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Overhauser s suggestiop that plane-wave orbitals, which yield a homogeneous-density Quid phase,
may not correspond to the ground state of nuclear matter is investigated by an approximate analytic
method. Wave functions constructed from so-called Overhauser orbitals, which lead to an

oscillating-density crystalline solid pQase, are shown to yield an energy gain over the plane wave or-
bitals only at densities well below the saturation density pp 0.17 fm . This is in good agreement
with previous numerical results. The analytic solution is then generalized to finite temperatures and
it is found that the solid phase can survive up to temperatures of approximately 1.1 MeV only. Nu-

clear matter in the solid phase is similar to an intrinsic semiconductor with an energy gap occurring
at the Fermi energy. The gap decreases with the rise in temperature until the melting point is
reached where it discontinuously jumps to zero indicating that the transition is of first order.

I. INTRODUCTION

In 1960 Overhauser' questioned the assumption usual-
ly made that the ground state of nuclear matter (or any
interacting Fermi fluid of infinite extent) is described by
the familiar wave function constructed from plane-wave
orbitals with the familiar sphere of occupied momentum
states. Such a solution results in a uniform density
whereas it is possible to construct other wave functions
from so-called Overhauser orbitals that produce a period-
ically varying density and which can be shown, for cer-
tain interactions, to give an energy lower than the plane-
wave solution and may thus describe the ground state of
the infinite system of fermions. This problem is actually
related to the question of whether there is a crystalline
(i.e., solid} phase of nuclear matter as the Overhauser or-
bitals lead essentially to a-like clusters of four nucleons
arranged on a lattice.

This problem has been investigated thoroughly since
Overhauser's original work (see, e.g. , Refs. 2 —6) and it
has been demonstrated in a numerical Hartree-Fock cal-
culation employing a modern density-dependent Skyrme
interaction that Overhauser's orbitals do not correspond
to the ground state at the saturation density of nuclear
matter. It was found, however, that there is a low-
density region, well below saturation density, in which
Overhauser's orbitals yield an energy gain over the
plane-wave solution. All of these investigations have,
however, been carried out at zero temperature and hence
did not explore the behavior of nuclear matter at nonzero
temperatures, especially the possibility of a solid-fluid
phase transition in nuclear matter.

The purpose of this work is to obtain an approximate
analytic solution for this problem equivalent to the nu-
merical calculation done in Ref. 6, to generalize this ana-
lytic solution to finite temperatures, and to study the ex-
istence of the solid like phase for nuclear matter.

II. The Overhauser problem at zero K

%e consider a system of A && 1 nucleons in a cubic box
of volume V =I. with periodic boundary conditions, and

use the orthonormal orbitals from Ref. 6:

0k(r } 4k (x )0k„(y )4 k, (z } (2.1a}

—iq„x ik„x I&L
4k (x)=(uk +vk e " )e (2.1b)

where

sgnq„=sgnk„; —k0 (k ky k (k0

' '+"' =' (2.1c)

with similar expressions for y and z. Because of the cubic
symmetry of the problem we have q„=qy

=q, and we set

q =
I q. I

=
I q, I

=q,
I
=2ka . (2.1d)

The starting point for our solution is to assume that
the nucleons move with an e8'ective repass m ' in a period-
ic single-particle potential of the form:

U ( r ) = UQ+ U, ( cosqx +cosqy +cosqz ), (2.2)

where UD and U, are real constants to be determined by
requiring self-consistency (i.e., solving the Hartree-Fock
equations). The assumption of such a form for U(r) is
justified because the density resulting from the single-
particle orbitals of Eqs. (2.1) has such a periodic variation
[see Eq. (2.9a} below] with a relatively small amplitude as
will be shown towards the end of this section and as indi-
cated by the results of previous calculations. If the
single-particle potential has the form given in Eq. (2.2)
then the three-dimensional problem reduces to three
identical one-dimensional problems, as is already antici-
pated in the form of Pi,(r) assumed in Eq. (2.1a).

