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Phase shift analysis of 0—30 MeV pp scattering data
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A multienergy phase shift analysis of all published proton-proton (pp) scattering data in the ener-

gy range Tl,. & (30 MeV is presented. In the description of all partial waves the well-known long-
range interaction is included: the improved Coulomb, the vacuum polarization, and the one-pion-
exchange potential. In the lower partial waves the energy-dependent analysis uses a P-matrix pa-
rametrization for the short-range interaction. Special attention is paid to the electric interaction,
the definition of the phase shifts, and the selection of the data. The fit to the final data set compris-
ing 360 scattering observables results in g'/Ndf ——1.0, where N« is the number of degrees of free-
dom. The ppm coupling constant is determined to be g 0/4m =14.5+1.2, but there are several in-

pp tr

dications for a lower value. The optimum value for the P-matrix radius b=1.4 fm is satisfying.
Single-energy phase shifts with second derivative matricer, and effective range parameters are given.

I. INTRODUCTION

An analysis is presented of all proton-proton (pp)
scattering data at laboratory kinetic energies T~,b &30
MeV. Since the latest analysis of this low-energy region
by Naisse' in 1977, the world set of pp scattering data
has grown considerably, ' mainly below 10 MeV.

On the theoretical side, improvements over earlier
low-energy analyses "" have been made by inclusion of
an improved Coulomb potential' '" and an explicit treat-
ment of pion-exchange effects. Our P-matrix parametri-
zation of the lower partial waves was an important im-
provement especially for the 'So partial wave. All
parametrized partial waves, the S, P, and D waves, are
treated in the same manner. In an analysis the partial
waves with higher angular momentum have to be taken
from theory. In these partial waves we used the phase
shifts due to vacuum polarization (VP) and one-pion ex-
change (OPE), computed in Coulomb-distorted-wave
Born approximation (CDWBA).

In order to get a good fit to the data in this low-energy
region, one has to take into account VP, OPE, and the
relativistic Coulomb parameter g'. The use of the
CDWBA instead of the plane-wave Born approximation
(BA) in the higher partial waves, and the inclusion of the
full improved Coulomb potential instead of only keeping
the g' term are less important. They give no significant
improvement of the fit, but they do influence the precise
values that are found for the phase shifts and the pion-
nucleon coupling constant.

In the past the most widely used parametrizations for
the phase shifts at low energies have been effective range
expansions. ' ' ' ' ' At those energies most of the
scattering happens in the 'So state. At 10 MeV, for in-

stance, more than 99% of the differential cross section is
produced by the nuclear interaction in the 'So partial
wave and the electromagnetic interaction. Heller' de-
rived for the 'So an effective range function, in which
Coulomb and VP were included. If additional elec-

tromagnetic effects are neglected, this effective range
function will have as its most nearby singularity a cut due
to OPE, starting at T&,b ———9.7 MeV in the complex en-

ergy plane. Because this is rather close to the physical
energy region, several analyses" used the Cini-Fubini-
Stanghellini (CFS) ' ' approximation, which tries to take
this nearby singularity approximately into account. It
has been shown' ' in a potential model by comparing
the CFS approximation with the calculated effective
range function, that the CFS approximation is totally un-
suitable for a proper description of the 'So partial wave.

Recently, an analysis up to 3 MeV has been done' in
which the 'So phase shift was parametrized as a function
of the energy using a pion-modified effective range for-
malism. This approach gives practically identical results
as our P-matrix formalism, even for the entire 0—30 MeV
range. The major drawback of modified effective range
expansions is the large effort necessary to compute the
modified effective range function with sufficient accuracy.
This problem arises from the singular behavior near the
origin of the long-range (Coulomb, VP) potentials. The
incentive of the modified effective range formalism was
only to remove the singularities near T~,b

——0 of the
effective range function, caused by the tail of the long-
range potentials. Since the short-range interaction is
parametrized anyway, one can see that the accuracy
problem of the modified effective range method is an
artificial one, arising from a too-detailed treatment of the
short-range part of the long-range potential. For higher
angular momenta the situation becomes even worse, due
to the appearance of the centrifugal barrier.

In other analyses ' the interaction in the 'So state was
parametrized by means of a parametrized potential. The
advantage of this method is that the electromagnetic and
OPE interactions are easily included in the correct way,
thereby fixing the tail of the potential. But it appears
that very different forms of the potential in the inner re-
gion (r ~ l fm) can give an equally good fit to the data. '

Once a specific form is chosen, the data pin down the pa-
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rameters of the potential very sharply. Just like in the
modified effective range formalism it appears that specify-
ing the short-range potential adds unnecessary detail to
the model.

For the P waves one usually has taken a simple
effective range expansion where only the Coulomb in-
teraction was included. For the P2 wave, however, one
did not parametrize the nuclear phase shift in this way,
but its difference with the OPE phase shift (see Sec. II B).
For the 'D2 wave a more phenornenological pararnetriza-
tion has been used in previous analyses (see Sec. II B).

We present an analysis that has none of the above
drawbacks. Theoretically well-known long-range poten-
tials are included easily, no computational problems arise
at short distances and the model dependence can be kept
down to a minimum. Furthermore, all partial waves are
treated with the same long-range effects (improved
Coulomb, VP, OPE) included. Also the treatment of cou-
pled channels is straightforward.

In this analysis, we use a P matrix to parametrize the
short-range interaction in the lower partial waves (total
angular momentum J & 3). The P matrix gives in a natu-
ral way a division of the interaction in a short-range and
a long-range part.

Jaffe and Low proposed to use the P-matrix formal-
isrn to connect rnultiquark states to hadron-hadron
scattering, and it has been used in that sense in nucleon-
nucleon scattering by Simonov and Mulders. The for-
malism is similar to the boundary condition model of
Feshbach and Lomon.

The P matrix is the logarithmic derivative of the radial
wave function at a radius b, the P-matrix radius. It will
be described in detail in the next section. For r p b the
interaction is described by a potential tail V. In V we
wanted to include those effects that are theoretically well
understood and are model independent. The electromag-
netic interaction is described very accurately by the im-
proved Coulomb potential' ' and the vacuum polariza-
tion potential. Of the remaining long-range nuclear in-
teraction we only took the tail of the OPE potential, It
appeared not to be necessary to include shorter-range nu-
clear forces in the potential tail. Here the first uncertain-
ties come into view, since the ppm coupling constant is
not known accurately. Fortunately enough, in this
analysis it can be determined by the fit to the data. In
previous analyses ' the pion-coupling constant could
not be determined well from the 0-30 MeV data. When
an effective range model was used for the 'SD partial wave
the reason was the too-crude approximation to OPE.
When a potential representation was used, meaningless
results for the potential parameters were obtained.

Our choice for the potential tail V gives a restriction on
the allowed values of b, since if b is chosen too small,
V(r) is no longer a good description of the pp interaction
for r & b. Of course we could have included a two-pion-
exchange potential tail, or a full nucleon-nucleon poten-
tial tail with contributions from higher-mass rnesons.
This would have resulted in a more realistic potential for
distances close to b. All results that change when a
different (realistic) potential is taken can be termed model
dependent. We have checked explicitly (Sec. VIA) that

the inclusion of the heavier-boson exchanges of the
Nijmegen soft-core potential does not change the At to
the data. Only the P-matrix parameters change in such a
way as to give, with this different potential tail, essential-
ly the same phase shifts. Since it is thus not necessary to
rely on a specific potential model for the shorter-range
forces, the shortest-range potential included here is the
OPE potential.

If the P matrix is parametrized as a function of the en-

ergy, one has an energy-dependent phenomenological
description of the phase shifts. We used it for a multien-

ergy (me) fit to all data published in a regular physics
journal. Unfortunately enough there exist a lot of
data that have not been published in a regular phys-
ics journal, but that appeared in conference proceedings
or theses only. Inclusion of these data would have
changed our results (see Sec. VI). Furthermore we reject-
ed some data on the basis of sound statistical criteria.
The model, with 12 parameters, gives a statistically satis-
fying fit to the data. Other analyses use about the same
number of parameters.

The me fit gives us the phase shifts as a function of the
energy. Next to this we also did single-energy (se) fits,
giving phase shifts and error matrices at certain energies.
The se fits were done by clustering the data to form
groups near the chosen energies. In order to do these fits,
one needs some of the me results to preserve the proper
energy dependence and to fix the phase shifts that cannot
be fitted at the chosen energy. Single-energy phase shifts
and error matrices are a representation of the data near a
certain energy and are probably less model dependent
than the me results. The se results can be used to judge
the amount of information the data give us at different
energies. They can also be used to adjust the parameters
of any model for the pp interaction. The quality of such
a model can then be judged from a comparison of the
model's likelihood function 7 with our me J, which is
close to the expected value X /Ndr = I (Sec. V A}.

We compare our results with the analyses of Sher, Sig-
nell, and Heller (SSH), ' Noyes and Lipinski, " Gursky
and Heller, ' and Naisse. There are other analyses that
have an overlap in energy range with ours. But the series
of analyses by Amdt and co-workers and the analy-
ses by Bystricky et al. ' are not detailed enough for
the very accurate data at low energies. The analysis by
Bohannon, Burt, and Signell deals with pp and np data,
but only in the energy range 20-30 MeV, which contains
only a small part of the 0—30 MeV pp data. Further-
rnore, the 20—30 MeV data are rather old and not very
precise.

In Sec. II the P matrix is defined, some of its properties
are given, and we describe how it is used to divide the in-
teraction into long-range (well-known) and short-range
(less well-known} interactions. We also discuss its param-
etrization and the choice of b. Section III is devoted to
the potential tail. In Sec. IV the framework for comput-
ing the observables is given. Special attention is paid to
the different kinds of phase shifts that have been used in
the past and we also deal with some technical problems.
In Sec. V, after a discussion of data statistics and our cri-
teria to reject data, we enter into the details of defining
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our final data set. Section VI concludes by giving our re-

sults for phase shifts and parameters. Differences be-

tween the phase shifts of our analysis and those comput-

ed with the Nijmegen soft-core potential (N78) (Ref. 27)

and the parametrized Paris potential (P80) (Ref. 28} are

discussed. We also give the effective range parameters
that can be deduced from our results. Finally, an appen-

dix is devoted to a test of some assumptions that were

made about the data statistics.

II. THE P MATRIX, A PARAMETRIZATION IN
THE LOWER PARTIAL WAVES

A. De6nition and properties of the P matrix

The scattering process of two protons we describe by
the relativistic' radial Schrodinger equation

+k — —M V(r) X(r)=0,
dr& r2

where X(r) is the radial wave function, M~ is the proton
mass, and L is shorthand notation for 1(1+1),with I
the orbital angular rnomenturn. The correct relativistic
connection between the c.m. relative momentum k and
the laboratory kinetic energy T„~ is k =M T„~/2. In
the case of two coupled channels, all operators in Eq. (1)
become 2 X 2 matrices, of which only the potential V( r) is
nondiagonal. The number of linearly independent solu-
tions of Eq. (1) is twice the number of channels. But the
complete physical model has only half that number of in-
dependent solutions. Therefore it consists of more than
Eq. (1). For instance, in a potential model one has the
boundary conditions that the physical solution is regular
at the origin (r =0). These solutions are then written as
the 2 X 2 matrix X(r). Perhaps one wonders why the rela-
tivistic Schrodinger equation can provide a good relativ-
istic description of the scattering amplitude and of
bound-state energies. Then one should realize that this
equation is nothing else but a differential form of the rela-
tivistic Lippmann-Schwinger (LS} integral equation. The
relativistic LS equation in turn is totally equivalent with
three-dimensional integral equations, such as the
Blankenbecler-Sugar equation. ' Important to note is
that it is well known how to calculate the potential for
the use in the relativistic Schrodinger equation.

Measurements of scattering observables determine the
asymptotic behavior (r~ oo } of the physical solution up
to an unimportant normalization. For the relation be-
tween this asymptotic behavior (definitions of phase shifts
and mixing parameters) and the observable quantities, see
Sec. IV.

In the P-matrix formalism that we employ, Eq. (1)
is only used for r )b, the P-matrix radius. All of the in-
teraction inside r =b is absorbed in a boundary condition
at r =b, the Pmatrix

P(b;k )=c+k
)

k2 —k2
(3)

For comparison, one might look at the trivial case that
V(r)=0 for r &b and orbital angular momentum l. This
leads to

c = I + I, r„=2, k„=z„/b, (4)

with z„ the nth zero of the spherical Bessel function j&(z).
(2) The P matrix is a decreasing function of the energy.

For coupled channels this means that the derivative with
respect to k is a negative definite matrix. Without as-
sumptions about the potential for r & b, this behavior can
be seen as a consequence of classical causality, but it is
also possible to express it explicitly in terms of the poten-
tial in the inner region

, = —b[X (b)] ' J drX (r) 1 —M 2'

XX(r)[X(b)]

mined. If b is chosen so large that the interaction outside
(the long-range interaction) is well known and model in-

dependent, all models for the pp interaction that give a
good fit to the data should produce the same P matrix.

If one has a model for the interaction inside r =b, not
necessarily a potential model, the P matrix connects the
physics of the inner region with the physics of the outer
region. For instance, in a bag model, in which quark de-
grees of freedom play a role inside r =b, the P matrix
shows poles at the energies of the eigenstates of the
confined system. Jaffe and Low call these eigenstates
bag primitives.

We use a parametrized P matrix as a means to analyze
the experimental data. We add the well-known long-
range interaction by means of a potential tail and
parametrize the structure of the P matrix as a function of
the energy. The energy dependence of the P matrix is
easier pararnetrized than the energy dependence of the
phase shifts. The potential V(r) we use for r &b is dis-
cussed in Sec. III, and the parametrizations for the P ma-
trix are discussed and compared with earlier partial wave
parametrizations in Sec. II B. In this section we review
quickly some properties of the P matrix.

P is a single-valued function of k . P is real for real k
in the case of a unitary S matrix and a Hermitian poten-
tial. In the coupled-channel case, time reversal invari-
ance allows the choice of a symmetric potential and S
matrix, leading to a symmetric P matrix.

Other important properties of the P matrix are the fol-
lowing.

(1) If one assumes that a local potential V(r } also exists
for r & b, one can show that the P matrix can be written
as a sum of poles. In the one-channel case we may write

P(b;k')=b
1E'

(2)

Given the asymptotic behavior of X(r) and the poten-
tial V(r) outside r =b, the P matrix is uniquely deter-

where the superscript T denotes the transpose of a ma-
trix. From this, one can see that P is a decreasing func-
tion of the energy if the energy dependence of the poten-
tial V is not too strong. In the coupled-channel case, Eq.
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(5) states that the energy derivative of P is a nonpositive
matrix, provided we have a positive matrix between the
square brackets.

(3) If one wants the P matrix at a different value of b,
one can use the relation

2

b =P P'—+b' —k'+ +M V(b)
db b2

(6)

The potential tail that we use will not be entirely exact,
since we do not include nuclear forces other than OPE.
Furthermore, our P matrix and potential tail do not de-
scribe inelasticity. Therefore we cannot expect all of the
above properties to hold exactly. We can see this by
looking at the S matrix as a function of the complex ener-

gy. The S matrix has a (purely kinematical) unitarity cut,
some right-hand cuts due to inelastic processes and left-
hand cuts due to particle exchanges. The potential tail
that we use does not contain any meson exchanges other
than OPE, nor does it account for inelastic processes
(couplings to channels with higher thresholds). We can
only get the right S matrix if some of the cuts are still
present in the P matrix. Therefore, in the P-matrix ap-
proach we might be able to spot a wrong potential tail. If
one finds, e.g. , for some partial wave a P matrix that in-

creases as a function of the energy, this is an indication
that the potential tail used is wrong.

