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Simple phenomenological two-state coexistence models have previously been developed to de-

scribe the ground state and some low-lying 0 excited state in isotopic chains of even-even

medium-mass nuclei. Specifically, these models allow for mixing between a basis ground state and a
basis 0+ intruder state to form the wave functions for the physical ground state and 0+ excited
state. The amount of data accounted for by these models is amazing, considering their simplicity.
However, these two-state phenomenological models contain inconsistencies that have previously

been overlooked. We point out some of these inconsistencies and emphasize that they can be re-

moved by a slight generalization of the two-state coexistence model, without destroying agreement
between data and model predictions.

I. INTRODUCTION

It is well known that comp1ete unrestricted shell-model
calculations for nuclei beyond the sd shell are impractical
because of the large dirpensions of the model spaces.
Only pecently, ' the early stages of such large scale shell-
model calculations have been successfully developed in
that the coefficients of fractional parentage and the
single-shell matrix elements for fp-shell nuclei in isospin
formalism have been calculated using a newly formulated
Gramian method.

Girod and Grammaticos performed Hartree-Fock and
Hartree-Fock-Bogolyubov calculations of the static
ground-state properties of a number of nuclei ranging
from ' C to Pu, and including the germanium isotopes

Ge. Those calculations contained triaxial self-
consistent symmetries, but no statically triaxial shapes
were found for germanium. Rather, the results suggested
a transition from an oblate shape in Ge to prolate in

Ge, with Ge being spherical.
Similar self-consistent calculations have been per-

formed for nuclei around zirconium. In both cases, no
information about transition strengths or particle-
transfer amplitudes is available. Such calculations are of
little use in attempts to explain such data.

Kumar performed dynamical-deformation calcula-
tions for the germanium isotopes, and obtained some
kind of a transition from light mass to heavy mass, but
the magnitude of the effect was underestimated. While,
in principle, "two-nucleon transfer amplitudes can be
computed in that model, they are not currently avail-
able. "

It is frequently necessary to develop simple phenome-
nological models when describing medium-mass nuclei.
An example of such a model as applied to medium-mass
even-even nuclei is a two-state coexistence model
developed to describe the ground state of the nucleus and
some low-lying 0+ excited state. These models assume

dominant mixing between a basis 0+ ground state and a
basis 0+ intruder state to form the wave functions for the
physical ground state and some 0+ excited state.
Specifically, if 4„["X(g.s.)] and 4„["X(0+ )] represent
the orthonormal wave functions for the physical ground
state and excited 0+ state in nucleus "Xand if P" and P,"
represent an orthonormal pair of basis ground and excit-
ed states, one writes

0 „["X(g.s. )]=a~ P,"+P~P,",
["X(0+ )]=P„gg" a„P—,",

with a „+p„= l. Applications of these coexistence
two-state wave functions to the germanium, ' zirconi-
um, " and molybdenum ' isotopes show some very
nice agreement with experiment. However, in many
cases, there exist serious disagreements that have been
overlooked. The purpose of this report is to point out
these inconsistencies and to emphasize that the conflict
between model and experiment does not lie in the two-
state model assumption, but rather in the choice of basis
states.

II. THE SUCCESSES AND FAILURES
OF EARLY TWO-STATE COEXISTENCE MODELS

FOR THE GERMANIUM ISOTOI'ES

Early attempts to use a two-state coexistence model for
describing the ground state and 02+ state in the germani-
um isotopes were those of Fournier et al. and Monahan
and Arns. The successes and failures of these attempts
are described in a review article of Vergnes. Vergnes
showed in that article that the neutron-configuration-
mixed wave functions of Fournier, although successful in
describing the weak population of the Ge(Oz+) state in
one-neutron pickup, are not consistent (at least in a sim-
ple way) with one-proton stripping to the same state. In
addition, there exists conflicting evidence between these
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+p72~( IP3/2 }o~(Ofs/2 )0

7z[ Ge(0z+ )]= p727r( 173/2 )0

a72~( Ip3/2 }o~(Ofs/z )o

(2b)

(2c)

These still satisfy (by orthogonality and weak coupling)
the fact that the Ge(p, d) Ge reactions does not popu-
late the 02+ state in Ge. The value of a7& is calculated
from knowledge of the 1p3/2 proton-spectroscopic-
strength data measured in the 'Ga(d, He) reaction
yielding 3a7, +b7& ——2.76. This equation, along with the
normalization a 7, +b 7, = 1 gives a 7&

——0.88 and
b 7i

——0. 12.
To make these proton wave functions consistent with

the large o(Oz+)/o(g. s.) ratio in the 'Ga( He, d) Ge re-
action, the values of mixing probabilities for the Ge
wave functions were required to be given by a72 ——0.37
and p7z ——0.63. As a further test of these parameters, one
can calculate the 1p3/2 proton occupation number in the
ground state of Ge. From Eq. (2b) one obtains
4a7z+2p7z which becomes 2.74 with the a7z and p72
values above. This is in close agreement with the experi-
mental valise of 2.87.

Motivated in part by the observed rapid A dependence
of Of 5/2 proton occupation numbers in the ground states
of the even-mass germanium isotopes, the forms of Eqs.
(2) were extended to include all even-mass germanium
nuclei by writing

+A ["Ge(g ' }]= .~( 1~3/2 )o

+PA ~( IP3/2 }0~( f5/2 )0

+A [ Ge{O2 )]= pA ~( IP3/2)0

—a Azr{ Ip3/2)ozr(Of s/z )0 .