These one-dimensional problems are identical to the
one-dimensional weak-binding theory of energy bands
found in any standard textbook in solid state physics (see,
e.g. , Ref. 8). This allows us to determine the single-
particle energy levels and wave functions [i.e., u„and v„

I

in Eq. (2.1b)]:
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ki [4{eh s ]2+ U2]1/2
I

2{ek —E„ I
I I

i [4{ek E J
2+ U2 ]1/2

I

(2.3a)

(2.3b)

where

1rI k
k. =

2m~
(2.4a)

is the single-particle energy corresponding ta a plane-
wave solution, and

ek T(sk. +ek. —,}+-,[U1+(sk. sk. —q) ]
I I I I

(2.4b)

~
k;

~

& ko (the first Brillouin zone in the extended zone
scheme}, and the plus signs refer to orbitals with

~
k;

~
&ko. Only the orbitals with { k;

~
&ko are occu-

pied at T =0 K so that only uk and Uk are needed in
I

this section; the uk+ and Uk+ are given here for complete-
I

ness since they will be needed when discussing the T &0
case in the coming sections. Note that ck ——zk

0 0

+(
~

U1
~

/2} so that an energy gap of magnitude
sk+ —ek ——

~
U,

~

appears at the boundary between the
0 0

erst and second Brillouin zones, i.e., between the occu-
pied and unoccupied orbitals at T =0.

With the uk and vk given by Eqs. (2.3) it is possible to
I I

calculate the density of the system:

(2.5a)
kx, k, k2

is the single-particle energy corresponding to an
Overhauser orbital (i.e., for U, &0). The minus signs in

Eqs. (2.3) and (2.4) refer to single-particle orbitals with

where g is the spin-isospin degeneracy of each orbital
(g =4 for symmetric nuclear matter}, and the summation
is over all occupied orbitals

~
k;

~
& ko. Therefore,

p(r)= g (1+2uk v„«sqx)(l+2u„v„«sqy)(1+2uk vk cosqz)
k

X X y y 2 2
X' y' 2

=pk(1+26 cosqx)(1+25 cosqy)(1+26 cosqz},

where

A (2ko) qPa= =g
3

=g
(2m)' (2m )

(2.5b)

(2.6)

is the homogeneous density of nuclear matter (i.e., if all the orbitals occupying the Fermi cube correspond to plane
waves}, and where we have introduced the dimensionless parameter [see the Appendix, Eqs. (Al)-(AS)]:

2K
+k0

2 0/2
uk Vk ~ ukVkdk;

Lq i i q 0 i i
i 0

—m*/U,
/ fi qln 1+

fiq 2m'/ U,
/

' 2 1/2
Rq (2.7)

Note that the last expression for 5 implies that 6 is always negative regardless of the sign of U1. This can also be in-
ferred from Eqs. (2.3) since uk v„&0. Equation (2.7) also implies that

~

6
~

must be sinall since
~

U,
~

is typically
I

«(Iri q /2m') so that

m'iU,
i

ln
Rq

m'/ U1/

A2q~

It is also possible to evaluate the kinetic energy density:

(r}=g & I
Vi)(ik(r

k , k , k

(2.8a)

where again the summation is over all occupied orbitals { k;
~

& kv. This leads after some straightforward but lengthly
calculation to the result:

2

«r}~pk
12

b, cosqx (1+26,cosqy)(1+25 cosqz )
2

+2 corresponding terms obtained by permuting x, y, and z . (2.8b)
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p(r) =ph [1+26(cosqx + cosqy+ cosqz)], (2.9a)

The details of evaluating ~(r ) and obtaining Eq. (2.8b) are
given in the Appendix [Eqs. (A9)—(A12)]. Linearizing
Eqs. (2.5b) and (2.8b) in terms of b, we get

2

r(r)= [1——', 5( cosqx+ cosqy+cosqz)], (2.9b)

where we have neglected terms of order 6 and 5-.
With p(r) and r(r) evaluated it is now possible to

evaluate the single-particle potential U(r). If we use a
Skyrme interaction of the form

r, +rz
U (r,2 ) = to5(r, rz)—+ ,'t, [5—(r,—rz)k + k' 5(r, —r2)]+ t2k' 8(r, —r2)lt+ —5(r, —r2)p (2.10}