The lowest-lying inelastic channels and the T~,~ (in
MeV) of the corresponding thresholds are ppm. (279.63),
d~+(287.51), pnm+(292. 30). We expect them to be unim-
portant for the P-matrix behavior in our range of ener-
gies.

Some of the left-hand cuts in the S matrix are not
present in the P matrix, since we include in the potential
tail the proper electromagnetic potential and the OPE
potential. Thus the P matrix does not have an (improved)
Coulomb singularity at T~,~ ——0, and also the nearby cuts
due to VP (starting at T~,&

———5.6X 10 MeV) and OPE
(starting at —9.71 MeV) are absent in our P matrix.
Since we solve the Schrodinger equation exactly for r & b,
we expect to have included part of the iterated OPE and
therefore part of the two-pion exchange (TPE). There
will be left-hand cuts still present in the P matrix, of
which the most nearby one starts at T~,&

———38.83 MeV
and is due to those TPE efrects that are not included in
the iterated OPE for r ~ b. In Fig. 1 the cut structure of
the S and P matrix in the complex energy plane has been
sketched. Due to Coulomb there is in the S matrix at
T~,t,

——0 an essential singularity and a "logarithmic"
branch point, as can be seen from the ln(r1') term in h(rl')
[see Eqs. (9) and (10)]. The corresponding cut can be
chosen along the negative imaginary k axis, so along the
negative T&,& axis in the nonphysical plane.

B. Parametrizations in the lower partial waves

The P matrix is a description of the interaction inside
r=b, and we will parametrize it phenomenologically.
For the lower partial waves parametrization is essential,
since the interaction in these partial waves is not given by
improved Coulomb, VP, and OPE alone. For higher 1

parame«i»tion becomes less important, since the in-
teraction for increasing 1 is more and more determined by

Im (~[ab) (a)

TPE

-38.8

OPE

-9.7

I{IP

-56 10

C,.
inelasticity

279.6
———Re (Ilab)

(MeV)

Im (T(ab) (b)

TPE inelasticity

-38.8 279.6
--- «(I(as)

(Mev)

FIG. 1. (a) Cut structure of the S matrix in the complex TI,& plane. (b) Cut structure of the P matrix for the potential tail that we

use in the complex TI,I, plane.
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the well-known long-range potential outside r =b. For
the higher partial waves that we do not parametrize, we
take the phase shifts and mixing parameters of the im-
proved Coulomb, VP, and OPE potential, computed in
Coulomb-distorted-wave Born approximation (CDWBA)
(see Sec. III B). In our analysis, there was no significant
improvement when F waves (I =3) or higher were
parametrized. In this section we discuss the parametriza-
tions of earlier analyses and of this analysis for each par-
tial wave in which parametrization plays a role.

5I =(5L )(+(5s)i (7)

where (5I ), is the phase shift of VL . One then can define
an efFective range function [FL(k )]I in which the left-
hand singularities due to the long-range potential have
been removed. For S waves one writes

(FL)p ——Apk cot(5s)p+Bp,

where the functions A o and Bo depend on the choice of
VL. In the original effective range function for the case
of uncharged particles, one ' ' used VL ——0. In that case
(5z )o——0, A p = 1, Bp =0, and the corresponding effective
range function is the we11-known Fp=k cot(5p). The
most simple effective range function possible for pp
scattering is obtained by taking VL

——V&, the Coulomb

1. So

The most important wave in our low-energy range is
the 'So partial wave. It has to be treated very accurately
in order to have a satisfactory description of the very ac-
curate low-energy data. In earlier analyses two ways of
parametrizing the 'So have been used: potential represen-
tations' ' and (modified) effective range parametriza-
t)ons 15 16 2 17 18

The potential parametrization approach has the advan-
tage that well-known long-range potentials can be includ-
ed exactly, but it has also several disadvantages. First of
all, the form of the potential has to be known, also for in-
termediate and short distances. Having chosen a specific
form for the potential in the inner region, the very accu-
rate scattering data pin down the potential parameters
very precisely. Different forms give for the important
physical parameters (pion-coupling constant, pion mass)
results that differ much more than the errors bars found.
Therefore reliable estimates for the potential parameters
cannot be given in this way. This is surely not the way to
extract, e.g., the ppm coupling constant from the low-
energy data, as is demonstrated by the analysis of
Naisse. Another disadvantage of potential parametriza-
tions is that they consume much more computer time
than other methods (effective range or P matrix), since
the Schrodinger equation has to be solved many times for
small changes in all potential parameters, in order to ar-
rive at the parameters that are best in accordance with
the data.

In the effective range method " ' ' ' one splits
the potential V into a well-known long-range potential
VL and a remainder V&. The phase shift 5I can then be
written as

I

Q2( &) (10)

h (i)') =Re[+(1+iri') j —ln(ri'),

with 4 the digamma function. The effective range func-
tion (Fz)o when VI —Vc+ Vvp has first been given by
Heller. ' The effective range function (FEM )o when

VL,
——VEM, with VEM consisting of the improved

Coulomb potential Vc (Refs. 13 and 14) and Vvp, and the
effective range function (FopE)o when VL

——VEM+ VopE
have been derived by Austen and van der Sanden, Em-
men, and de Swart. ' The singularity of (FEM)o that is
nearest to k =0 is a branch point, due to OPE, leading
to a left-hand cut, starting at k =+im p /2 or

T1,b ———9.71 MeV. For low energies the standard expan-
sion (effective range approximation) is

(FEM)o=—
&EM

1+—rEMk
2

The quality of this approximation can be seen in Figs.
2 and 3, where we have plotted the shape

(SEM )o=(FEM )o
1 1+

2
rEM~

EM
(12)

versus T„b. For (FEM)p and (SEM)p see also Secs. VIA
and VI B where (SEM )o is used to display results for the
'So partial wave (Sec. VIA) and to present the effective

range parameters that can be deduced from the very-
low-energy behavior of our 'Sp phase shift (Sec. VIB).
From Figs. 2 and 3 it is readily seen that the effective
range approximation Eq. (11), equivalent with the ap-
proximation (SEM )p

——0, is clearly not in accordance with

the experiments, not even for the lowest energies. How-
ever, when one is not interested in a high-accuracy
description, then the approximation Eq. (11) gives in the
energy region T1,b ~ 50 MeV the effective range function
(FEM )o up to +2.5%. In Fig. 2 two effects are noticeable.
In the very-low-energy region one can see that (SEM)p is

negative and bending down, which is almost completely
due to the most nearby singularity in the complex energy
plane, OPE. For higher energies (SEM)p has to bend up-
ward, because it has to rise to + ao at T1,„=250 MeV,
where the phase shift is crossing zero, turning negative.
That the phase shift turns negative is in potential models
a consequence of the repulsive core. The deviations of
the effective range function from a straight line were first
treated in the Cini-Fubini-Stanghellini (CFS) approxima-

potential.
This gives the mell-known effective range function

(Fc )p= Cp2(i)')k cot(5p)+2k')'h(i)'),

where 5p is the phase shift (with respect to Coulomb func-
tions) of the wave function. Here i)' is the standard
Coulomb parameter, often termed the "relativistic" g,
and Co and h are the standard functions

aM 1+2k /M

(1+k jM )
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parameters: aEM and rEM. Since the CFS1 parametriza-
tion does not allow (SEM)o to bend back, this description
of the 'So phase shift becomes rapidly very bad (the
shape only grows more negative) for energies T~,b ) 5 —10
MeV. For energies below about 2 MeV this approxima-
tion does not produce enough shape. With the pion-
coupling constant as a parameter, this can be mended. for
very low energies by enlarging g o and for higher ener-

ppK

gies by reducing it. This effect can be seen clearly in
Table V of the analysis by Naisse. To repair the features
of the shape function for higher energies a CFS2 approxi-
mation has been proposed, where

Spy (frn-1)
(FEM )0=

&EM

1 1+—rEMk—
2

P'k (1—ck )

1+Q'k (1—dk )

tion. ' ' In this approximation the left-hand cut of the
Born approximated I =0 partial wave amplitude was ap-
proximated for low energies by one pole. For (FEM )0 this
results in the CFS1 approximation

(FEM )0
1 1+—rEMk—

2~EM

m4

1+Qk
(13)

where P and Q are complicated functions of aEM, rEM,
the pion mass m „the pion-coupling constant g 0, and

7r
'

pp17
if Coulomb effects are taken into account, of the strength
of the Coulomb potential. Not counting the pion-
coupling constant as a parameter, Eq. (13) contains two

FIG. 2. The shape S«vs T~,b. S« is defined in Eqs. (12)
and (76), using asM and rEM of our me fit. lfl:.single-energy
analyses. M: multienergy analysis. PSO: Paris potential (Ref.
28). N78: Nijmegen potential (Ref. 27).$: single-group analy-
ses. The points marked with g are the single-group results of
the (unpublished) Minnesota77 (Refs. 29 and 30) data. The
dashed line (HL) displays the me fit if the Minnesota77 and the
Los Alamos76 (Refs. 31 and 32) data are included.

(14)

In this approximation the parameter c allows for
(SEM )0——0 at T~,b =40 MeV and the constant d is fixed to
have a zero phase shift at T] b 250 MeV. Therefore d
does not necessarily have to be regarded as a parameter
for our range of energies. P' and Q' can again be calcu-
lated in terms of aEM, rEM, c, d, m „and g o. Not

counting the pion-coupling constant as a parameter, Eq.
(14) contains thus three parameters. The CFS2 approxi-
mation is able to describe the features of (SEM )p discussed
above and shown in Figs. 2 and 3. But still this approxi-
mation is not good enough, because it requires too-large
values for the ppm coupling constant. By analyzing 'So
phase shifts below 30 MeV of a nucleon-nucleon potential
it has been shown that the CFS2 parametrization gives
a pion-coupling constant that is about 20% too large.
Since the pion-coupling constant can be determined from
the low-energy data with about 10% accuracy, the CFS2
approximation is not good enough.

In order to treat OPE better, a pion-modified effective
range function (FopE)o has been derived, ' where the
long-range potential is taken to be VL =VEM+VppF.
This function (FopE)o does not contain the left-hand cut
due to OPE. For (FopE)0 the approximation is used

0,2 'i0.6
L

0.8 1.0 T&~b(MeV)
(FOPE )0

1 1+ l'opE k 2

2&OPE

PopE k
(15)

1+QopEk

N7S' "

SEg (10-"fm-1)

FIG. 3. Enlarged display of the shaded region in Fig. 2. The
Paris potential cannot be seen, since its phase shift is too large
at low energies.

Values for PopE and QopE are fitted with the restriction
that the 'So phase shift is zero at T»b =250 MeV, so Eq.
(15) contains three parameters for the low-energy region,
if one does not count the pion-coupling constant. It gives
a good description of the 'So phase shift and reproduces
the input pion-coupling constant of the potential within
about 2%. The main problem with the pion-modified
effective range treatment for the 'So is that great care has
to be taken to get sufficient accuracy. The problem is due
to the singular behavior at r =0 of the long-range poten-
tial VL = V~+ Vvp+ VopE. From all solutions with
asymptotically equal norm a specific irregular solution
has to be defined by its behavior around r=0. Since ir-
regular solutions blow up at r =0, small numerical errors
made in this behavior around r=0 mean an unwanted
admixture of the (much smaller) regular wave function.
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rok
P(k )=co+

k —ko
(16)

with the three parameters co To and ko. Of course, also
the pion-coupling constant that affects all partial waves
and the P-matrix radius b that affects the lower partial
waves contribute in the parametrization of the 'So.

The 'So P matrix does not need more parameters in

this energy range. One can see that the one-pole parame-
trization is a natural low-energy version of Eq. (3), since
for low energies higher poles add up to a background P
matrix that can be absorbed in the constant eo. To ana-

lyze a larger energy region one would need a more de-
tailed parametrization than Eq. (16). This can be seen,
e.g. , by fitting the three 'So P-matrix parameters under
the constraint that 5('So)=0 at 240 MeV. This raises
the minimal P (X2;„)on the low-energy data by about 9.
Our 'So phase parametrization turns out to be able to
give the same results as the pion-modified effective range
parametrization of van der Sanden, Emmen, and de
Swart' up to 30 MeV, i.e., the difference between the two
methods is much less than the spread in the data. This is
a very nice result, since the phenomenological parame-
trization of the short-range interaction is accomplished in
a different way in the two methods.

2. P0, P&, and J =2 coupled channel Pq-eq- Fz

For the P waves, the analyses of SSH' and Naisse use
the uncoupled, Coulomb-modified two-term effective
range approximations

(Fc),J =k (1+2)' )[Co(TI')k cot(5', J )+2kri'h(2)')]

1 1+ r, jk (J—=0, 1,2) .2" (17)

Since the regular and the irregular solution have the same

norm asymptotically, the small errors made around r =0
grow more important for larger r.

The main problems in analyses that use potential pa-
rametrizations or effective range parametrizations are
thus due to the inner region of the interaction. The P-
matrix parametrization that we employ here combines
the merits of the former methods and lacks their prob-
lems. At the end of this section an overview is given of
these advantages for all partial waves.

The 'So appeared to be well described by the one-pole
P-matrix parametrization

~c = —,'(51o+35»+ &512»

~LS 2 ( 2510 3511+5512}

~T 72 ( 2510+3511 512 )

(19)

where the standard notation 5,z is used for the PJ phase
shifts. To solve the problem with the P2, one could try a
pion-modified effective range function, but since the OPE
potential couples the Pz to the Fz via the tensor force,
one would need a coupled-channels effective range ma-
trix. ' Of course this gives even more numerical accu-
racy problems than in the 'So case, but more important is

that one has to introduce at least one parameter (scatter-
ing length} for the F2 since the no-interaction
(paratneter-free) effective range function is singular.
Since the difference of the Fz phase shift and the ez mix-

ing parameter with the OPE values is hardly to be seen
below 30 MeV, this parameter is not determined by the
data.

(.5-

Coulomb penetration factor. This approximation to the

pp OPE P2 phase shift is not good enough. In the
analysis of van der Sanden, Emmen, and de Swart' a
better pp OPE P2 phase shift is subtracted, being the
CDWBA to the OPE P2 phase shift. In Fig. 4 it can be
seen that the linear approximation to (Fc),2 [Eq. (17)]
with the CDWBA to the OPE P2 phase shift is better
than with the BA. With potential phase shifts as input, it
has been shown that using the BA leads to a pion-
coupling constant that is about 10% higher than the in-

put value.
For the Po and P, Eq. (17) is a satisfactory parame-

trization, the only drawback is that the Po and P, do
not determine the pion-coupling constant at all. The con-
nection of the P2 with the pion-coupling constant in Eq.
(18) is very indirect. One cannot avoid the problem in the
P2 by using a Coulomb-modified effective range approxi-

mation for the standard low-energy combinations of P-
wave phases hc ~T, and ELs»nce ~c=0 for T~,b =8
MeV, and therefore the effective range function is infinite.
These P-wave phase shift combinations are defined by

For J=0,1 the phase shift 6&J is taken to be 5,&, the
phase shift one would have if the only electromagnetic in-
teraction present were the 1/r-shaped Coulomb. For a
definition of 5IJ see Sec. IV B. One cannot use the same
procedure for the P2, since the anomalous threshold be-
havior of the P2 phase shift gives this effective range
function a structure different from a straight line as a
function of T&,b. Therefore both analyses' ' use

I.o-

3.5-

I

2& &(ab(MeV)

5~12 =5 ~12 —Co ( vl' )( 1 + rl' )5 (18}

In this rather ad hoc subtraction, the OPE phase shift
for uncharged particles 5i2 is multiplied with the

FIG. 4. P, effective range function F,2 [Eqs. (17) and (18)] vs

T(,b for the Nijmegen78 potential (Ref. 27). BA: The Born ap-
proximation to its 6» and Coulomb penetration factor.
CDWBA: The Coulomb-distorted-wave BA to its 6»
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All of the above problems are solved by the P-matrix
method. A two-parameter description appeared to be
necessary. The linear approximation that we use for the
uncoupled P waves

P(k )=c,J+d, jk (20}

P(k )=
C32,

(21)

with c32 ——4. One can see that all matrix elements, except
for the upper-diagonal one have been set to the T1,b

——0
limit of the P matrix without interaction inside r =b
[Eqs. (3) and (4)]. This coupled approximation with no
parameters for the e2 or F2 corresponds almost exactly
to giving the e2 and F2 their OPE values.

