potential.

In Ref. 8 we have shown that CDWBA and ADWBA
are valid in alternative coupling schemes: For a system
with sequential excitations like a vibration and a rotation,
CDWBA reproduces well the coupled-channel result,
whereas ADWBA does not. On the other hand, for the
case of exit channels coupled only to the entrance chan-
nel, ADWBA predicts exactly the coupled channel result,
but CDWBA fails.

Under this situation it is quite desirable to understand
the two models from a unified viewpoint. In a previous
paper we gave a solution to this problem. There we
presented the exact first- and second-order distorted-
wave Born methods derived by transforming the
coupled-channel equations. The first-order method has

the very desirable structure which reproduces well the
CDWBA result in the sequential coupling scheme, while
it coincides with ADWBA in the case where the exit
channels are coupled only to the entrance channel. Here
we rename the first- and second-order distorted-wave
Born methods as the one- and two-step DW methods, re-
spectively.

The advantage of these DW methods is to allow one to
assess the validity of CDWBA or ADWBA and to find
suitable exit-channel distorting potential and transition
interactions by estimating polarization effects reliably.
However, there is no consistent formulation for the
higher-step method other than the two-step method.

The purpose of this report is to formulate the multistep
DW method on the basis of the coupled-channel method
in a consistent manner with the optical model, and the
one-step and two-step DW methods.

This formalism is different from Feshbach's multistep
direct formalism. ' Each step method of our model is
equivalent with the coupled-channel method and hence,
the higher-order effects in the original interaction, i.e.,
the polarization effects, are correctly included in the dis-
torting potentials and the transition interactions in each
step. On the other hand, the latter formalism is based on
a perturbation expansion in the residual interaction,
which does not contain the polarization effects, and thus,
has such a structure that an expansion up to a higher-
order term comes closer to the exact theory (a coupled-
channel method).

First we define the projection operators on channel
spaces. Following Ref. 9, we divide a coupled-channel
space into the entrance-channel P and the other channels
Q(P+Q= 1). We specify the channel by c(=(I,I&)),
where I (I&) denotes the channel spin of nucleus a(P).
We divide Q into N groups as

Q=Q'+Q'+ +Q",
where Q" is the projection operator onto the channels
reached in the n-step process and/or the less-step pro-
cesses [explained below Eq. (2)]. Let us decompose Q"
further into the subchannels i =(c,I,L) with the total
spin I and the orbital-angular momentum L:

(2)

The summation over i contains those over a and P if one
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N
Q;"= g Q"—Q;".

k=n
(3)

We set up the Schrodinger equation of the total system:
(E H)4=0.—Then we define the polarization operator
generated by elimination of a space R:

b, V(R)=HR(E'+' RHR ) 'R—H . (4)

treats a rearrangement reaction. Here we assume that
the channel states are orthogonal to each other and that
R =R for any projection operator R. The channel state
projected by Q;" is assumed to be excited via the n-step
process, P~g'~ Q~.

'.~g'k Qk~ . ~Q;", and/or the
less-step processes, e.g., P~Q;" where the prime means
the restricted summation over the states enhanced in that
process.

The division of Q =Q '+ +Q is arbitrary in our
formal theory. In practical calculation, one can use the
following choice of division: When a particular step of
process dominates the problem under consideration, one
can use that particular step (=N step) method. On the
other hand, when it is not clear which particular step
dominates the reaction, one first examines the maximum
step of the processes. Then the result should show which
step process dominates the reaction or that some different
step processes compete in the problem [this point is dis-
cussed in detail following Eq. (20) for the case of two-step
process]. This fixes the division of the Q space,
Q =Q'+ Q . For notational convenience we intro-
duce the operator Q;":

with the incoming boundary condition. Equation (6) can
be regarded as the optical model equation, since
PH(g)P = T+ (optical potential).

(2.) The one step: The exit-channel wave function )P(+)'
t

obeys

(E—Q H(Q )Q'))Il'+'=Q'H(Q ')PO. '+'
t

Then we find the one-step T-matrix element as

T 1
——((Ii( 1'

i Q H(g )P
i

%t(+) )

(9)

(10)

with

and

G(gn) (E(+) gnH(gn)gn) —1 (12)

n —1

v((n) H( Q )+ g g H( Q )g~kG( g k)gkv(k) (13)
k=1 jggk

Equation (13) gives the recurrence equation for v', "',
which is evaluated in order from v';"=H(g ) [the one-
step interaction of Eq. (10)].

We can generalize the one- and two-step DW methods
to the higher-step methods. The resulting wave function
of the n-step process satisfies

(E—Q H(g )Q ) 4', '=0 .
l

(3.) The rnultistep: We define the Green's function and
the n-step transition interaction by

For simplicity we write

H(g;")=H+b. V(g;") . (5)

gnH(gn)gn))P(+) gnv(n)P@(+)
t

Then the T-matrix element can be written as

(14)

(E PH(Q)P)%(t+—'=0 .