—V V+U(r) P„(r)=e„P„(r),
2m '(r) (2.11)

where

U(r) =—,'top(r)+ —,', t3p (r)+ —,', (3t, + St2)~(r)

then the Hartree-Fock single-particle wave functions
{{}h(r)satisfy the equation:

f, (p„,q} must be &0 . (2.15}

This condition can also be obtained by inspecting the to-
tal energy of the system E=fH(r)d r where the energy

density H(r) for the Skyrme interaction of Eq. (2.10) is
given by

2

H(r) = ~+ ', top + ,',—t,p'+ —,',—(3t,+St2)p~

+ —,', (5t, —9t, }V'p(r) (2.12) + —,', (9t, —St, )( Vp }', (2.16)

and

fi + —,', (3ti+ Sty)p(r) .
2m '(r) 2m

(2.13)

where p(r) and ~(r) are given by Eqs. (2.5b) and (2.8b).
This leads to an energy per particle:

g2 2

+ ,'toph(1+26—) + ,', t3ph(1+—6b, )

If we now use the linearized forms for p(r) and ~(r) (i.e.,
Eqs. 2.9) in Eq. (2.12) we get U(r) in the desired form
given by Eq. (2.2) with

2

(3t, +St, )(1—6h')(1+26')'

and

(3t, +St, )
Up =—top& + —,', t&p& + p& q (2.14a) + ,', phq'5'(9t) ——Stz)(1+25)'

$2 2

+ 8 toph + igt3ph +', ~'f z(ph q)+o(~'»

3 3 2
51t I

—35t2
Ui —— —tppg+ tgp&+

fi(ph q)~ . — (2.14b)

where

6tl —5t2
f2(ph q)=-', toph+ .'t3ph+ -12 phq

(2.17a)

(2.17b)

Moreover, if we neglect the oscillatory part of m'(r) by
putting p(r) =p„ into Eq. (2.13) we get a constant
effective mass independent of position as has been as-
sumed throughout.

With these approximations our solution of the
Hartree-Fock equations is self-consistent up to terms
linear in b, except for the term of order 5 we neglected in
m*(r). If b, turns out to be small then this solution
should be satisfactory as will be demonstrated below.
The only task remaining now is the simultaneous solution
of Eqs. (2.7) and (2.14b) in order to obtain the self-
consistent value of U, . To solve these equations we first
note by inspecting Eqs. (2.2) and (2.9a) that U, and 6
must have opposite signs so that the maxima of p(r) fall
at the positions of the minima of U(r} in order to obtain
an energy lower than that due to the homogeneous densi-
ty solution. From Eq. (2.14b} this implies that f&(ph, q) &0 . (2.18)

Neglecting the terms of order b, (assuming
i
6

i «1),
and neglecting the small difference between

f2 2 g2 2/3

= 1.9584
8m* m*

and the corresponding term

fi k f2'=1.8088
"

P3hi3
m' m'

for the usual plane-wave Fermi fluid (kF ——Fermi momen-
tum), Eq. (2.17a) implies that the total energy with
Overhauser's orbitals is lower than that obtained with
plane-wave orbitals (b =0) if the coefficient of 6 is nega-
tive, i.e., if
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m*U) g2 2

, , fi(p~ q)» 1+
Aq 2m'U)

'2 1/2

Aq+
2m U)

This can be readily solved for U, :

$2q 2

U i
——— /sinh[ f&(p&,q) ],

2m

where

$2q 2

, /fi(p~ q}.

(2.19)

(2.20a)

(2.20b)

Similarly, using Eq. (2.14b), one gets for Q:

&= Ui /f, (pi„q) = ——,
' f,(p„,q)/sinh[f ~(p„,q)] . (2.21)

This is essentially the condition (2.15) except for a small
term of magnitude (3t, +5t2/96)pt, q that can be traced
back to the neglect of the oscillatory part of m'(r), Eq.
(2.13) [this is the only term of order b, that has been
neglected in deriving (2.14)]. In the actual calculation the
difference between f, and f2 is small enough that it can
be safely neglected.