3. D

The 'D2 needs only one parameter up to 30 MeV. In
the analyses of SSH, ' Naisse, and van der Sanden, Em-
men, and de Swart' the approximation for the 'D2 phase
shift used looks like

6EM fioPE( 1+y T ) (22}

For the definition of the electromagnetic phase shift 5&

(phase shift with respect to electromagnetic wave func-
tions) see Sec. IVB. The analyses of SSH' and Naisse
take 5z to be the OPE phase shift for uncharged parti-
cles. Analyzing potential phase shifts, it has been
shown that this neglection of Coulomb effects leads to a
prediction of the pion-coupling constant that is about
10% too low, as can be seen in Fig. 5. Correcting the

6t'Ot, OPE. approx )

6 ('Ot, exact )

84

COWS4

08-

25 Ilab(MeV)

FIG. 5. Different approximations to the 'D2 phase shift of
the OPE part of the Nijtnegen78 potential [Eq. (31) of Ref. 27],
divided by the D2 phase shift of the Nijmegen78 potential. BA:
Born approximation. BA-PF: BA with Coulomb penetration
factor. CDWBA: Coulomb-distorted-wave BA.

with J=0,1 for the Po, P, , respectively, can be seen as a
natural low-energy version of Eq. (16) if the pole is far
away.

Also for the J=2 coupled channels P2-e2- F2 two pa-
rameters are sufticient, so we use

C12+d12k

above 62 with only the Coulomb penetration factor
leads to a prediction that is about 10% too high (Fig. 5).
Therefore, van der Sanden, Emmen, and de Swart' cal-
culate 6z using the CDWBA. We use the natural one-
parameter approximation limit of Eq. (20)

P(k )=c2 . (23)

Counting the parameters used we arrive at 10 P-matrix
parameters plus the P-matrix radius b for the lower par-
tial waves, and the pion-coupling constant that affects all
partial waves. Of these, b does not necessarily have to be
regarded as being a parameter, since it is not well deter-
mined by the low-energy data. As a parameter, b can be
compared in some sense with the parameter that effective
range analyses use to ensure the good high-energy behav-
ior of the 'So phase shift. Of these two parameters, the
P-matrix radius b has a more direct physical interpreta-
tion. Because the long-range interaction that we use is
only adequate for not too small r, b cannot be chosen too
small. From Eqs. (3) and (4) one can see that large values
of b shift the pole positions to lower energies. Our pa-
rametrizations do not allow for too much structure, so b
cannot be chosen too large. In order to have a realistic
model, we have to add the restriction that b must be
somewhat larger than the range of interactions that we
did not include in the potential tail. So we want b to be
larger than about 1 fm, larger than the range of the two-
pion exchange. Therefore we expect to find some allowed
range of values for b.

From the P-matrix property Eq. (5) that P is a decreas-
ing function of the energy, it can be expected that ro )0
and d, j &0. By comparing the parameters co, c,J, and c2
with the free values clJ ——l + 1, one can judge the amount
of effective short-range interaction. If the short-range in-
teraction is not so attractive that the P matrix has poles
below threshold, then one can see that an attractive
short-range interaction makes the P matrix more negative
than its free value, while a short-range repulsion makes it
more positive.

As a conclusion to this section, we give a quick resume
of the advantages of the P-matrix method over the previ-
ously used (modified) effective range and potential para-
metrization methods. %'ell-known long-range interac-
tions are included easily. The radial Schrodinger equa-
tion has to be solved only a few times for each energy (see
Sec. III). No computational problems arise at short dis-
tances. The phenomenology, necessary to describe accu-
rately the short- and intermediate-range interaction, is
not mixed up with the well-known long-range interaction.
The treatment of the J=2 coupled channels is straight-
forward, since a coupled-channels parametrization is
available that uses no parameters for the e2 and F2. All
lower partial waves are treated with the same theoretical-
ly well-known long-range effects (improved Coulomb,
VP, OPE) included, since we use the same potential out-
side r =b. In Sec. IIIB, where the treatment of the
higher partial waves is explained, it is shown that all
these long-range effects are also taken into account in the
higher partial waves. Therefore, e.g., the pion-coupling
constant is determined from all partial waves in a natural
way.
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III. THE POTENTIAL TAIL

A. Defining the potential

As we employ the P-matrix formalism we only need a
potential tail in the region r ~ b. Thus only the longest-
range interactions have to be included in the potential.
The higher partial waves are determined almost com-
pletely by the long-range interaction and can therefore be
produced by the potential tail alone. For all partial
waves we use the same potential tail

VopE+ VEM VopE+ Vc+ Vvp (24)

where VoPE is the one-pion-exchange potential and VEM
is the electromagnetic potential consisting of the im-
proved Coulomb potential Vc and the vacuum polariza-
tion potential Vvp.

The improved Coulomb potential' '" takes into ac-
count the lowest-order relativistic corrections to the stat-
ic Coulomb potential and includes contributions of all
two-photon-exchange diagrams. As will be discussed
later, we can neglect in our energy range the spin-orbit
and tensor parts of this potential. We take the "gauge"
parameter A. =0, resulting in'

Vc = Vci+ Vc2

V„=a'Ir, (25)

Vc2=— (6+k') —+ —(5+k')
2M2

P

where 6 is the Laplacian and a' is given by

2k''
M

(26)

with i)' given by Eq. (10). The most important difference
with the standard static Coulomb potential is the use of
a' instead of a.

The vacuum polarization potential Vvp, as derived by
Uehling and reviewed by Durand, can be written as

2a a' ~ —2m rx
Vvp= "dx e ' 1+

r ) 2~2
(~ 2

1 )1/2

X

2
g pp+o ~p m e

—mr

VQPE 3 4~ (~2+k 2)1/2 4~ mr
P P

(27)

Here m, is the electron mass and a and a' are as given
above. The unprimed a describes the coupling of a pho-
ton to the virtual e+e pair, the a' the coupling to the
protons.

For one-pion exchange several potentials could be
used, which differ only at short distances, due to the
choice of different form factors. Since we only need the
tail of the potential, we took the simple form

where m is the v mass and g 0/4m. is the ppn cou-
p p IT

pling constant. This coupling constant is not known ac-
curately. From pion-nucleon scattering one knows the
NN~ — coupling, but the ppm. coupling could well be
different. Besides, we are here in a totally different kine-
rnatic region. The best place to determine the ppm. cou-
pling constant is probably in pp scattering. For that
reason, we have fitted in this analysis the coupling con-
stant to the data. Since g 0 is extracted only from the

pp77

tail of the interaction where no theoretical uncertainties
exist, we believe that this is a rather model-independent
determination (see also Sec. VI).

We now quickly review the effects we included in our
potential tail, in order of diminishing strength. The po-
tential Vc~ of Eq. (25) is the dominant interaction for
small scattering angles, especially at low energies. At
T] b = 10 MeV, the Coulomb potential still dominates for
c.m. angles below 20' which makes it imperative to in-
clude it. The importance of the one-pion-exchange tail
can be seen from the fact that from the data its coupling
constant is deterinined with about 10%%uo accuracy. There-
fore, if the effect would be entirely neglected, correspond-
ing to a zero coupling constant, no good fit to the data
could be expected. We have explicitly checked the irn-

portance of the vacuum polarization by completely re-
moving it from our model. This means that it was left
out of the potential tail and, as explained above, was no
longer present in any partial wave. After that, all model
parameters were refitted. The resulting minimal 7 then
remains higher by —100, compared with the complete
model. The vacuum polarization is thus seen in the data
with a significance of 10 standard deviations (s.d.).

In the same way we tested the use of a' instead of a.
The use of a gives in our final fit to the data an increase
in 7 of about 20, so this effect has a significance of 4.5
S.d.

The term Vc2 of Eq. (25) does not give a significantly
better fit. The magnitude of this effect is about 10 times
smaller than the vacuum polarization, as can be seen, for
instance, from the phase shifts (Sec. IV). Still we do not
want to neglect this effect, because its presence will

slightly influence the energy dependence that our model
can give to the phase shifts. Especially the threshold be-
havior of the 'So phase shift near T~,b

——0 will only be
correct if the long-range interactions are treated correct-
ly.

Finally we mention the magnetic moment interactions.
As was stated earlier, we neglect these terms of the poten-
tial. The reason is that these interactions are again —10
times smaller than Vc2. The magnetic moment interac-
tion in the So partial wave is a 5 function in the origin
and is therefore included in the short-range interaction,
which is described by the P matrix. In the P waves its
phase shifts are less than 10 deg. A detailed treatment
of this effect can be found in Ref. 59, where its impor-
tance is also found to be negligible.

B. Calculations
3 3

X (~, .~, )+S» 1+, ,
+

(mr} (mr}2
(28) In order to see how the potential tail is used in our

model, we first turn to those partial waves that have a
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parametrized P matrix. For these waves, the P-matrix
value for a certain energy is given by the parametrization.
Knowing the P matrix is enough to give the radial wave
function and its derivative 7 and 7' at r =b up to a com-
mon normalization factor. The Schrodinger equation en-
ables us then to compute X(r) for all r &b. This wave
function will, for very large r, have the asymptotic behav-
ior

X(r) —F&(r)', kr)C
& +Gi(ri', kr)C2, (29)

where FI and 6I are the regular and irregular Coulomb
functions as defined in Ref. 60 and g' is as defined in Eq.
(10). In the nucleon-nucleon interaction the spin-triplet
states with J =1+1 are coupled. In that case Eq. (29) be-
comes a matrix equation. The 2X2 matrix I consists
then of columns which are independent two-component
solutions, and FI and 6I become diagonal matrices. The
coefficients (matrices) C, and Cz of Eq. (29) contain all

necessary information about the partial wave. In terms
of C& and Cz, the K matrix and S matrix are defined as

1+iKJ
KJ ——C2C), SJ ——

1 —IKJ
(30)

Xi(b)=1,

X,(b) =0,

X,(b)=0,
r

d Xp(b)=1 .
r

(31)

In Sec. IVA the decomposition of the S matrix into
phase shifts will be discussed.

In practice, the calculations have to be repeated many
times while the P-matrix parameters are fitted. Because
it would be rather time consuming, it is not desirable to
solve the Schrodinger equation each time to compute the
asymptotic behavior of 7. For each energy, we need only
once to compute two independent solutions Xi(r) and
X2(r) of the wave equation, satisfying the boundary con-
ditions at r =b

A widely used method to deal with this problem is to
define

X(r)=&1+2/(r)X(r) . (35)

The function 7 then is a solution of the normal radial
Schrodinger equation with the local potential

Vo 1 2yk'
1+2$ Mp I+2/ (1+2$)z

(36)

For any P matrix, one can compute the boundary condi-
tion for X with Eq. (35). Writing X as a linear combina-
tion of X, and X2, Eqs. (30), (32), and (33) give then the S
matrix [if P(r) ~0 sufficiently fast for r ~ ao ].

We mentioned before that for the partial waves with
higher angular momentum, we would like to use fixed

phase shifts that are produced by our chosen potential
tail. The higher partial wave phase shifts are very insens-
itive to the short-range potential. Whether one adds to
the potential tail V(r) of Eqs. (24) —(28) a zero potential
for r g1.4 fm or one adds a form factor continuation of
V(r) for r & 1.4 fm, gives at 30 MeV only a difference of
10 deg in the 5(3F4), 2)&10 deg in the 5( F3), and
even less in the other (higher) partial waves. Thus for the
partial waves with I) 3 any reasonable choice for the
short-range part of the potential would give the same re-
sult. One does not have to solve the Schrodinger equa-
tion in the higher partial waves, as the BA or the
CDWBA will get accurate enough as I increases. This is
shown in Table I, where we give the F3, F4, and '64
phase shifts and the e4 mixing parameter computed for
the a'Ir Coulomb potential plus the VopE with a form
factor continuation inside r= 1.4 fm (C+OPE), and the
BA and CDWBA to these phase shifts and mixing pa-
rameter.

In our fits we use for J) 3 the CDWBA, which is seen
to be a more accurate approximation to the K-matrix ele-
ments than the BA. The computation of CDWBA phase
shifts leads to integrals for the partial wave K-matrix ele-
ments

Their asymptotic behavior for r ~ oo is given by

Xi(r) =FI(rI', kr) A +GI(rt', kr)B,

X2(r) =FI(r)', kr)C +GI(ri', kr)D .
(32)

P f dr Fi,(rl', kr)
k o

)&( Vcz+ Vvp+ VopE)FI(ri', kr) . (37)

For any P matrix P, we then can compute C& and C, of
Eq. (29) VopE consists of terms of the type e ™Ir"Integrals.

of these functions between Coulomb functions can be

C& = A +CP/b C2 =B +DP/b (33)

V (r) = Vo(r) 1IM [bP(r)—+P(r)b ] . (34)

The coefficients A, B, C, and D have to be computed for
each parametrized partial wave and for all energies ap-
pearing in the data set. A complication arises if the po-
tential tail contains parameters, as in our case the pion-
coupling constant g 0. We solved this by interpolating

PP~
each coefficient, using computed values for three different
values of g pp77

The improved Coulomb potential [Eq. (25)] cannot be
used directly in a radial wave equation. It contains a
nonlocal potential of the form

5( F3)
5( F4)

E4

6('G4)

C+ OPE

—0.3424
0.0266

—0.0775
0.0619

BA

—0.3583
0.0254

—0.0797
0.0637

CD%'BA

—0.3463
0.0243

—0.0774
0.0618

TABLE I. 'F„'F4, and 'G4 phase shifts and e4 mixing pa-
rameter (in degrees) at T&,b

——30 Me V of the potential
Vc~ + Vopp [Eqs. (25) and (28)] with a form factor continuation
for r &1.4 fm and g 0/4m=14. 4. BA and CDWBA: Born

pprr

approximation and Coulomb-distorted-wave Born approxima-
tion to the C+ OPE values.
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computed accurately in a fast and elegant way using re-
cursion relations. The other two potentials, V&2 and

Vvp, do not couple partial waves with different angular
momentum, thus for their contribution to the K matrix in
Eq. (37) one needs only to consider I'=I. For the contri-
bution of Vvp one can use the results of Durand. In our
calculations we used an expansion in log(T„b), like Eq.
(8.3) of Durand, but with more terms to extend the ener-

gy range to lower energies. To compute the contribution
of V&2 [Eq. (25)] we consider first the operator b, +k .
From the three-dimensional wave equation with potential
Vci

Then one finds that in very good approximation

o.a' m

21+1 2 dl

I
1 —Co(i)')+ 2iI'

J=i '9 +J
with Co(ri') as given by Eq. (10).