The elastic T-matrix element is given by

T(0)+ ( @(—)
~

Pt( V(g)P
~

)P(+ ) )

(6)

(7)

We start with the optical model (referred to as the
zero-step DW method), which has been formulated by
Feshbach. "

(1.) The zero step: The entrance-channel (elastic) wave
function P+(+)( =%(p+)) satisfies"

(15)

with

(E—Q;"H(g;")Q;") 4' „'=0 .
l

(16)

We prove Eq. (14) by the induction method: We assume
that Eq. (14) holds for k =1, . . . , n. This equation is for-
mally solved using Eq. (12) as

with 1P&+~'=G(Q,")Q,"v', "'P+t+', for k =1,2, . . . , n .
t

(17)

(E PHP) 4(p ' ——0, — (8)

where T~ ' is the T-matrix element determined from
4 p, which represents the unperturbed wave function

For the (n +1)-step process we multiply (E —H))p=0 by
Q;"+' on the left-hand side and eliminate the wave func-
tion 4'-+„'+&, so that we obtain

(E—Q" +'H(g"+')Q" +')0'+', =Q"+'H(Q"+')Pq'+'+ g g Q" +'H(g"+')Q "0'+'
k=1 j~gk

Substituting Eq. (17) into Eq. (18), we find that the right-hand side becomes

(18)

g n + I II( g n + )
) + y y H(g

n +)g)kG
( g k

)g k ( k) p)p( + ) g n + 1 ( n + 1)p)II( + )

k=1 jEg
(19)

Hence, Eq. (18) coincides with Eq. (14) when n ~n+1. It follows that the (n +1)-step T-matrix element is given by
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Eq. (15) with n ~n + 1, where 4' „'+|satisfies Eq. (16) with n ~n + 1. That establishes the proof.
t

Next we examine the two-step T-matrix element given by

~gap=(@go'~ Q H(Q )+ g H(Q )Q,'G(Q,')Q,'H(Q, ') P
~

4I+') .
jEQ

(20)

The first term represents the direct transition process,
P~Q,~, while the second term represents the two-step
process, P~g. ;Ql' —+Q, . By this formula one canj&Q'
calculate the T-matrix amplitude quite generally: (i) the
direct process dominates it, (ii) the two-step process dom-
inates it, and (iii) it is not clear which process is impor-
tant or several processes compete equally. When the
direct process is hindered for a certain reason, it corre-
sponds to the conventional two-step DWBA. ' We note
that the initial and final interactions have difFerent struc-
tures in the truncation spaces, i.e., Q; and Qk, respective-1 2

ly. The distorting potentials of the exit, the intermediate,
and the entrance channels are also different in truncation
spaces. In inelastic scattering, therefore, these interac-
tions and potentials can be different. '

The same observation as in the two-step DW method
holds also for the higher-step DW method. The n-step
interaction v~"' in Eq. (13) contains G(Qi")
[=(E'+'—Q "H(Q")Q") '] for the propagator in the in-

termediate state. The Hamiltonian of this propagator is
obeyed by the exit-channel wave function in the k-step
method: (E—Q;"H(Q;")Q;") 4' k' ——0. Therefore, the

l

multistep DW method is consistent in the sense that the
exit distorting potential fixed in each step is also the dis-
torting potential for the intermediate state in the higher-
step method.

Let us investigate the inelastic scattering
Ca(' 0,' 0} Ca(3, 5 ) on the basis of the one-step

DW method given by Eq. (7). The 5 and 3 states are
weakly and strongly coupled to the ground states, respec-
tively, but both are weakly coupled to the other nonelas-
tic channels. In this case we set all the inelastic states to
belong to Q': Q—=Q'=g;~s, ~i)(i ~. The entrance-
channel distorting potential is the optical potential,
which contains the polarization term Pb, V(Q}P. For the
exit channel, on the other hand, the polarization term

Q,'b, V(Q, ')Q,
' =Q, 'HQ, '(E'+ ' —Q, 'HQ, ') -'Q, 'HQ, '

can be neglected because it is proportional to the square

of the weak interaction Q HQ (e.g., ( 3
~

V
~

5 ) ).
Hence, the exit-channel distorting potentials are the bare
potentials. This confirms the success of ADWBA in Ref.
4.

In the case of the single and mutual excitations of the
3 (6.13 MeV) state in ' 0+' 0, we set Q' and Q to be
the single and mutual 3 channels, respectively. The exit
distorting potential of the single 3 channel is similar to
the entrance channel:

Q HQ (E'+' —Q;HQ; ) 'Q HQ

=PHQ(E'+' —QHQ ) 'QHP .

It is because the matrix element

((3,0+)
~

V
~
(3,3 ))(-Q,'HQ ) is nearly the same

as ((0+ 0+)
~

V
~
(3,0+))(-PHQ) and (E'+'

—Q HQ ) '=(E'+' QHQ) —' for E, »6. 13 MeV.
This suggests the validity of CDWBA in this situation.

We finally note that our formalism can treat such
coupled-channel effects as the quadrupole reorientation
that appears within any particular channel with nonzero
spin, say, Q;". These effects are already contained in

Q;"HQ;", which is part of the polarized Hamiltonian
Q;"H(Q;")Q;" in Eq. (14).

To summarize, we have formulated the multistep DW
method by truncating the coupled-channel space starting
with Feshbach's formulation of the optical model. In
each step the exit distorting potential and the transition
interaction are consistent. This formulation leads to new
physical interpretations for the distorting potentials of
the exit and intermediate channels, and the transition in-
teractions. For practical applications it relies on reliable
approximations to the polarization operator.
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