Since b, is always negative [see Eq. (2.7) and the discus-
sion following it], it follows from Eq. (2.14b) and the con-
dition (2.15} that Ui must be positive. We can therefore
remove the absolute value sign in Eq. (2.7) and substitute
it into Eq. (2.14b) to get

and that 6 is generally small (
~

b
~

S0.27) as anticipated
so that the approximations made are justifiable. Also
shown in Fig. 1 are the values of 6 obtained by Dohnert
et al. in their numerical solution of the Hartree-Fock
equations for the same problem. Both the present results
and those of Ref. 6 are obtained with the use of Vauthe-
rin and Brink s parametrization I of the Skyrme interac-
tion given in Ref. 7. We notice that there is an overall
agreement between the two sets of results for b, . The
largest discrepancy occurs in the neighborhood of the
maximum value of

~

b,
~

. This is understandable since
the present results depend on the approximation that 6 is
small. There is also some disagreement about the ends of
the density region in question. Whereas in Ref. 6 b, is
different from zero for the region 0.0006 &

p& ~0.08, this
work indicates that 6 is nonzero for pI, &0.095. This can
best be understood by noting that f, and b, tend to zero
at the end of the region so that the gain in energy ob-
tained with Overhauser's orbitals [see Eq. (2.17)] becomes
smaller than the terms that have been neglected like, for
instance, the excess kinetic energy referred to following
Eq. (2.17}. Thus the plane-wave orbitals should give a
lower energy near the ends of the region as in Ref. 6. In
any case, both calculations indicate that the Overhauser
solution provides a lower energy than the plane-wave
solution only in a density region well below the saturation
density of nuclear matter: po-0. 17 nucleons/fm . The
general agreement between the two sets of results indi-
cates that the method developed in this work provides a
good approximation to the exact Hartree-Fock solution
and may be expected to yield dependable results when ex-
tended to finite temperatures.

It must be pointed out that in the above expressions pz
and q are not independent variables since they are related
by Eq. (2.6).

The values of Ui and b, obtained from Eqs. (2.20) and
(2.21) are plotted in Fig. 1 for the density region

ps 0.095 nucleons/fm in which condition (2.15) is
satisfied. It is seen that U& can be as large as -8 MeV,

0.5 [
—---- ~-~-)

III. THE OVKRHAUSER PROBLEM
FOR NONZKRO TEMPERATURES

At finite temperatures the occupation of the single-
particle orbitals is not confined to the Fermi cube

~
k;

~
& ko. This effect appears explicitly in the calcula-

tion of the density and kinetic energy density which have
to be generalized from the expressions given in Eqs. (2.5a)
and (2.8a):

p(r}=g g ni, I Per (3.1a)

p.s &

02 '-, —

— 6
(D

4

r(r)=g g nz
~
Vgz(r)

~

k

where

(3.1b)

ni, ——I exp[P(ei, —p)]+ I j (3.1c)

0.0 L
tp -4 10 3

ph (frn )

10-2
p

t0-1

FIG. 1. Values of U, and
~

6
~

at T =0 as functions ot nu-
clear matter density. Note that the density has a logarithmic
scale. The continuous curve gives the magnitude of 6 obtained
in this work while the dot-dashed curve gives the corresponding
Ul. Note that U& has a maximum =8.2 MeV at p=0.035
nucleons/fm . The dashed curve gives

~
6

~

obtained by
Dohnert et al. (Ref. 6).

is the occupancy of the orbital k whose self-consistent
single-particle energy is ei, . Here P= 1 /T where T is the
temperature in energy units, and p is the chemical poten-
tial. Apart from this, the finite-temperature Hartree-
Fock equation is identical to the one for T =0. In par-
ticular, Eqs. (2.11)—(2.13) are still applicable but with the
finite-teinperature effects included in p(r) and r(r).