IV. PHASE SHIFTS AND AMPLITUDES

(42)

(5+k )P(r)=M& Vci(r)g(r) (38)

follows that in CDWBA the operator b, +k is equivalent
with M Vci Ma'/r——. Therefore the contribution of the
potential V&2 in Eq. (37) can be written as (suppressing
some arguments}

2

f dr FI VciFi = — f dr
0 M 0 12

(39}

Fl ( ri', kr ) —sin kr—
I'~ 00

m.l
2

+o I
—ri'ln(2kr) (40)

where

o, =arg[ P I + 1+i ri')] . (41)

In CDWBA the potential V&2 is therefore equivalent with

VC2
—— aa'/—M~r The .Schrodinger equation with the

potential Vc&+ VC2 can be solved exactly, because V&2
can be absorbed in the centrifugal barrier. The solution
is a regular Coulomb function FI. with I'=I —aa'/
(2I+1) up to leading order in a. The phase shift p& of
VC2 can be obtained from the asymptotic behavior of the
regular Coulomb function

A. Basic definitions

In order to define phase shifts for an interaction which
contains the Coulomb force, one has to match the wave
function asymptotically to Coulomb functions [Eq. (29)].
One then defines the K and S matrix by Eq. (30). For an
uncoupled channel the phase shift 5 is defined by
tan5=E or S =e ' . In the case of two coupled channels
we use the "bar" phase shifts, ' defined by

SJ ——

i5)
e cos2eJ i sin26J

z & s&n2eJ cos2eJ i52
e

(43)

This is possible because the S matrix is unitary and sym-
metric. The phase shifts 5i and 5z are usually denoted as
5IJ, so 5J i z and 5J+i J, respectively. For the uncou-
pled channels one uses 5I to denote the spin-singlet phase
shift and 51& for the uncoupled triplet, which has I =J.

Because we deal with identical particles the amplitude,
or M matrix, in the spin space of both particles must be
symrnetrized. This results in

(s, m'
~
M(8, $)

~
s, m ) = (sm'

~
Mc(8)

~
s, m )

. . ., ..., &I,s ~S+2 g Y' (8,$)C' ~ i' 'e ' . e 'CIi' &4m(2I + 1),
1',J, 1 2ik

s+1 even

(44)

where C' ' ~ is a Clebsch-Gordan coefficient and
I s

Y' (8,$) is a spherical harmonic. The o.
I are the

Coulomb phase shifts, defined up to an unimportant, 1-

independent constant (see Refs. 62 and 63) by Eq. (41).
The symmetrized Coulomb M matrix for proton-

proton is

( ms'
~
Mc(8}

~
s, m ) =5 ~ [fc(8)+(—1)'fc(vr 8)], —

(45)

where

2l CTp

c(8)=-
2k [sin (8/2)]'+'" (46)

All scattering observables can be expressed in terms of
the M matrix.

B. Dift'erent types of phase shifts

The kind of phase shifts defined above are unfortunate-
ly not the only ones in use. To compare our results with
other publications, we have to introduce some other
kinds as well. A phase shift, as the word says, is a shift of
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one wave function with respect to another. For the kind
of phase shifts in Sec. IV A these functions are the physi-
cal wave function g and the Coulomb wave function F(,
respectively. Since each choice for the interaction leads
to a particular regular wave function, we can define phase
shifts of different interactions (or potentials) with respect
to each other. For the moment we disregard coupled
channels and suppress the indices I and J.

We denote by 5~ the phase shift of the solution with
potential W with respect to the solution with V as the in-
teraction. We apply this to the case where we have a po-
tential consisting of a Coulomb potential Vc =a'/r, some
additional electromagnetic corrections VEMc, and the nu-

clear part VN. The phase shifts as defined in Sec. IV A,
which were denoted as 5, can now be fully denoted as

5C+EMC+Iv. We keep the short notation as an alterna-
tive. We now use

g C+EMC g C
~C+EMC+N ~C+EMC+N+~C+EMC ' (47)

The 5C++EMC+Iv are also denoted as 5 . They are called
phase shifts with respect to electromagnetic wave func-
tions, or nuclear-electromagnetic phase shifts. The first
name expresses that they can also be defined using Eqs.
(29), (30), and (43) with Fl and Gl replaced by a regular
and irregular solution for the potential Vc+ VEMc.

The phase shifts 5 are useful because, as we will
show later, they can speed up the summation involved in

Eq. (44). One more reason to define them is their appear-
ance in effect:ive range functions to extend the region of
convergence of the effective range series. A difhculty is
that the definition of the 5 depends on the choice of
the potential VEMc. If the correction VEMc only consists
of the vacuum polarization potential Vvp it gives the so-
called nuclear-electric phase shifts, denoted by a super-
script E. They satisfy

C C 1/2 C+ EMC C 1/2
C+EMC+IV ( C+EMC} C+EMC+IV( C+EMC}

S//2 (1+~2)1/2(1 It )
—1 (51)

where the first factor, the square root of a positive
definite matrix, is uniquely defined.

The nuclear-electromagnetic S matrix can also be
defined by matching the wave function to electromagnet-
ic wave functions. This means that one can apply Eqs.
(29} and (30) with the matrix solutions F and G replaced
by F and G, a regular and irregular solution for the po-
tential Vc+ VEMC. F and G can be defined very concisely
by demanding them to be real and to satisfy

F—/G (F —/G)(Sc+EMc ) (52)

Since S™is symmetric and unitary we apply Eq. (43) to
decompose it into nuclear-electromagnetic phase shifts.

We now look at the case of our model, where VEMc is
spin independent, so Sc+EMc is diagonal. Equation (50)
then implies for the phase shifts

fiIJ fiIJ +(~C+EMC)l fiIJ ++i +PlEM C EM (53)

EM
EJ =E'J (54)

(50)

The two matrices Sc+EMC+N and Sc+EMC can be defined
by Eqs. (29) and (30) and are symmetric and unitary.
Equation (50}defines SC++EMC+Iv also denoted as S and
called the nuclear-electromagnetic S matrix. By con-
struction it is also unitary and symmetric. We need here
the square root of a symmetric S matrix, which is related
to a real and symmetric K matrix. One can explicitly
define

&I =~1 +&IE (4&)

where ri is the vacuum polarization phase shift. Often
more effects are included in VE«. For instance SSH'
included magnetic moment interactions and finite size
effects. However, they still denoted their nuclear-
electromagnetic phase shifts with a superscript E. They
also used an effective range formula that was meant to be
used with phase shifts 5 . In our analysis we neglect
magnetic moment interactions, as explained in Sec. III A.
We also do not include finite-size effects, since the entire
short-range interaction is parametrized. Our VEMC con-
sists of Vvp and Vc2 [Eqs. (24), (25}, and (27)], which
leads to

M =MC+MEMc+MN,

where

(55)

&s, m'
I MEMc(19) I

Here the 6,J and EJ are found decomposing SC+EMC+Iv,
the total S matrix which was termed S above. Since Eq.
(50) is also valid for uncoupled channels, we can substi-

tute it for the S matrix in Eq. (44). This equation can
then be rewritten as

5( ——5( +~(+p( .EM (49)
with

=fi [fEMC(0)+( —1)'fEMC(K 0)], (56)

Here we used the fact that the potentials Vvp and Vc2 are
weak, so their phase shifts ~( and p( can simply be added
to get the phase shift of VEMC.

We employ the same mechanism for partial waves with
coupled channels. We therefore have to translate the ad-
dition law [Eq. (47)] for phase shifts into a multiplication
law for S matrices. For this we use and

C+EMC I
C

fEMC(g)= g e ' (2I+1)PI(~),EMC

(57}
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(s m'~M (0$) ~s m)=2 g I' (8,$)C' '
~

i' 'e ' ' ' ' '

e
, ;(,+, ,+,) I', s I S —1 I l, s

2ik
s+l even

X Co' &4m(2l +1) .

Mp
dr Xl(r) VEMc(r)Xi("}

0
(59)

where X( is the wave function for the potential Vc+ V~.
The case where VEMc contains only the vacuum polariza-
tion potential was first treated by Foldy and Eriksen.
In that case the phase shift difference in Eq. (59} is
termed the Foldy correction

~l (5C+VP+N }l (5C+N }I

M
dr Xl(r) Vvp(r)

k 0

In our case VEMC also contains Vc2 of the improved
Coulomb potential [Eq. (25)]. Therefore we define an im-
proved Coulomb-Foldy correction 6( by

~l (5c+vp+N}l (5c+N)l

dry(r Vvp r+Vc2r X( r . 61
k 0

5( and 5( are in principle model-dependent quantities,
depending on the nuclear interaction, via the wave func-
tion Xl(r). For the higher partial waves that are at low
energies only weakly affected by the nuclear interaction,
one can approximate Xl(r) by the regular Coulomb func-
tion. In practice this suffices for all partial waves except
the 'So. For I &1, Eq. (59) therefore reduces to the
CDWBA for the phase shifts 5c+EMc and we have

In a phase shift analysis, the splitting of Eq. (55) is use-
ful. The reason is that the first two terms are fixed and
only have to be computed once. Only the summation of
Eq. (58) for the nuclear part of the amplitude has to be
repeated many times in the fitting process, and this sum-
mation converges much more rapidly than Eq. (44), be-
cause the nuclear interaction is of much shorter range
than the electromagnetic forces. In our energy range it is
sufficient to use only terms up to J=10. The slowly con-
verging part, which is still present in Eq. (57), needs
several hundreds of terms.

Finally we mention another type of phase shift that is
frequently used. It is denoted by 5 and can be defined,
using our full notation, as 5 =(5c+N )l. Within a poten-
tial model these phase shifts can be obtained by removing
the (very long range) VEMc from the model, so they are
much easier to compute. Another advantage is that an
effective range formula for 5 is much simpler than those
for other types. Unfortunately, the definition of 5 is
model dependent. The difference between the ordinary 5
and 5 can be given in distorted-wave Born approxima-
tion

5l 5l (5C+EMC+N )I 5C+N )I
C C c

(62)

Hence the phase shifts of type 5 for I ) 1 are practically
equal to the nuclear-electromagnetic phase shifts 5 of
Eq. (49}. This also applies to the coupled channels case
[Eq. (54)].

Only for the 'S0 one has to do better, the correct X(
has to be used in Eq. (59). Noyes and Lipinski" give bo
for three (simple) potential models. We have computed
A0 up to 30 MeV for two modern NN potentials: the
Nijmegen (N78) (Ref. 27) and the Paris (P80) (Ref. 28) po-
tential. The values never differ more than 10 deg be-
tween these models, except for model (c) of Ref. 11,
which consists of OPE plus a purely attractive Bargmann
potential. Since this is smaller than the accuracy with
which the 'S0 phase shift is determined at any energy
(Sec. VI C), we believe that these corrections are
sufficiently model independent for a wide range of nu-
clear interaction models. If one wants to treat the elec-
tromagnetic interaction better, the next step in improve-
ment would be taking into account the spatial extension
of the charges. This would give rise to a further im-
proved Foldy correction.

The values obtained with the Nijmegen (N78) (Ref. 27)
potential for h0 and b0 are given in Table V. There one
also finds the vacuum polarization phase shift r( and the
phase shift p( of Vc2. With these quantities any other
type of phase shift can be translated to a standard phase
shift 5( as defined in Sec. IV A.

We believe that the results of an analysis should prefer-
ably be given as phase shifts of this latter type, 5( or
(5c+EMc+N)l, because they are most directly related to
the asymptotic wave function. The definition of the other
types is model dependent. Only the 5 of Eq. (49) could
in principle be used, but the symbol 5 has also been used
to denote other kinds of phase shifts. ' ' Therefore we
always use the 5( type to give our results.

V. DATA ANALYSIS

A. Statistical considerations

1. The procedure

In any kind of fitting one compares the predictions of a
certain model with the experimental data and then ad-
justs the parameters of this model to obtain the best
agreement. In our analysis we are mainly interested in
extracting values for the phase shifts and the pion-
coupling constant from the data. We employ the I'-



28 J. R. BERGERVOET et al. 38

matrix model (Sec. II) to describe the phase shifts as
energy-dependent quantities. We make use of three kinds
of fitting.

(1) In a multienergy (me) fit, all parameters of our mod-
el are fitted to all data of our selected data set in the en-
tire energy range.

(2) In a single-group fit only data of one experiment
are used. Only 1 or 2 phase shifts at the energy of the ex-
periment (or at some central energy if the data within this
group have been taken at different energies} serve as pa-
rameters. Other phase shifts and, if necessary, the energy
dependence of the phase shifts searched for, are fixed us-

ing me results. The purpose of single-group fits is to
judge the quality of each group in the determination of
the phase shifts. These single-group phase shifts can
show friction between groups. They can also serve as a
means to detect systematic errors that have not been
specified in the data publication. In Sec. VA5 we will

give an example of such a situation.
(3) In a single-energy (se) fit, the subset of data with en-

ergies close to some central value is used. The phase
shifts one wants to search for at these energies act as pa-
rameters. Their proper energy dependence has to be
preserved using me results.

Since the energy dependence of the phase shifts pro-
duced by the model is not so important in se fits, se fits
are less model dependent and can be used to judge the me
parametrization. Furthermore, se fits are more likely to
satisfy the conditions for a least-squares fit [see Sec. V A 3
condition (ii)]. Therefore, the values for the phase shifts
with error matrices resulting from se fits are the most re-
liable, model-independent description of the data in terms
of phase shifts. They can be used to judge a model of the
interaction or to adjust its parameters to the data. The
advantage of a me fit over a se fit is that it averages the
statistical fluctuations at different energies. In all three
kinds of fits the method of least squares has been used,
which will be described below.

(E ) = —
z

min g (p)
1 d
2 dp~ pp

P~a

(65)

pa &min a

This means that the error (E )'~2 is the maximum devi-
ation possible in p without raising X by more than 1,
while other parameters are allowed to vary. Equation
(65) is valid also if a stands for a subset of the parame-
ters. Then E is the error matrix, truncated to this sub-
set of parameters. We make use of this to define 7 when,
as usual, groups of data have an overall (multiplicative)
norm uncertainty. Such a normalization has to be intro-
duced as a normalization parameter vA, for which the ex-
perimentalist states vA =1+E'A p. This would lead to a X
depending on many more parameters. Since we are usu-
ally interested in determining the model parameters only,
we avoid this by defining

X'(p)=+X'„(p)
A

N
v~M~, (p}—E~, ;=g min g

A A i=1

2

&A, o

(66)

irnized with respect to all parameters p . The obtained
parameter values are the predictions we get from the
data. The error matrix E for these parameters is related
to the second derivative of 7, evaluated at 7;„, the
minimum of 7 with respect to all parameters

1 d X (p)
aP 2 dp dp@ p

—p

From the error matrix E one defines the one standard
deviation (s.d. ) error for parameter p as (E )'~ . By
approximating X as a quadratic function near its
minimum, one can show that

2. Least sqttares Pt-

X (p)=QY„(p)
A

M~, (p) —E~;
(63)

A least-squares fit now means that Eq. (63) has to be min-

We consider the case of a data set consisting of several
groups of rneasurernents. A group is a set of measure-
ments obtained from one experiment. The measurements
within a group usually have a common normalization un-
certainty and there may also be other systematic errors.
We denote the NA measurements and errors within a
group A by E„;Re„; (i =I, . . . , N„}. Suppose for a
moment that no groups contain specified systematic er-
rors, such as normalization uncertainties. The model
values for the scattering observables we call M„;(p).
They depend on the model parameters p (a = 1, . . . ,

Xz,„). The agreement between theory and experiment
can then be seen in g

where p contains only the model parameters. The use of
this X in Eq. (64) immediately gives the error matrix, re-
stricted to the model parameters. For calculations, the
X of Eq. (66) is very useful. The minimum with respect
to the normalization parameters v„can be found trivially
by minimizing a quadratic function. Therefore one can
easily compute P (p) of Eq. (66) with the v„adjusted im-
plicitly. So the function to be minimized iteratively, de-
pends only on the model parameters. For the groups
where vz is entirely unknown (e„o——~), the second
squared term in Eq. (66} is absent. If v„ is exactly known

(e„o——0), v„ is fixed to 1 and the second squared term is
again absent. Some groups have, apart from vA, some
more specified systematic errors, given as normalization
parameters with different angle-dependent influences.
These more complicated systematic errors can be treated
analogously.

Since the first derivative of 7 with respect to all pa-
rameters is zero in the minimum, the second derivative
matrix S =2E ' together with the minimum value of g
(X;„)can serve as an approximation for Y (p) in the
neighborhood of the minimum. In the case of our se fits,
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where the parameters are phase shifts, this allows the
computation of X for any model that produces phase
shifts. Fitting the parameters of such a model to our se
values and error matrices has several advantages. First
of all, one does not have to compute model values for
every measured observable. Also the detailed analysis
and selection of the data is avoided. Finally, the obtained
7 can be compared with the value we reach in our me fit.
Our se minima of 7 show the minirnurn values that are
attainable.

It is better not to compare phase shifts with our results
by using only the errors computed from the diagonal ele-
ments of our error matrix, because phase shifts that seem
to be in reasonable accordance with ours (when this ac-
cordance is measured in terms of these errors) can still be
very bad, due to the correlation between the phase shifts.

3. Conditions for a least-squares jit

In order to get meaningful results from a least-squares
fit some conditions must be satisfied.

(i) The model should be able to give (almost) the true
values of the observables for some values of the parame-
ters. This could be called the true values of the parame-
ters.

(ii) The model predictions M„;(p) should be approxi-
mately linear as a function of the parameters in the pa-
rameter region where g —7;„~1.

(iii) The measurements have to be free from unspecified
systematic errors (unbiased), and their statistical errors
should be specified correctly. Stated differently, each
measurement should have a probability distribution func-
tion, which has as its expectation value the true value of
the observable, and as its variance (mean-square devia-
tion from the expectation value) the e„;. The shape of
the probability distribution function may be arbitrary, as
long as the variance exists.

If these conditions are met, one can derive some
desired properties for the parameters obtained in the fit.
The least-squares fit is viewed then as a method (estima-
tor) to derive parameters as a function of the input mea-
surements. Since the latter are stochastic variables, the
same is valid for the parameters. These parameters will
now have as their expectation values precisely the true
values mentioned above. So the least-squares method
provides an unbiased estimate for the parameters. Fur-
thermore, the variance matrix of these parameters is pre-
cisely the matrix E defined by Eq. (64), which is the
justification for calling this the error matrix. If the rnea-
surements have Gaussian probability distribution func-
tions, one obtains for the parameters a probability distri-
bution function that is also Gaussian (multivariate nor-
mal distribution). If the data have arbitrary probability
distribution functions, then, due to the central-limit
theorem of statistics, one still obtains a Gaussian proba-
bility distribution function for the parameters in the limit
of a large number of data.

We now return to the three conditions. As stated
above, we would like to satisfy them especially in se fits,
in order to get a reliable representation of the 7 hyper-
surface. In these analyses only a limited number of phase

shifts can be used as parameters. To satisfy condition (i)
the phase shifts not searched for (higher 1 phases) have to
be fixed at the correct values. Therefore an important
quantity with respect to this condition is MEMC, the
long-range amplitude of Eqs. (56) and (57). If one disre-
gards some small contribution to MEMc or to the higher /

phase shifts, this can still result in a good fit, but the
fitted phase shifts will be biased. An example of such a
situation can be seen in older analyses that neglect vacu-
um polarization for orbital angular momentum 1 g0.
This error is compensated roughly by changing the cen-
tral P-wave phase shift combination 6&.

One can see that condition (ii) is easily satisfied, since
the parameter region involved is typically much less than
a degree in each phase shift.

If condition (iii) is violated by some measurements, it
will often be necessary to reject them, in order to obtain
reliable results. We will now describe some means to
detect such data.

4. Expectations for g

P(X;„)=P~ (X;„), (67)

where

(68)

is the 7 distribution for v degrees of freedom. It has ex-
pectation value v and variance 2v. This leads for 7;„to

In a least-squares fit to data as described above, we
have to define the following numbers. The number of
data Nd„consists of the N, b, measured scattering observ-
ables and the N„, normalization parameters for which an
error is given: Nd„=N, b, +N„,. Thus Nd„ is the num-
ber of squared terms in Eq. (66). The total number of pa-
rameters N& used to minimize X [Eq. (66)] includes the

Np model parameters plus the N„ fitted normalization
parameters: Nfp Np +N So N„—N„, is the number
of unbounded normalization parameters, which will be
equal to the number of groups of relative measurements.
The number of degrees of freedom Ndf is given by the
difference between the number of data and the number of
parameters: Ndf ——Nd„—Nfp.

If the conditions for a least-squares fit are fulfilled, one
can show that the obtained minimum X has the expecta-
tion value (I;„)=Ndr. However, the uncertainty in this
prediction depends on the shape of the probability distri-
bution functions of the individual measurements. In the
following we will assume, if necessary, that these are
Gaussian. In the Appendix this assumption is tested and
there it is shown that the 7 distribution of the experi-
rnents agrees very well with the expectation for Gaussian
data. For scattering data one certainly expects this, be-
cause the Gaussian is the limiting form for large numbers
of the Poisson distribution that would emerge from event
counting. With this assumption one can assign a proba-
bility distribution function to 7;„
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the expectation value

( Xmin ~ df —+ df (69)

One often defines the 7 per degree of freedom 7 /N«or
M value for which one expects

(X /Ndr ) = I++2/Nd, . (70)

We now look at the contribution to 7 of one data
point, denoted by X~;. This is one individual term in P
of Eq. (66). For a moment, assume that no normalization
parameters have to be fitted and that the model has no
parameters (or all parameters are fixed at their true
values). The assumption of Gaussian measurements then
gives us for each squared term in 7 a probability distri-
bution function P, (X„,) of Eq. (68). Since this probabili-

ty distribution function has expectation value 1, the ex-
pectation value of the total 7 will be the number of these
squared terms. In the case where N „model parameters
and N„normalization parameters are fitted, we know
that the Nd„ terms lead to an expectation value N«.
Therefore it seems reasonable to assume that a somewhat
narrower probability distribution function for each term
results, due to the fitting of these parameters, e.g. ,

P(X„;)=a 'P, (a 'X„;), (71)

Ps„„p(X'„)=P 'P, (/3 'X'„),
A

(72)

with N~ =N~ —1 for groups of relative measurements,
and N„' =N„otherwise. In both cases p=Ndt/
(Nd&+N „).In our final me fit p=+'5', .

Serious deviations from the behavior expressed in Eqs.
(67), (71), and (72) are an indication that the conditions
for a least-squares fit are violated. Therefore the above
probability distribution functions can be used to con-
struct rejection criteria.

with ~=N«/N„„. In our Anal me fit a=
389 In the Ap-

pendix this probability distribution function is compared
with the experimental distribution of our final fit, and an
excellent agreement is found.

One can also look at the g contribution of a group
within a large data set. Again we start assuming that
there are no model parameters. A group of N„measure-
ments with a fixed normalization will then have for its
contribution to X,X„, a 7 distribution for N~ degrees
of freedom. For a group of relative measurements this
reduces to N„—1 degrees of freedom after the normali-
zation is fitted. If a group contains a normalization da-
tum (v„=1+a„o), it actually consists of N„+1 data,
but after the norm is fitted, the probability distribution
function for its contribution to X will again be a 7 dis-

tribution for N„degrees of freedom. Adding the expec-
tation values of all groups, we now reach

N, b, —(N„N„,) as the ex'p—ectation value of the total X .
If model parameters are fitted, this has to be reduced to
the expected N«. We again assume that the distributions
for each group are narrowed, due to the fitting of the
model parameters

5. Rejection criteria

There are two ways in which a measurement can fail to
satisfy condition (iii) of Sec. V A 3. The errors ez, could
be specified incorrectly (too small or too large), or there
may be systematic errors present. If the errors are
overestimated, there is of course no reason to reject these
data. In the case of too-small errors, the data pretend to
give more information than they actually do, which can
lead to erroneous results. Systematic errors are errors
that are in some way correlated for all measurements
within a group. If they are specified clearly, systematic
errors can be dealt with, as in the case of normalization
errors. Often this is not the case, and statistical and sys-
tematic errors are somehow combined to so-called total
errors. The following example shows how systematic er-
rors can lead to wrong results.

Suppose that in a group of N measurements of the
same quantity the error is purely systematic. This means
that N times the result T+S is obtained, where T is the
true value. The experimentalist does not know S, but he
has only some expectation value for it, say S. Each mea-
surement now has the total error e; =S. A least-squares
fit to determine T would result in the value T+S, with
error S/&N, which is not correct. Of course in this case
the systematic nature of the errors is clearly visible. As a
more general example we look at a group of N measure-
ments of an angle-dependent observable at a number of
angles. Again we assume that the errors are purely sys-
tematic and again the number S is a measure for the mag-
nitude of the systematic errors. The measurements result
in E; =T;+Sf;, where the f; allow for an angle-
dependent systematic error and are normalized such that

g f, =N. The experimentalist gives for each measure-
ment an error e;=S, the estimated magnitude of S. If
this group is analyzed in a single-group fit, it is possible
that a fitted parameter p can compensate for the effect
of S. In that case a 7 &&N«will be obtained. So it ap-
pears that a systematic error can sometimes be detected
from a very low 7 in a single-group fit. One will also get
a value for the parameter p with a deviation from the
true value proportional to S, independent of N. The fit,
however, will give an estimate for the accuracy of this pa-
rameter that is proportional to Sl&N. The group pre-
tends to determine this parameter more accurately than
is actually the case.

If the same group is analyzed in a me fit as part of a
large data set, it might be detected in another way. Let
us assume that the parameters are practically fixed to the
true values by the rest of the data set. Then the 7~ of the
group in question will not have the usual probability dis-
tribution function of Eq. (72), since only one single pa-
rameter S is responsible for its errors. If one assigns a
Gaussian probability distribution function to S one can
show that the probability distribution function for P „
will be N 'P, (X„/N). In any case we expect a probabil-
ity distribution function which is not as sharply peaked
around N, so very high and very low values of 7~ are
more likely to occur. Therefore they can serve as an indi-
cation for systematic errors.

Finally we mention the problem of outliers, individual
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data points with a very high 7~,-. These can be viewed as
resulting from a faint, but very broad background added
to the probability distribution function of the data. It
can be shown that if a background exists, rejection of
outliers will lead to more accurate values for the parame-
ters (having smaller variance). Different methods exist to
reject outliers. We use the 3o. criterium, as explained
below.

In this analysis we reject groups of measurements if
there is strong evidence against them. Only conditions
that would have a very small chance to occur for a
correct data set serve as rejection criteria.

%e now list our rejection criteria.
(1) Any measurement E„; with X„,&9 is rejected as

an outlier. This corresponds to the 3' criterium, since a
X~; of 9 means a misfit of three times the experimental
error. For Gaussian data and a parameter-free model
there would be a chance of only 0.27%%uo for a measure-
ment to be rejected. Due to the effect of fitting, we expect
an even smaller chance; Eq. (71) leads to 0.14%.

(2) To reject data with systematic errors, we leave out
groups of which the single-group fit disagrees too much
with the me fit. %e use an analogy of the 3e criterium.
The group is rejected if the parameter values in the me
and single-group fits show a difference of more than three
times the accuracy with which this parameter is deter-
mined in the single-group fit. In the case of a one-
parameter single-group fit 7~ is not allowed to drop by
more than 9 below g„of this group in the me fit. For an
n parameter single-group fit, this is generalized to a max-
imurn X„drop by Xh;sh(n) of Table II. This criterium is
tailored in such a way that the chance that a group of
correct Gaussian data will be rejected is 0.27% if the
effect of fitting the me parameters is neglected. In fact
also here the chance is even smaller.

(3) As another means against systematic errors, a
group is rejected if its X„ is less than X„„(Ndt) in a
single-group fit with Ndf degrees of freedom. The values
of 7&,„, listed in Table II, are calculated to give again a
chance of 0.27&o for a correct group to be rejected. A
group is also rejected, if its me 7„ is already too low. We
do not use this criterium if Ndf (3, because then a small

X~ is no longer highly improbable.
(4) Finally we leave out a group of its X„ in the me fit

exceeds PXf„sh(N„), where P is as specified below Eq.
(72). From Eq. (72) it can be seen that this gives again
the 0.27% chance to reject correct data. For a group of
N„relative measurements, the upper limit becomes
~X~ sh(N~ —1).

By construction of all these criteria should almost nev-
er come into action in the case of correct data. If they do
reject a considerable fraction of the data set, one should
be suspicious, because those criteria that reject data for

their high contribution to 7 can also indicate that the
model does not have enough freedom. In this analysis
the only sets of data rejected for their large contribution
to X consist of the 50 Berkeley68 (Ref. 68) cross sections
(all rejected data are discussed in Sec. V B). In that case,
however, there are enough comparable measurements,
and therefore one can see that the Berkeley68 data clearly
contradict the other data (see also Ref. 12). Therefore it
is very likely that something is wrong with these data.

The criteria are meant to avoid unwanted effects, like
systematic errors and underestimated errors, because
they can lead to less accuracy in the parameters than the
obtained error matrix suggests. Instead of rejecting data,
this might also be remedied by enlarging by hand the er-
rors of suspect measurements. With which factor the er-
rors should be enlarged would have to be guessed from
the amount of systematic error one sees in the data. In-
corporating data with enlarged errors has the disadvan-
tage that the above expectations for X (e.g. ,

X /Ndt 1+Q——2/Ndt) are not valid anymore. The
Wisconsin66 1 —3 MeV cross-section data form an ex-
ample of the above situation. Before the publication of
the Zurich78 data, the Wisconsin66 data were the only
cross sections below 5 MeV and away from the interfer-
ence minimum that were incorporated in analyses. The
errors, however, contained a large systematic component.
Therefore, before 1978 one could not reject the Wiscon-
sin66 data without throwing away valuable information,
but one should have enlarged the errors. Presently the
importance of the Wisconsin66 data has faded, since one
has the Ziirich78 data. ' Therefore we do not include the
Wisconsin66 data in our data set. The Wisconsin66 data
are not in disagreement with our multienergy fit, since
they give X =15 (for 50 data).

B. The data

The latest 0—30 MeV pp analysis' incorporated 253
measurements. Since then a lot of new data have been
published. An analysis of all 0—3 MeV data has been
performed recently by van der Sanden, Emmen, and de
Swart. ' At these very low energies only differential
cross-section data are available. Earlier analyses had
only available the 5 Los Alamos64 data around the in-
terference minimum, measured by Brolley et al. , and the
51 %isconsin66 1-3 MeV data of Knecht, Dahl, and
Messelt. The 9 Base173 data ' below 2 MeV have not
been included in the earlier analyses. It has been known
for a long time that the %isconsin66 data have errors
with a large systematic component (see also van der San-
den, Emmen, and de Swart' or SSH' ). In SSH' a nor-
malization error can be found which incorporates sys-
tematic errors that are constant with angle. However, a

TABLE II. Values of X used in the rejection criteria (see text).

&hgh~n)

X~ „(n)
11.8 14.2 16.3

0.15
18.2
0.31

22
0.81

10

27
1.8

15

35
4.1

20

42
6.8

25

49
9.8

30

56
13
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large systematic component remains, as the bulk of the
systematic errors were angle dependent. Therefore the
publication of the 174 Zurich78 differential cross-section
data below 1 MeV by Thomann, Berm, and Miinch
meant a tremendous addition to the very-low-energy
data.