The only consequence of this is, therefore, to modify
Eq. (2.7) for b, . For example, in evaluating p(r) to the
same approximation as in Eqs. (2.9) we get:
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p(r, T)=—g n„(1+2uk vk cosqx+2u„v„cosqy
V k

X X

+2uk vk cosqz)
z z

=pk(1+26,„cosqx +26, cosqy

+24, cosqz } . (3.2}
3Aq

e )
= E,k +2E,k 8m' 2

(3.4b}

where e0 is measured from the bottom of the potential
U0. The first excited state would then correspond to re-

moving a particle from this orbital and putting it in an
orbital like k„=k0+, k =k, =k0 with a corresponding
energy:

where

nk~k„Vk„

which leads to an energy gap =e, —eo=
~

U, ~. The
Fermi energy ez lies at the midpoint of the gap so that we
have

77k
(3.3)

(3.4a)

with similar expression for 6 and 6, . By symmetry,
5„=5 = b,,=5( T), where the temperature dependence
of 5 is shown explicitly in order to distinguish it from its
value at T =0. We now proceed to evaluate b,(T) assum-
ing that the temperature is very low. It will be seen later
that this assumption is justified and that it is not neces-
sary to consider higher temperatures.

At low temperatures the chemical potential p can be
taken to be independent of the temperature and equal to
the Fermi energy cF. The latter can be determined by
noting that the highest occupied orbital at T =0 corre-
sponds to k. =ky ——k, =ko with a single-particle energy:

3g2q 2

e0 3~k
8m 2

(3.4c)

gn„= —+ +O(T ) .
2

(3.5a)

In evaluating gk uk vk nk it is necessary to be more care-
Z Z

ful since
~

uk vk
~

&& 1 except near the edge of the Fermi
X Z

cube (k„=ko ), i.e., near the gap region:

3' qp=eF=
8m*

In order to evaluate both summations in Eq. (3.3) for
b, (T) at low temperatures it is noted that the main contri-
butions come from the single-particle orbitals below the
edge of the Fermi cube where nk = 1 so that the sums in
(3.3) would be close to their values at T =0 up to 0(T }

since the terms linear in T vanish for a Fermi system at
low temperatures (see, e.g., Ref. 10). It then follows that
[cf. Eq. (A2) in the Appendix]:

3

+uk vk nk= g uk vk nk+ X k„vk
X X

k
Z Z

k
X Z

Ikx I &ko ikx I &kp

~k„Vk„—

I k„ I &kp

X (l-n. }uk vk X
k

X Z Z X

xi —ko ik I &kp

'2
Lq
277

Qk Uk

I kx I &kp

Qk Vk
Z Z

—p( e) —Jtl )k

I
k

I &ko

u+v+
kx kx

+
p(e), —JM)

e " +1
Ikx I &kp

In the second summation it is noted that the main contribution comes from the region k„=k =k, =ko so that e„=eo.
Similarly in the last summation the main contribution comes from the region k„=k0, k„=k,=k0 so that ek=e~.
Utilizing Eqs. (3.4) we can then use the approximation:

/uk vt nk 1—
k

X X

exp

Qk Uk +
Ik I &ko

2
+1 exp

1
Qk Vk

PI pi I +1
(3.5b)

Noting that [see Eq. (A15)]

ik
I

&kp Ikx I &ko

(3.6)

we finally get with the help of Eq. (2.7)
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b, ( T) =60( T)tanh
4T

—m*/U,
/ $2q 2

ln ~ 1+fi'q' 2m*�/ U,
/

2 1/2
Aq

2m'/ U, f

tanh
4T

(3.7)

'2 1/2
fi q

2m*U)
Aq+

2m*U)

Ui
(3.9}

Uif i(pz, q)tanh

This reduces to Eq. (2.19) as T~0. Unlike (2.19},howev-
er, it is not possible to obtain an analytic solution for (3.9)
similar to Eq. (2.20a). Values of Ui( T) obtained by solv-

ing Eq. (3.9) numerically are given in Fig. 2. The result-
ing b, (T) can be evaluated with the help of Eq. (3.8}. A
general feature of the results, true at any density, is that
U, ( T) and, consequently,

~

b, ( T)
~

decrease as the tern-

perature increases until a certain temperature T is
reached such that for T & T Eq. (3.9) does not have any
solution. This implies that above T only the
homogeneous-density Quid phases can exist and therefore
T is to be identified with the temperatures of melting.
Typical values for T are given in Table I where it is ob-
served that the highest value for T is = 1.12 MeV
which occurs at pz =0.035. This corresponds to the tri-
ple point for nuclear matter. Since the temperatures in-
volved are much lower than the corresponding Fermi en-
ergies and also much lower than the energy gap as shown
in Table I, the use of the low-temperature approximation
in this section is therefore justified.

Although Eq. (3.9) cannot be solved analytically, it can
be used to derive an upper limit for T . The first step is
to note that both sides of Eq. (3.9) are negative monotoni-
cally decreasing functions of U, since f, (pz q) is negative
in the region of interest. The left-hand side [which is
really ho of Eq. (3.7)t decreases from 0 at U, =0 to —0.5

as U&~~ while the right-hand side decreases from
4T/f, (pl„q) at U, =0 to U, lf, (pz, q) as U, ~~ and
the two sides will intersect (if at all) at U, (T) & U, (0)

Note that ho( T} is identical to 6 given in Eq. (2.7) for the
T =0 case except that in Eq. (3.7) Ui ——U~(T) which is
different from U, = Ui(0) its value at T =0 that occurs in

Eq. (2.7).
To the same approximation, i.e., neglecting terms of

order T, the expressions for p(r} and r(r) are identical
to Eqs. (2.9) except that b, is replaced by b, (T). Conse-
quently Eq. (2.14b) remains formally unaffected by the
finite temperature so that:

U, (T)=f, (p iq)b, (T) . (3.8)

%e are therefore left with the solution of the simultane-
ous Eqs. (3.7) and (3.8} for U, ( T) and b, ( T). Eliminating
b, (T) from both equations leads for positive U, to the
equation:

—m'U)
ln 1+

$2q 2

where each side will have the magnitude
~

b,o( T}
~

&
~
b(0)

~

. Equation (3.9) will then definitely not have a
solution if

4T
&

/
5(0)/ .

i pa ~ q

This can be very easily seen by plotting both sides of Eq.
(3.9). Therefore, the temperature of melting satisfies

S(0)llf, ()o„,q) U, (0}
Tm &

4 4
S(0)f,(p„,q)

4
(3.10)

where the last step comes from using Eq. (2.14b). This
upper limit for T can be easily calculated and is given in

the last column of Table I. It is seen by comparison with
the values of T also given in Table I that this upper lim-

it tends to overestimate T by about a factor of 2 so that
T = UI (0)I8.

0=0.035

7 — p=0.050
p=0.02

p=0.015

p=0.01

i I i I I l i l I I I

0.0 0.2 0.4 0.6 0.8 1.0
T {MeV)

1.2

FIG. 2. The variation of U& with temperature for various
representative densities. At low temperatures U& is almost in-

dependent of temperature but then drops rather quickly with

rising temperature until the melting point is reached. The max-
imum U& ( T) occurs for p =0.035 nucleons/fm'.
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TABLE I. Values of the temperature of melting T, the Fermi energy cF, the energy gap U&(0), and
the function f, of Eq. (2.14b) for various representative values of the average density pz. Note that T
is much less than both e„and U&(0). The function fi can be used to calculate b,(T) from U&(T)
through Eq. (3.8). The upper limit for T given in Eq. (3.10) is listed in the last column.

p„(fm-')

0.005
0.01
0.02
0.03
0.035
0.04
0.05
0.06
0.07
0.08

T (MeV)

0.18
0.44
0.88
1.10
1.12
1.08
0.87
0.54
0.20
0.022

c,F (MeV)

5.72
8.05

11.78
15.92
18.34
21.04
27.20
34.20
41.28
47.18

f i (MeV)