At about 5 and 10 MeV Barker et al. recently reported
the 26 Wisconsin82 high-precision analyzing power (po-
larization) data. ' Bittner and Kretschmer published 6
Erlangen82 analyzing power data at about 6 MeV. An
Erlangen80 measurement of the spin-correlation parame-
ter A (CNN) at about 10 MeV was published by Ober-

meyer et al. ' Another addition to the data is formed by
the 13 Los Alamos76 cross sections around 20 MeV mea-
sured by Jarmie and Jett.

Most of the low-energy data are differential cross-
section data. Such data primarily determine the 'So
phase shift and the central combination of P-wave phase
shifts b ~. The importance of polarization measurements
lies in the fact that they allow a determination of the ten-
sor and spin-orbit combinations of P-wave phase shifts
hr and b, Ls. Therefore especially the Wisconsin82 (Refs.
6 and 7) data, that are much more precise than the older
Wisconsin75 (Ref. 71) data, mean an important addition
to the low-energy data. The above-mentioned P-wave
combinations are defined in Eq. (19}.

Our initial set of data consisted of all pp scattering
measurements for T&,b

~ 30 MeV published in a regular
physics journal after approximately 1955 (because of the
relative precision of the newer measurements). A de-
tailed list of the major part of the data can be found in
the Nucleon-Nucleon Scattering Data Tables of Bys-
tricky and Lehar.

Unfortunately enough, there exists a lot of data
that have not been published or that have only been re-
ported in conference proceedings. We believe it is a good
policy to omit unpublished data in an analysis, although
we realize that much effort has been made to take these
measurements and that perhaps nothing is wrong with
these data, except that they lack the detailed scrutiny
they would have had when prepared for a formal publica-
tion. These unpublished data are 117 Minnesota77
differential cross-section measurements of Hegland
et al. ' from 6 to 20 MeV, 9 Los Alamos76 analyzing
power data at 16 MeV of Lovoi et al. ' and, somewhat
less recent, 8 Grenoble70 polarizations at 30 MeV of Ar-
vieux et aI. The new Erlangen86 analyzing power data
at 12 MeV of Kretschmer et a/. had only appeared in a
conference proceeding before this analysis was Anished
and are therefore not included. We find that there is fric-
tion between these data and the Wisconsin82 (Refs. 6
and 7) data.

Had we included the unpublished data, our results
surely would have changed. Apart from the fact that
with the Los Alamos76 analyzing power data one can
give se phase shifts at 16 MeV, the most important
change in our results would arise from the inclusion of
the Minnesota77 do. /dQ data. Of these, the group at
13.6 MeV would not have survived our rejection criteria,
but the remaining 100 data are almost as restrictive to the
phase shifts as the 124 do /d0 measurements we have in

our final data set (see below) between 5 and 20 MeV.
Therefore in the discussion of the results (Sec. VI A) we
will describe the changes in the results that would arise
from inclusion of the Minnesota77 and Los Alamos76
data.

A list of all groups of published data is given in the
data reference table, Table III. As the 0-3 MeV data
have been analyzed recently by van der Sanden, Emmen,
and de Swart' we accept of their results the rejection of
the Base173 (Refs. 4 and 5) and the Wisconsin66 (Ref. 69)
data.

As a first step, the values of our 10 P-matrix parame-
ters for the lower partial waves [Eqs. (16), (20), (21), and
(23}] are adjusted to this initial set of data (fit 1), where
we keep the remaining parameters of the model fixed at
the reasonable values: g, /4m = 14.4 and b = 1.8 fm.

pp7T

The 16 old Berkeley67 polarization data between 10
and 20 MeV, the 17 Berkeley68 differential cross sec-
tions at 9.918 MeV, 3 differential cross-section data
points from different groups, ' ' and 1 normalization
datum appear to be inconsistent (criteria 4 and 1 of Sec.
V A 5}with fit 1 and are therefore rejected. None of these
rejections is surprising, compared with other analyses, ex-
cept perhaps the rejection of the normalization datum of
the Los Alamos70 (Ref. 78) differential cross sections at
9.69 MeV. The Los Alamos70 cross sections at 9.69
and 9.918 MeV are the reanalyzed data of an earlier pub-
lication. . The reanalysis of the data was done, since the
phase shift analysis of Holdeman, Signell, and Sher
showed discrepancies in the data around 10 MeV. The
reanalyzed data are about 2% larger than the original.
For the 9.918 MeV data this new normalization is in ac-
cordance with our results. For the 9.69 MeV data we
find a norm of 0.9826, about 2% less. Naisse finds about
the same normalization, but he enlarges the normaliza-
tion error artificially, since in his analysis the 9.69 MeV
data of Los Alamos70 (Ref. 78) and Minnesota59a (Ref.
77) are treated as one group with a common normaliza-
tion datum.

In the second step, the 10 P-matrix parameters are
tuned (fit 2) to fit the remaining (i.e., initial minus reject-
ed) data. Since fit 2 already results in X /Nd«1, we ac-
cept fit 2 as having determined the phase shifts well
enough to serve in the single-group analyses. In these
single-group analyses, we adjust the important phase
shifts to fit one group of data. The important phase shifts
are the ones that are best determined by the specific type
of experiment. For differential cross sections we fit
5('So} and hc, for other types of observables we fit b, z.

and A„s, if possible. All other phase shifts are preserved
at the fit-2 values. For groups consisting of data at
different energies, we want to vary at these energies an
important phase shift with only one parameter. There-
fore we fit a constant to be added to the energy-
dependent P matrix of fit 2. For low energies this pro-
cedure is better than fitting a constant to be added to the
phase shift, since it ensures the proper threshold behav-
ior.

These single-group analyses result in the 7 values and
values and errors for the important phase shifts in the
columns labeled X,~ and sg phases of the data reference
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table. The single-group phases of some groups deviate
too much (criterion 2) from the fit-2 values and are there-
fore rejected. These are the two groups of Berkeley68
differential cross sections (17 data at 6.141 MeV and 16
data at 8.097 MeV). Some groups have an improbably
low value of X (criterion 3) in fit 2 or in the single-group
fit and are therefore rejected. These are two groups of po-
larizations ' (in total 14 data} and two groups of
differential cross sections ' (in total 40 data). Except
for the Erlangen79 polarizations at 6.141 MeV, the low
X of these groups of data has been known already from
earlier analyses.

From the single-group fits one can judge the impor-
tance of groups of data in the determination of the phase
shifts. Section VIC deals with the se results, and some
remarks are made about specific groups of data in our
final data set.

After these rejections, we have arrived at our final set
of data, comprising 360 observables in 30 groups, of
which five have a free norm. We believe that it contains
no data contradicting each other too much and no data
of which the errors can be seen to contain a too-large sys-
tematic component.

As a third step, the final me fit and all se fits can be
done with this final set of data. Also the single-group fits
for the remaining groups have to be redone, but the
difference with the previous single-group fits is very
small. The results of these fits are discussed in Sec. VI.

VI. RESULTS

A. Multienergy results

Having defined our final set of data (Sec. V B), we fit

the 10 P-matrix parameters for the lower partial waves
(Sec. II B) and the ppm coupling constant that affects all

partial waves, for various values of the P-matrix radius b.
For b between 1.1 and 1.7 fm we achieve a fit in which X
deviates no more than 1 from the minimum. This rather
weak dependence with an optimum for a reasonable value
of b is satisfying. It is clear that a totally correct poten-
tial tail would have allowed smaller values for the P-
matrix matching radius. Therefore one can see here that
for r ~1 fm nuclear forces other than OPE are present.
As explained in Sec. II 8 larger values of b shift the pole
positions of the P matrix to lower energies. Since our pa-

rametrizations allow for a limited structure, the upper
limit on b can be understood. We choose to give our re-
sults for b =1.4 fm, which is approximately the best
value. We reached 7 =343.2 for 343 degrees of freedom,
or 7 /Ndf 1.00. Theoretically one expects 7 /Ndf 1,
with an error Q2/Nd& 0.——076. The g distribution over
the individual points agrees very well with the expected
statistical distribution, as is shown in the Appendix.

The values and errors for the parameters in the mul-
tienergy fit can be found in Table IV. The errors are
square roots of the diagonal elements of the 11)&11 error
matrix.

The not very strong result for the ppm. coupling con-
stant g 0/4m=14. 5+1.2 is in agreement with other

ppal

determinations. The higher partial waves (J &3) give
almost no restriction on the pion-coupling constant. Of
the lower partial waves, the '$0 gives as much informa-
tion on g 0 as the other partial waves. That the P2 P-

pp77

matrix parameters are determined more precisely than
the P-matrix parameters for the Po and P, stems from
the fact that OPE produces only a small part of the P2
phase shift. Some reservations have to be made with
respect to the results in Table IV, since the P-matrix pa-
rameters are of course model dependent. First of all, it
should be noted that the values and errors of Table IV
are evaluated for a fixed b. For other values of b, the P-
matrix parameters to describe the same phase shifts will
be different. The changes in the results that would have
occurred if we had included the important unpublished
data are discussed below. Another reservation that could
be made is that perhaps very different P-matrix parame-
ters would have resulted if we had chosen a different
external potential (e.g., including higher-mass mesons).
To judge the model dependence due to the potential tail
we added to our potential tail the Nijmegen one-boson-
exchange potential (N78) (Ref. 27} for r ) 1.4 fm, except
for its OPE part. With this different potential tail an
equally good fit to the data is achieved. With this better
potential tail P;„ is even slightly worse, it rises by 0.23.
The phase shifts remain essentially unchanged (compared
with the accuracy with which they are determined).
Satisfying is that even the pion-coupling constant arrived
at in this way (g 0/4n =14.2+1.3) does not deviate

pp7T

much from the value found in the me fit. The resulting

TABLE IV. Values and errors (for b =1.4 fm} for the parameters. For the de6nition of the partial
wave parameters, see Sec. II B. For comparison, the corresponding values for the free P matrix are also
given. All values are in appropriate powers of fm.

Partial wave

's,

3P

3P

3 3P2-e2- F2

Parameter

g 0 /4n.
PP&

Cp

ro
k02

Clo

dlo

d11
C l2

d12

C2

Fitted value

14.5+1.2
0.230+0.013
1.58+0.86
3.3+1.5
3.39+0.77

—2.9+1.5
1.70+0.48

—0.25+0.86
1.355+0.030

—0.20+0. 16
1.01+0.31

Free value

1

2
5.0
2

—0.4
2

—0.39
2

—0.39
3
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P-matrix parameters, especially for the 'So and P2, are
that even the pion-coupling constant arrived at in this
way (g 0/4m=14. 2+1.3) does not deviate much from

pp7l'

the value found in the me fit. The resulting P-matrix pa-
rarneters, especially for the 'So and P2, are quite
different, from which one can see that they must be re-
garded as model-dependent quantities.

Table V presents in sui%cient detail the me phase shifts
and mixing parameters of the bar decomposition of the
total S matrix (Sec. IV). Linear interpolation in Ti» of
the phase shifts reproduces the me phase shifts at every
energy with an error less than the neighboring se error
bar, except for 5('So}at very low energies. The accuracy
of linear interpolation of the 'So phase shift from the
table below 2 MeV is only about 10 deg. For 5('So) it
is much better of course to interpolate the correct
effective range function FEM(k ) (see Sec. VI B), since the
effective range function is developed to give a smooth pa-
rametrization for the very nonsmooth 'So phase shift.
But the interpolation of FEM(k ) requires the use of non-
trivial functions. A very accurate and simple way to
reproduce our me 'So phase shift at all energies is to in-
terpolate linearly in T„b (or k ) the function

F =Co(r)')k cot(50 Eo)+—2k7)'h (g'), (73)

with the 'So phase shift 50 and the improved Coulomb-
Foldy correction b,o (Sec. IV B) as given in Table V, and
then to interpolate bo linearly to get 5O at the required
energy. The standard functions Co(ri') and h (rl') in Eq.
(73) are as given in Eq. (10). The accuracy with which
our me 'So phase shift is thus reproduced is about 10
deg below 2 MeV. That Eq. (73) supplies an accurate
way to interpolate the 'So phase shift is easily under-

stood, since the improved Coulomb-Foldy correction b, o
can be used to remove approximately vacuum polariza-
tion and improved Coulomb effects from the phase shift

Qe

The phase shifts in the higher partial waves, not given
in this table were taken to be improved Coulomb plus
vacuum polarization plus OPE phase shifts, computed in
Coulomb-distorted-wave Born approximation. Also the
F2 phase shift is not given in the table, since it surpasses

the Vz+ Vvp+ VppE value at 25 MeV only by 1.5)& 10
deg and the difference is less at lower energies. The e2
mixing parameter, which has been tabulated, is about 3%
more negative than the C+VP+OPE value. Some phase
shifts at the precise energies of the experimental data can
be found in the data reference table in the column labeled
me phases.

Next to the me phase shifts, one can also find in Table
V the quantities that can be used to compare our phase
shifts with those of models that do not incorporate vacu-
urn polarization and/or improved Coulomb. These are
~I, the vacuum polarization phase shift, p&, the phase
shift of the Vc2 part of the improved Coulomb potential,
and furthermore the Foldy correction 50 and the im-

proved Coulomb-Foldy correction 60 both calculated for
the Nijmegen potential. To compare our 'So phase
shift, that is the phase shift (5& vp opE)0 with respect to
Coulomb functions (see Sec. IV), with phase shifts

(5C+z)0 of models that incorporate neither improved
Coulomb nor vacuum polarization, but only the Coulomb
potential Vc, [Eq. (25)] and a nuclear potential, one
should use the relation

(5c+N )0=(5c vp (74}

An example: The Nijmegen potential gives at 25 MeV

(5&+& )0=49.28 . With ho(25 MeV) = —0.036' from
Table V one obtains for the Nijmegen potential

(5& vz N)0 ——49.244' which is 3.3 se error bars larger

than our se value, as can be seen in Fig. 2. For a model
that incorporates vacuum polarization but not improved
Coulomb, and of which the phase shift is given with

respect to vacuum polarization functions, one can use

r0+(5C+VP+N)0 ( 5C +vp+N}0 ~0+~0 'c+vp c (75)

55-

50-

I

20

H78

P80

I

Tlgb (&e~)

FIG. 6. 'So phase shift 50 in degrees vs T~,. s. (): single-

energy analyses. M: multienergy analysis. P80: Paris potential
(Ref. 28). N78: Nijmegen potential (Ref. 27).

For partial waves with I & 0 one does not need a table of
Foldy corrections, since for reasonable nuclear potential
models one has accurately enough 5I =v I and

5I =~l+pI. For I &0 pl has not been tabulated, since in

good enough approximation p& = 1.4 X 10 deg and

p2=9)(10 deg between 0.1 and 30 MeV. From the
smallness of these phase shifts p, and p2 one should not
conclude that the V&z part of the improved Coulomb po-
tential is unimportant, because a lot of partial waves con-
tribute due to the very long range of V&2.

One can see in Table V that for low enough energy the
'D2 phase shift almost equals r2, but the P-wave phase
shifts already deviate from r, at the lowest experimental
energies. This difference is due to the threshold behavior
of the nuclear phase shifts. The drastic fall off of the VP
phase shift is only seen below about 0.1 MeV. One can
also see the accidental crossing at T&,b=30 MeV of 50
and wo and at Ti»=18 MeV of bo and ~0 For m. ost pur-
poses it might be accurate enough to approximate above
30 MeV 60 and ho by ~0.