—7.29
—13.60
—23.64
—30.47
—32.73
—34.22
—34.98
—32.80
—27.73
—19.80

U, (0) (MeV)

1.41
3.31
6.36
7.99
8.24
8.11
6.82
4.46
1.82
0.21

U, (0)/4 (MeV)

0.35
0.83
1.59
2.00
2.06
2.03
1.70
1.11
0.46
0.053

IV. DISCUSSION AND CONCLUSION

In this work a simple analytic approximate solution of
the Hartree-Fock equations for nuclear matter has been
obtained at T =0 with Overhauser's orbitals. The solu-
tion was then generalized to finite temperatures. The re-
sults for T =0 agree reasonably well with the numerical
results obtained in previous calculations, and the exten-
sion to finite temperatures is straightforward. These re-
sults indicate the existence of a crystalline-like phase of
nuclear matter at very low temperatures ((1.1 MeV)
and at densities well below that of saturated cold nuclear
matter.

Ordinary liquid nuclear matter has a saturation density
of about 0.17 nucleons/fm while solid nuclear matter ex-
ists at densities (0.08 fm so that nuclear matter
should have a phase diagram similar to that for sub-
stances, like water, which expand on freezing. This is
consistent with the fact that nuclear matter exists at
T =0 in the liquid phase and that the solid state does not
exist above the triple-point temperature.

The present results also indicate the existence of an en-
ergy gap at the Fermi energy. It must be pointed out,
however, that this energy gap is not related to the energy
gap associated with the second-order superconducting
phase transition predicted by a recent calculation" to
possibly occur in nuclear matter at very low tempera-
tures. In fact the solid-fluid phase transition is, as it
should be, a first-order phase transition with an associat-
ed latent heat of transformation corresponding to the
change in energy (or, to be exact, enthalpy) resulting
from the difference between the densities of the two
phases. The actual calculation of the latent heat, howev-
er, requires the evaluation of the equation of state for

both phases and determining the coexistence densities.
This has not been attempted here. The energy gap for
solid nuclear matter is also different from that for a su-
perconductor in that it does not tend to zero continuous-
ly as the transition temperature is approached. This is
obvious from Fig. 2. Actually the energy gap of solid nu-
clear matter is analogous to that due to an intrinsic semi-
conductor.

This work has also been limited to the use of the
simple-cubic lattice structure. It may well turn out that
other lattice structures, like the face-centered cubic lat-
tice, are more stable over the same or different density re-
gions and that more than one solid phase exists so that
the phase diagram is more complicated than assumed
above.

Finally, it would be interesting to investigate whether
it is possible to detect any phenomena that can be related
to the existence of the solid phase or to the solid-fluid
phase transition. However, because nuclear matter
occurs only in the form of finite nuclei it may not be pos-
sible to detect a clear signature corresponding to the
phase transition. Another possibility is the existence of a
clusters at the surface of nuclei where the nuclear density
is comparable to that at which the solid phase exists. As
an extreme case it may well be that the a-particle model
of the nucleus is really a reflection of the existence of a
solid phase.

APPENDIX

We now proceed to give the details of evaluating p(r)
and r(r) at T =0 with the Overhauser orbitals of Eq.
(2.1). Only the orbitals whose energy lies below the Fer-
mi energy will contribute:

p(r)=gX Ikl, (r)I'
k

=—g (1+2ul, vk cosqx)(1+2uk vk cosqy)(1+2uk vk cosqz)
V X X Z Z

+ko

(1+2uk vk cosqx )
k = —ko

+ko
( 1+2uk vk cosqy )

k = —ko

+ko

(1+2uk vk cosqz)
k — ko

(Al)
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By changing the summations into integrations in the standard way:

+kp

kp

we get

+kp
dk, ,

2m —kp
(A2)

and

+kp
1=—f dk, =—+L q~2 L

0 7T 2
i 0

p(r) =pk (1+26„cosqx )(1+2b» cosqy)(1+ 2h, cosqz ),

(A3}

(A4}

where pk is given by Eq. (2.6) and, by cubical symmetry,

= =2~ +kp
q/2

Qk Vk ~ Qk Vk dk»
Lq x x q 0 x x

k„=—kp

The integration in Eq. (A5} can be carried out by introducing the variable co defined for
I k„ I