The me phase shifts (labeled M) are also shown in Figs.
2, 3, 6, and 7. For the 'So the direct plot of the phase
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FIG. 7. P and D wave pha-se shifts 5 in-degrees vs T~,. b. g: single-energy analyses. M: multienergy analysis. HL: me fit with un-

published data (Refs. 29-32) included. (i: Amdt et al. (Ref. 36). : SSH (Ref. 12). $: Bohannon, Burt, and Signell (Ref. 40). N78:
Nijmegen78 potential (Ref. 27). P80: Paris80 potential (Ref. 28). n.: One-pion exchange.

shift (Fig. 6) can hardly show the fantastic accuracy with
which the So is determined. Therefore in Figs. 2 and 3
the shape SEM(T„b) is displayed. The shape is the devia-
tion of the effective range function FEM (Sec. VI B) from
the straight line

1 1
SEM ——FEM — — + —rEMk

OEM 2

where the effective range parameters aEM and rEM are
determined from the 'So phase shift of the me fit.

The effect of our rejection of the unpublished Minneso-
ta77 (Refs. 29 and 30) and Los Alamos76 (Refs. 31 and
32) data can be seen in the lines labeled HL. These would
be the result of the me fit if we included these important
unpublished data. Since the group of Minnesota77
differential cross sections at 13.6 MeV would not have

survived our rejection criteria, these data have not been
included here. Whether deviations are of significance can
be seen by comparing them with our se error bars ((:3).
The most important of the differences between the M and
HL lines, due to the Minnesota77 (Refs. 29 and 30) data,
are found for 6('So), 6&, and 5('D2) for energies
T~» & 10 Me~. Including the Minnesota77 data further-
more would result in a pion-coupling constant g o/4m
that is about one standard deviation smaller (13.4+1.0).
Preliminary analysis indicates that inclusion of data
around T~» ——50 MeV shows the same trends as inclusion
of the Minnesota77 (Refs. 29 and 30) data.

The above-mentioned differences between the phase
shifts of these modified analyses and our me analysis are
1 —2 standard deviations (s.d.). Since these modified anal-

yses show the same trends, we are led to the belief that,
e.g., the pion-coupling constant is more likely to be small-
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er than 14.5, the value found in the me fit. For 5('So),
bc, and 5('D2), we have analogous beliefs. Probably
these problems arise because of the rather small number
of data available at the end of our energy range. Further
analysis up to higher energies will have to show whether
these beliefs are well founded. The situation could also
be clarified by new differential cross-section experiments
above about 15 MeV. Other types of experiments could
also greatly improve the data set above about 15 MeV.
For the pion-coupling constant the results from a 0—350
MeV analysis have already been reported, giving indeed
a lower value {g p/4@=13. 1+0.1) than this analysis.

p pal

Phase shifts calculated with the OPE (m), the
Nijmegen {N78) (Ref. 27) and the Paris (P80) (Ref. 28) po-
tential are also shown in the figures. To these nuclear po-
tentials we added the electromagnetic potential: im-
proved Coulomb and vacuum polarization. We do not
compare with other nucleon-nucleon potential results,
since unfortunately enough we do not have a computer
code to calculate the Funabashi potentials, and the
Bonn and Argonne' potentials are neutron-100-102

proton potentials. As for the 'Sz in Figs. 2 and 3 one can

see that for very low energies the Paris (P80) (Ref. 28) po-
tential is very much in error, since its 5( So) is 0.14' (57
s.d. ) too large at the interference minimum and 0.24' (26
s.d. ) too large at 1 MeV, but above about 3 MeV it is
somewhat better than the Nijmegen (N78) (Ref. 27) po-
tential. If one would add only the standard Coulomb and
the vacuum polarization potential to the Paris potential
and not the improved Coulomb potential, the difference
with our analysis would be slightly less (0.01—0.02') at
these energies. That the Paris potential gives wrong
values for the 'S~ scattering length a and effective range
r was already noted by Piepke. ' We obtain the same
values. We have included in the Paris potential the prop-
er electromagnetic potential. Contrary to the explana-
tion accepted by Piepke, ' inclusion of vacuum polariza-
tion in the Paris potential for the 'S~ can accurately be
approximated by the Foldy correction A~. Perhaps the
easiest way to ensure a reasonable low-energy behavior of
potential models is to fit the 'Sz phase shift at the in-
terference minimum at 1 MeV. This is easier than fitting
effective range parameters. The comparison of the 'So
results with those of earlier low-energy analyses is made
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in terms of effective range parameters in Sec. VI B. No
comparison is made there with the series of analyses of
Amdt et al. ,

" since these are not intended to be de-
tailed low-energy analyses but aim primarily at the higher
energies. This can be seen in several ways. First of all,
below 25 MeV, Amdt et al. do not give a se 5('So};at
25 MeV their se 5('$0) is in accordance with ours (Sec.
VI B) but their me 5('So) is 0.7' (3.2 s.d. ) lower than their
own se 5('So) and 0.9' (8 s.d. ) lower than our se 5('S~).
Thus probably their parametrization of the phase shifts
as a function of the energy is not good enough. At 10
MeV the difference between their me 5('So) and ours is
about the same as at 25 MeV. Furthermore, Amdt
et al. do not give error bars for the combinations of P-
wave phase shifts 5&, AT, and ALs. In their latest
analysis dramatic changes in the 10, 25, and 50 MeV np
se phase shifts (up to 9 s.d. ) are left undiscussed.

For the P waves in Figs. 7(a)—7(c) one can see that the
Nijmegen (N78) and Paris (P80) (Refs. 27 and 28, respec-
tively} potentials predict a too-large 5( Po} around 10
MeV. It is more instructive to look at the combinations
of P-wave phase shifts Az, 6T, and ELs in Figs.
7(d) —7(f), since in Born approximation the central, ten-
sor, and spin-orbit parts of the potentials are responsible
for these combinations. One can see that the central P-
wave combination hz of this analysis above 20 MeV is
substantially larger than those of the older analyses of
SSH' and Bohannon, Burt, and Signell. As mentioned
above, inclusion of unpublished data and a preliminary
analysis of higher energy data up to about 50 MeV both
give also a somewhat smaller 5&. Whether or not our
high 6c around 25 MeV should be vie~ed as a statistical
fluctuation that has a large effect since it occurs at the
end of our energy range will become clearer when we
finish the analysis up to higher energies. For hT and b Ls
the most important features are (i) Our se error bars at 5

and 10 MeV are much smaller than those of previous
analyses, due to the new Wisconsin82 (Refs. 6 and 7)
analyzing power data. In the same publication ' Barker
et al. reported also an analysis, which, however, was in
error, giving a 5T deviating more than 3 s.d. from what
we find for their data. (ii) Both the Nijmegen (N78) (Ref.
27) and the Paris (P80) (Ref. 28) potential give a too large
AT and a too small h„s at 10 MeV. This has already been
discussed elsewhere. ' ' Probably this shows a Aaw in the
treatment of the medium range forces in these potential
models. As one can see in Fig. 7(f}OPE gives only a very
small b, Ls [in Born approximation b,Ls(OPE)=0], and
therefore in b,„s interactions of shorter range (e.g. , two-
pion exchange or e exchange) are visible.

B. EfFective range parameters

In the low-energy domain, results of an analysis are
often presented in terms of effective range (ER) parame-
ters. ' ' ' ' ' In order to make a comparison with those
analyses, we give the values that can be deduced from the
behavior near k =0 of our multienergy phase shifts. The
error on the ER parameters is the maximum deviation
possible without raising 7 by more than 1 in varying the

10 P-matrix parameters and the pion-coupling constant.
For the 'So phase shift we used the ER function for 5O

as given by van der Sanden, Emmen, and de Swart 17

(1+Xo)cot50 —tanro

+k d [CO(rI') —1]+2g'klo

a EM
+—r~Mk'+0(k ) .

2 ' (76)

The definitions of Xo and lo can be found in Ref. 19, those
of d, A&, and Az in Ref. 17. If one ignores the relativis-
tic correction VC2 to the static Coulomb potential
V&& ——a'/r, i.e., taking d, A, , and A& equal to zero, one
gets back the ER function of Heller. ' Ignoring this
correction in an analysis results in a value for a&M that is
about 0.009 fm more negative and about the same value
for r&M.

' Since Naisse uses the ER function for 5, the
Coulomb corrections in the 'So partial wave are treated
in a model-dependent manner in that analysis. We have
used the improved Coulomb-Foldy correction bo (Secs.
IV B and VI A) to compute the values of our multienergy
5 in order to compare with his results (a and r ) It.
should be emphasized here again that ho corrects only for
vacuum polarization and improved Coulomb (see also
Sec. IV B), where the protons are treated as point
charges. Ideally one would have an electromagnetic Fol-
dy correction that corrects for all electromagnetic effects,
except for the point Coulomb interaction V&, . The most
important electromagnetic effect not included in our im-
proved Coulomb-Foldy correction is the change in the
Coulomb potential due to the spatial extension of the
charges. It is not necessary to incorporate that in our po-
tential tail, since it is of short range and can therefore be
absorbed in the P matrix. But it will be the major error
made if one adjusts the parameters of a nuclear potential
plus Vc& to At our values of a and r . The elimination
of this error is under study with the Nijmegen poten-
tial as the nuclear potential. Preliminary results are
that elimination of this error makes a about 0.0075 fm
more negative and r about 0.002 fm less positive.

The region of convergence of the ER series of Eq. (76)
is determined by the logarithmic singularity of OPE:
T~,b &9.81 MeV. It has been shown' ' that the CFS ap-
proximation as used by Noyes, " Naisse, and Mathel-
itsch and VerWest' is not accurate enough (see Sec. II).
Values and errors for the 'So ER parameters are given in
Table VI, where they can be compared with earlier analy-
ses. One can see that the (new) Ziirich78 data make the
determination of the ER parameters more precise, and
that there is a very good agreement with the analyses of
Noyes" and Gursky and Heller. '

The difference between our results for the 'So ER pa-
rameters and those of van der Sanden, Emmen, and de
Swart' are primarily due to the difference in higher ener-



PHASE SHIFT ANALYSIS OF 0-30 MeV pp SCA I IERING DATA 43

TABLE VI. 'So scattering length and effective range (as defined in Sec. VI B) of this and earlier anal-
yses. For van der Sanden, Emmen, and de Swart (Ref. 17) we give their values determined by the
Zurich78 {Ref.3) data. Values between parentheses give information identical to that of the line above.

Analysis
Scattering length

(fm)

Effective range
(fm)

Present work

van der Sanden,
Emmen, and de Swart"'

Gursky and Heller
Noyes and Lipinski'
SSHd

Naisse'

a pM ———7.8063+0.0026
{a~ = —7.8153+0.0026)
{a = —7.8196+0.0026)
a FM = —7.8016+0.0029
(aE ———7.8106+0.0029)
aE ———7.815+0.008
aE ———7.8146+0.0054
az ———7.821+0.004
a = —7.828+0.008

r F.M ——2.794+0.014
( rI; ——2.794+0.014)
( r =2.790+0.014)
r« ——2.773+0.014
( rF ——2.773+0.014)
r& ——2.795+0.025
rE =2.795+0.008
rz ——2.830+0.017
r =2.80+0.02

'Reference 17.
Reference 15.

'Reference 11.
Reference 12.

'Reference 2.

gy data. They use the 0—3 MeV data and the restriction
5('So) =0 at T~,b ——253 MeV, whereas we use the data up
to 30 MeV. Inclusion of the unpublished Minnesota77
(Refs. 29 and 30) differential cross sections would have
shifted our results for the 'So ER parameters somewhat
(0.6 s.d.) towards those of van der Sanden, Emmen, and
de Swart. ' The low-energy data determine 5('So) very
precisely at the interference minimum (T„b=0.382 54
MeV) and at 1 MeV. Due to the me parametrization, the
ER parameters (determined at T„b=0) are sensitive to
the higher-energy data. Due to this uncertainty it is
probably best to recommend values for the 'So ER pa-
rameters that are in good accordance with the 0-3 MeV
as well as with the 0-30 MeV analysis:
azM ———7.804+0.004 fm and r&M ——2.784+0.020 fm.

For the P waves we used ER functions for 5&& analo-
gous to those of Heller. ' (For 1&0, 5IJ =51', see Sec.
IV.) These ER functions (Fc ) ~J and their corresponding
expansions are

(F )~cI(1+& )k [Co(g )k cot(5]g )+2+ kh ( I) )]

+—r&Jk +8(k ) for J =0, 1,
a)J 2

(77
(Fc),z

——(1+g' )k tCO(g')k cot[5,z
—5,z(OPE)]

+2q'kh (g') ]

+ —r»k'+8(k'},
Q)2

where in the P2 ER function the Coulomb plus OPE P2
phase shift is subtracted. The latter phase shift of course
depends on the pion-coupling constant. The results for
the deduced P-wave ER parameters can be found in
Table VII, where they can be compared with earlier anal-
yses. Especially the (new} Wisconsin82 (Refs. 6 and 7)

C. Single-energy results

If one wants to adjust the parameters of a model to the
data, one needs single-energy phases and error matrices
(see Sec. V). We denote the deviation of the model phase
shifts from the se phases by d, the error matrix by E, and
the minimum X arrived at in the se analysis by X . Then
if the model phase shifts are not too far away from the
analysis phase shifts, one can compute the model X ap-
proximately as

X =X„+d E 'd. (78)

It should be noted that this representation of the X hy-
persurface is not an exact representation for several
reasons. First of all, higher I phase shifts (pion-coupling
constant) have been fixed. Furthermore, the data have
been clustered at the central energies with help of the
multienergy-fit results, and next to that the X hypersur-
face is only quadratic in the neighborhood of the

polarization data make the determination of the parame-
ters more precise. Our values agree with those of SSH, '

except for the Po with Naisse's SSH/SC values, and ex-

cept for the P2 effective range with the van der Sanden
1982 analysis (in Ref. 95). All our values except for the

P2 scat tering length are in disagreement with the
analysis of Mathelitsch and Ver West. ' We see no valid
reason why Mathelitsch and VerWest' could get such
small errors for their ER parameters.

If we had included the unpublished Minnesota 77
differential cross sections ' and the Los Alamos76 po-
larizations, 3' the P, scattering length would have been

lowered by 0.052 fm (1.2 s.d. ) and the Po scattering
length would have become 0.09 fm (1 s.d.) less negative.
All other ER parameters would have changed by 0.4-0.7
s.d.
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TABLE VII. Effective range parameters of the P waves (in appropriate powers of fm) of this and
earlier analyses. SSH (Ref. 12) give P-wave parameters for three different data sets. We give here their
results excluding all Wisconsin66 and Berkeley68 (Refs. 69 and 68, respectively) data, since we reject
these data. Naisse (Ref. 2) discusses different models that give rather different results. We quote here
his SSH/SC results.

Present work

van der Sanden
Emmen, and de Swart'

SSHb

Naisse'

Mathelitsch
and VerWest

alo = —3 03+0-11
rio=4 22+0 11
a, o = —2.71+0.34
rlo =3~ 8+ 1 ~ 1

a )o
———2.6+2.0

r )o =4.3+2.0
a&o= —4 3+0.6
r io ——5.32+0. 10
a ~o ———2.84+0.02
rio=4 45+0 05

a ~, ——2.013+0.053
r» ———7.92+0. 17
a ~1

——1.97+0.09
r), ———8.27+0.37
a)) ——2.8+1.3
r) )

———9.0+1.0
a)) ——2.2+0.5

r& ~

———8.0+0.2
a

~ &

——1.90+0.01
r&i = —7.56+0.05

a]2 = —0.306+0.015
r )2 ——4.2+1.6
a )2

———0.316+0.016
r )2 ——7.8+2.0
a )2 ———0.45+0.28
r) q

——15+10
a &2

———0.30+0.01
r 12

——5.5+0.9
a &2

———0.31+0.01
r &2

——'7. 59+0.28

'Reference 95.
Reference 12.