& ko by the relation:

(A5)

cot&=(ek —ek )/
I U, I

=

Noting that

uk vk ———( —')since
z x

and

m'IU,
Idk„= (csc ~)dc',

fi q

it follows that

m*
I Ui I ./2

esca)d co
$2q 2

with cu0 given by

fi q
COtm0 ——

2m'I U, I

fi q

2m

62k„q
(A6a)

(A6b)

(A6c)

(A7a)

(A7b)

which corresponds to k„=0 in Eq. (A6a).
The integral in (A7a) can be easily evaluated leading to

m'IU,
I

R q 2m'U, 2m'
I U, I

m'IU
ln.

fiq 2m'U, 2m'IU,
I

which is Eq. (2.7).
Similarly, using the Overhauser orbitals of Eq. (2.1), the kinetic energy density is given by

2 2 2
BP„(r) BP„(r) BP„(r)

~(r)=g g I VP„(r) I'=g g Bx
+

Bp
+

az

(A8)

Bgk (X)
I &k„(» I' 4k, (»

+2 similar terms obtained by permuting x, y, and z . (A9)
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Again the summation is over orbitals below the Fermi energy:
~
k;

~
& ko. Denoting the first term of (A9} by r„(r) we

get

2%r„(r}=p
Lq g k„+2k„(k„—q„)u„v„cosqx+(q 2k—„q„}vk (1+26,cosqy}(1+25 cosqz)

Z

(A10)

with siinilar expressions for r (r) and r, (r) obtained by permuting x, y, and z.
Each of the summations in (A10) can be evaluated by changing it into an integral:

g k„—+ —I k„dk„=—q/2 2 L q
o

" m24' (A 1 la)

and

2L q/2 2L2g k„(k„—q„)uk vk ~ k„(k„q)u„—v„dk„=
Z Z ~ O X Z

Z

u,-Uk-dk„= —q
q q/2 2 Lq
4 o x z 4m.

L

(A 1 lb)

The approximation used in (Allb} depends on the fact that uk vk «1 except near
~ k„~ =q/2 and also that

X X

k„(k„—q} has its maximum value at
~
k„~ =q/2. The remaining sum in (A10) is very small and can be safely neglect-

ed:

q/2g (q 2k„q„)v—k '~—I (qz —2k„q)vk zdk„=0,
Z

(Al lc)

since vk «1 except when k„=q/2, i.e., when (q —2k„q)=0. Actually the integrals in (Al lb) and (Al lc) can both
Z

be evaluated exactly by using the variable co of Eq. (A5). However the diff'erence between the exact and approximate re-
sults turns out to be small. Moreover, the approximations involved in (Al lb} and (Al lc} are consistent with other ap-
proximations used throughout this work.

Substituting Eqs. (Al 1) into (A10) we get

r„(r)=pk — b, cosqx (1+26,cosqy)(1+25 cosqz) (A12)

with similar expressions for r (r) and r, (r } By addin. g these three terms we get Eq. (2.8b).
For

~
k„~ & kv the variable co' is introduced by the definition:

fink„q
cot'=«k —ek

X Z f72 2@i
(A13a)

which yields

uk+vk+ =+(—,
' )since', (A13b)

m'/ Ui
/

dk =—
Z csc co dco

q

and finally

(A13c)

2' , + 4~ +& , 2
(A14a)

where the summation over k„has been restricted to the second Qrillouin zone. Here cot is defined by

f2q 2

cotcoo ——

2m'/U,
)

(A14b)

which corresponds to k„=q in Eq. (A13a). By comparison with Eq. (A7b) it is found that coo=coo and, hence, from
Eqs. (A7) and (A14), it follows that

21T

]k„) )ko

2
kvk ~ y ukvk+ +

x x Lq x z
(A15)

which proves Eq. (3.6).
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