'Reference 2.
Reference 18.

minimum. Still, this representation is much better than
giving only phase shifts and errors.

To make such a representation of the 7 hypersurface,
we divided the data into clusters around 0.38254 MeV
(the interference minimum), 1, 5, 10, and 25 MeV. We
had to split one group, because it contained data from
11 to 26 MeV. From these clusters we determined the
single-energy phases and inverse error matrices of Table
VIII in the same way as we determined single-group
phases for groups with data points at different energies
(Sec. V B). So for each phase shift searched for, we fitted
a constant to be added to the energy-dependent P matrix
of the multienergy fit. As this appeared to work not too
well for the ez, we fitted here a constant to be added to
the multienergy e2 mixing parameter.

Around the interference minimum and at 1 MeV only
cross-section data are available. The more important
groups are 5 (of the 7) new Ziirich78 (Ref. 3) groups of
Thomann et al. and the Los Alamos64 (Ref. 70) data of
Brolley et al. These data pin down the 'Sp phase shift
very precisely, as is explained very nicely in the excellent
1964 analysis of the Los Alamos data by Gursky and
Heller. ' From these cross sections only the Sp phase
shift and the P phase shift combination hc [Eq. (19)]can
be determined. We varied 5& by varying all PJ P ma-

trices, with fixed hT and 6„s.
Around 5 and 10 MeV the new Wisconsin82 (Refs. 6

and 7) polarization data of Barker et al. allow a very pre-
cise determination of hT and ALs. The only cross-section
data in the 5 MeV cluster are two (out of three) Kyoto75
groups of Imai et al. Around 10 MeV one has more
cross-section data and from different experimental
groups. Both Kyoto75 groups prefer a 'Sp phase shift
that is 2 s.d. smaller than our me 5('So). This is the
reason for the difference between the se and me 5('Sp).
As one can see in the data reference table, there is also
friction in 5c between all three Kyoto75 groups and
the other differential crass-section data around 10

MeV. The Kyoto75 (Ref. 75) data prefer b, c to be
0.02-0.03' larger than the me fit, which is 1.5-2 single-
group standard deviations. The other cross-section data
prefer hz to be 0.05-0.09' smaller than the me fit, which
is 1-2.7 single-group standard deviations.

At 5 MeV as weil as at 10 MeV the clusters determine
5('So), 5( Po), 5( Pi ), 5( P2), and 5('D2). But the op-
timum values for these phase shifts depend slightly on the
e2 mixing parameter. The value of e2 cannot be deter-
mined from these data, as the I reached in the se fits is
virtually the same for e2 deviating up to 20% froin the
Coulomb plus OPE value. Therefore we give at 5 and 10
MeV the inverse error matrix

1 d I
2 d5;d5.

as an almost degenerate 6X6 matrix. As errors for the
phase shifts we give the values for e2 fixed at the me
value, i.e., the values computed from the 5)& 5 submatrix.

At 25 MeV the cluster is rather small, though it con-
sists of data between 18 and 30 MeV. The only new (post
1975) group in this cluster is the Los Alamos76 (Ref. 8)
19.7 MeV group of cross sections. More partial waves
are important at this energy. The observables in this
cluster are quite insensitive to F waves deviating up to
10% from Coulomb plus OPE. We do find a minimum in
X with respect to variations in 5('So), 5( Po), 5( P, ),
6( P2), 5('Di), and the e2 mixing parameter, but the
value of e2 then reached is 0.27' lower than the me fit,
which is 3 se standard deviations. As the e2 value of
Amdt et al. ' does not deviate much from OPE, we do
not (at least until we have analyzed higher energy data)
believe the 25 MeV cluster in its determination of e2 [In.
Sec. VI A we already discussed the 6( 'So ) and hc values
of the 25 MeV cluster. ] Therefore, we give in Table VIII
the values of S-, P-, and D-wave phase shifts for e2 fixed
at the me value. Of course we also give the 6X6 inverse
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TABLE VIII. Single-energy results at T],. b
——0.38254, 1, 5, 10, and 25 MeV. Groups: number of groups of data in this cluster.

N„b, : number of scattering observables in this cluster. N«.. number of degrees of freedom, which is N„„,. minus the number of fitted
phase shifts minus the number of groups of relative measurements (see Sec. V). The phase shifts are from the bar decomposition of
the total S matrix [Eq. (43)], in degrees. The lower triangular part of the inverse error matrix (deg. ) is given, which is —' times the

second derivative matrix. For comparison with our me results, the corresponding me phase shifts are also given. To enable the con-
version to other types of phase shifts (Sec. IU8), we also give ri+pi [see Eq. (53)]. For 1=0 also ho is given, the improved
Coulomb-Foldy correction [see Eq. (61)]of the Nijmegen potential (Ref. 27).

Groups

6

Phase

'S,
~c

Inverse error matrix (E ')

0.1683x10'
0.4750 x 10'

Nnb.

122

me

14.5096
—0.0559

0.3164x 10

0.38254 MeV

N«

118

se

14.5094
—0.0601

2
~we

132.77

Error (se)

0.0025

0.0018

T(+P(
—0.1013
—0.0547

—0.1814

Groups

2

Nob,.

57

Ndt

55

1.0 MeV

+se

38.75

me

32.5864
—0.0561

0.8799x 10'

Phase

'So

~c
Inverse error matrix (E ')

0.1214x 10'

0.7999x 10'

se

32.6006
—0.0599

Error (se)

0.0094

0.0035

T(+P(
—0.0872
—0.0503

—0.1925

Groups

3

Nob..
45

Nar

40

5.0 MeV

Phase

'S,
3p

3p

3p

'D

me

54.707

1.441

—0.945

0.183

0.0186
—0.0562

se

54.515

1.527

—0.932

0.183

0.0118
—0.0562

Error (se)

0.087

0.091

0.027

0.015

0.0097

Tl +p(
—0.058
—0.037
—0.037
—0.037
—0.0282

—0.093

0.3537x 10'

0.8088 x 10

0.78 72 x10'
-0.1269x 10'
—0.1021x 10

Inverse error matrix (E ')
0.1521 x 103

0.3289x 102

0.5127x 102

0.8064 x 10'

0.3454 x 10'

0.7319x 10'

0.3266 x 10'

0.1333x 10
—0.3424 x 10'

0.3528 x 10

0.7128 x 10
—0.6101x 10
—0.1034x 10

0.1918x 10

0.1472 x 104 0.2159x 103

Phase

~c

~LS

me

—0.053
—0.410

0.072

se

—0.039
—0.419

0.055

Error (se)

0.010

0.017

0.015

T(+P(
—0.037
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TABLE VIII. (Continued).

Groups

9

Phase

lg

3p

.3p

'P2

ID

N„b,

95

me

55.121

3.430
—2.063

0.639

0.155

—0.215

Ndl-

88

se

10.0 MeV

55.108

3.353
—2.078

0.636

0.162

—0.215

82. 37

Error (se)

0.068

0.073

0.026

0.019

0.011

TI+pI
—0.047
—0.032
—0.032
—0.032
—0.025

—0.061

0.2505 X 10-

—Q. 1407 X 10

0.9332 X 10

—0.6144 X 10

—0.3889X 1o

Inverse error matrix (E ')

0.2212 X 10'

—0.4250 X 10'

—0.2964 X 102

—0.3282 X 10'

0.1936X 10

0.5738 X 10'

0.1902X 10'

0.7443 X 10-

-0.1656X 10

—0.3278 X 10

0.3549 X 10

-0.3194X 1o'

0.6286 X 10

0.1294X 1o'

0.2668 X 10' 0.9236X 10'

Phase

~c

~LS

me

0.048
—0.9505

0.210

se

0.033
—0.9427

0.226

Error (se)

0.017

Q.0099

0.018

TI +PI
—0.032

Groups

10

Nob~

41

Ndr

34

25.0 MeV
2

22. 95

Phase

lg

3p

3p

3p

D2

48.77

8.61

—4.57

2.53

0.771

—0.873

se

49.02

8.20
—4.33

2.37

0.904
—1.147

Error (se)

0.13

0.37

0.15

0.12

0.057

0.091

TI +pI
—0.04
—0.03
—0.03
—0.03
—0.021

—0.04

0.257'1 X 10'

0.1332X 10'

Q.6303 X 10'

-0.1379X 10'

—0.1301X 10'

~c

~LS

0.839
—2.324

Inverse error matrix (E ')

0.1224 X 10'

0.1339X 10'

—0.7481 X 10'

—0.2327 X 10'

—0.6827 X 10'

—0.3166X 102

0.1460X 10'

0.1143X 10-'

—0.8105 X 10'

—0.2323 X 10'

se

0.788
—2.206

0.71

0.3357X &0-

-0.5034 X 10-

-0.4264 X 10-

Error (se }

0.054

0.060

0.1 1

0.1538X 104

0.1078X 10

T/ +PI
—0.027

0.1008x 10'
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TABLE VIII. (Continued).

E2 fixed at the me value

25.0 MeV

Groups

10

Phase

's,
'po

3p

3p

'D

~c

~LS

X„b,

41

me

48.77
8.61

—4.57

2.53

0.771

0.839
—2.324

0.76

Nd„

35

se

48.87
8.65

—4.52

2.52

0.775

0.859
—2.319

0.74

32.00

Error (se)

0.12
0.35

0.13

0.1 1

0.039

0.051

0.044

0.1 1

&I +PI
—0.04
—0.03
—0.03
—0.03
—0.021
—0.027

—0.04

error matrix at the minimum of g with respect to varia-
tions in 5('So), 6( Po), 5( P, ), 5( P2), 5('D2 ), and the e2
mixing parameter, which does give correctly the depen-
dence of 7 on the phase shifts for this cluster.

We have examined the quality of this description of the
7 hypersurface by computing 7 for the Nijmegen poten-
tial [with the electromagnetic potential (Sec. III) added]
in two ways: (i) exact —by direct comparison with the
data and (ii) with the inverse error matrices of Table
VIII. The error matrices gave X =666 (X /Nzt=1. 9),
where as the data gave X =607 (X /Nzt = 1.8).

VII. SUMMARY OF CONCLUSIONS

In this analysis the pion-coupling constant can be
determined from the low-energy data without rnodel-
dependent errors, which is an important improvement
over previous analyses. We find g 0/4n. =14.5+1.2,

PP 77

but the inclusion of unpublished data or higher-energy
data reduces the value by about one standard deviation
(13.4+1.0). A table of multienergy phase shifts is given,
which makes it easy to compute the phase shifts at every
desired energy between 0 and 30 MeV. With the Foldy
corrections listed in the table one can include vacuum po-
larization and improved Coulomb in nuclear potential
models if the 'So phase shift of the potential is computed
with, for the electromagnetic interaction only, the stan-
dard point-Coulomb interaction. Flaws in the Paris
and Nijmegen potential are noticed. In order to com-
pare with previous analyses, effective range parameters
derived from the multienergy phases are given. The
single-energy phase shifts and error matrices, to be used
if one adjusts model parameters to the 0—30 MeV pp
scattering data, have been tested for the Nijmegen poten-
tial to give a 7 /Ndf accurate up to 0.1.
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APPENDIX: HOW NONSTATISTICAL ARE THE
DATA?

In this Appendix we want to see how the data spread
around the model values. The theoretical framework has
already been presented in Sec. V A. The total X (X«, ) is
in our case surely compatible with the data being drawn
around the model values [Eq. (69)]. Here we want to say
more about the distribution of the contributions to X,
i.e., the Nz„squared terms in Eq. (66). The distribution
we find in the me fit we denote by P~,„,~„„,(X ). It is

given by

dat

P),„,)y„,(X')= g 5(X'—X,')
dat i =]

(A 1)

This distribution has to be compared with the theoretical
probability distribution function, the 7 distribution for 1

degree of freedom P, (X ) of Eq. (68). This comparison is
made in a histogram in Fig. 8, but it is diScult to judge
the agreement between the distributions from such a
figure. We believe it is better to give the moments of the
distributions, because errors can be given for these rno-
ments. The moments p'„of a distribution P(t) [with
0 & t & oo] are given by

p„'= dtP t t", (A2)
0

and the central moments p„are given by

p„=f dt P(t)(t —pI)" . (A3)
0

The error in p'„ from a draw of N out of P ( t ) can then be
evaluated as

We wish to thank Dr. T. Rijken, Drs. W. Derks, and
Drs. V. Stoks for many useful discussions. Part of this
work was included in the research program of the Stich-

(A4)
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P(X'}

2.5-

2.0

~ P&, analysis

TABLE IX. Moments p„' and central moments p„ for our
analysis of the data and the moments of two comparison proba-
bility distribution functions. Errors are given for a draw of 389
points. In the moments given for our analysis, contributions of
normalization data are included. For definitions, see the Ap-
pendix.

1.5

05-
q

gPi

.cut

PI
P2
P3
pg

P2

P3
p4

P, (X')

1.000+0.072
3.000+0.050

15.0+5. 1

105+72
2.00+0.38
8.0+3.9

60+55

0.882+0.061
2.24+0.32
8.8+2.0

44+14
1.46+0.23
4.3+1.3

21.9+8.7

2
l, analy»i»(+

0.883
2.24
8.5

40
1.46
3.9

18.3

8 x~

FIG. 8. Probability distribution functions vs X . The tail is

enlarged by a factor of 10. The histogram, of 389 data points,
represents the experimental distribution in bins 5g'=0. 1 (and

hP =0.2 for the tail). ———:P&(X'), X probability distribu-
tion function for 1 degree of freedom. : PI,„,(g ), g
probability distribution function if we take into account that
(X') = ',4„' and that data points with X & 9 have been rejected.

groups of data. Therefore, a better probability distribu-
tion function to compare Pi,„,i„»,(X ) with is the some-

what narrowed probability distribution function of Eq.
(71}with a=+4,'. Second, we have rejected all data with

X; & 9, which influences of course primarily the higher
moments. Therefore, we believe it is best to compare the
moments of Pt,„,t„„,(X ) with those of

,„,(X')= [cr t/'2y( —,', —,'cr 2)]

Xe —r /2cr (X2)—t/2g(9 X2) (A7}

0

where as

(A5)

dtP) t t=1.
0

(A6)

The expectation value (X„,) =Ndt 343, but Nd„————389,
because the normalizations (17 overall norms plus 12
angle-dependent normalization factors) contribute to X,
we use 12 model parameters, and there are five unnormed

and analogously for o.„.)"n

There are two Saws in P, (X ) as a comparison for

Pi,„,i„„,(X ). First of all, as discussed in Sec. V A,

with y(a, z) the incomplete gamma function and 0
chosen in order to have (X ) =+»', thus o =0.89677.
This Pt,„,(X ) still has a flaw as a comparison probabil-

ity distribution function for P, ,„,i„„,(X ), since measure-

ments of dift'erent groups are treated in the same way.
The lower moments of Pt(X ), Pi,„,(X ), and

Pi,„,i„„,(X ) are given in Table IX together with their er-

rors. All of the four lower moments of Pt,„,i„„,(X )

agree (almost too good} with those of Pt «, (X ), so the
distribution of the contributions to X is very near to
what one would expect for statistical data. In the histo-
gram (Fig. 8) where the above probability distribution
functions are displayed, one can see that to the eye both
probability distribution functions agree with the experi-
mental distribution P, ,„,i„„,(X ).
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