(3)

In addition, it was assumed that the neutron
con6guration of the ground state is the same as that of
the Oz+ excited state for a given neutron number X. We
shall refer to this model for the germanium ground state
and 02+ state wave functions as the proton particle-hole
(~ph) model. The "best-fit" mixing probabilities for the
four even-mass germanium and two odd-mass gallium

simple wave functions and measured 1p3/2 proton occu-
pancies for the ground states of Ge and 'Ga and

1p, /2 Og9/2 neutron occupancies for the ground state of
Ga.

'

Attempts ' to resurrect the two-state model as ap-
plied to Ge(g.s.} and Ge(Oz+) were made by Vergnes,
van den Berg, Ardouin, and others. They turned around
the argument of Fournier and assumed that the 40 neu-
trons in Ge form a reasonable closed core with

configuration mixing in the protons. A similar idea"
applied to Zr many years earlier had proven to be rela-
tively successful. Specifically in 'Ga and Ge, Vergnes
et al. write for the physical wave functions:

"Ga{g.s. }]=a7iw{ Ips/2)'

+67& n ( Ip3/2 }3/2~(Of5/2 )0 (2a)

%72[ Ge(g. s. )]= a727r( Ip3/2)0

TABLE I. Parameters used in the simple two-state proton
excitation model (taken from Refs. 9 and 10).

Germanium

a~2 13A
2 a2

/l —l

Gallium

72
74
76
78

0.37
0.37
0.03
0.03
0.03

0.63
0.63
0.97
0.97
0.97

0.80
0.89

0.20
0.11

TABLE II. The experimental Of, /, proton occupation num-

bers (Of, /z ) „ in the ground states of the even-mass germanium
isotopes normalized so that the sum (Of, /z ) „+( Ip ) „=4.
Experimental'

1.17+0.10
1.30+0.10
2.16+0.10
2.37+0.10

X' value4

Vergnes' model

1.26
1.26
1.94
1.94

7 =4.93

Rerg1 model'

1.13+0.08
1.33+0.06
2.16+0.05
2.33+0.06
g =0.64

'Taken from Ref. 29.
Using the mixing Probabilities of Table I and (Of s/z ) A

——2P'„.
'Taken from Ref. 43.
X' = ( I /N) g [(exp. —(calc.)/(uncer. ) ]'.

isotopes obtained in Refs. 9 and 10 are summarized in
Table I. As shown in Table I of Ref. 9, this simple two-
state coexistence model is consistent with several direct-
reaction results.

Unfortunately, the success of that model is limited be-
cause there exist much data that are in conflict with the
proton wave functions of Eq. (3) with the extra assump-
tion that O'A [ "Ge(g.s.)]=4'A' [ "Ge(Oz+ }]for a given value
of A. In a recent article by Rotbard et al. , it is still re-
ported that the 7rph wave functions of Eq. (3) are compa-
tible with the Ofs/2 proton occupation numbers in the
ground states of the stable even-mass germanium isotopes
even though it is obuiously not so. In fact, it is an interest-
ing dichotomy to note that one of the serious flaws in Eq.
(3) lies in these proton occupation numbers which were
one of the initial motivations behind their development.
The Of 5/z proton occupation numbers in the ground state
of "Ge (denoted by (Ofs/z) „)have been measured by
Rotbard et al. and are given in Table II (normalized to
give a sum of 4 for (Ofs/z ) and ( lp(]/2+3/2) ) combined)
and plotted in Fig. 1 with the predictions of the wave
functions of Eq. (3) based on the a„and p„value given
in Table I (the Rergl predictions will be discussed later).
The mass-dependent trend predicted by the ~h wave
functions of Eq. (3) is reproduced qualitatively but not
quantitatively for the heavier-mass Ge and Ge. In
fact, it is clear from the wave functions of Eq. (3) that
(Of 5/z ) „has the value 2P„which is less than or equal
to 2 for any value over the full range in p„and must
therefore always disagree with the measurements of the
heavier-mass Ge and Ge.

A more serious conflict between the ~h model and ex-
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FIG. 1. Plot of the Of5~2 proton occupation numbers in the
ground states of the even-even stable germanium isotopes (nor-
malized so that (Of, ~z) „+(lp) „=4) vs A, along with the
predictions of the Vergnes two-state coexistence model and the
improved Rerg 1 coexistence model. The experiment is the solid
line, the SML is the dotted line, and the Rergl model is the
dashed line.
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periment can be found in the two-neutron cross-section
ratio data in the "+ Ge(p, t) "Ge and "Ge(t,p)" + Ge re-
actions. To calculate these ratios, we form the 2n-
overlap integral from the wave functions in Eq. (3) with
the (t,p) and (p, t) operator sandwiched in between. Since
two-neutron transfer operates only on the neutron part of
the wave function and it is assumed that
4"A[ "Ge(g.s.)]=%"A["Ge(02+)], these would divide out
leaving only the overlaps of the proton parts. Because
these wave functions assume very simple shell-model
basis states for the proton part of the wave function, we
must necessarily obtain basis-state 2n-transfer overlap ra-
tios of unity for ground~ground and excited~excited
2n transitions in the basis states and zero for
ground~excited and excited~ground 2n transitions in
the basis states. With this, the cross-section ratio
o[ "Ge(t,p)" + Ge(02+)]/o ["Ge(t,p)" + Ge(g.s.)], denot-
ed by T„,becomes (in the ralph model)

P„=T„(all A) .

subject to the condition T„—P~ =0 for all A. The result
of this minimization leads to the best-fit values given by

TAp /( b TAp ) +PA O /(APAO )

I l(D, T2 )2+1/(&P2 )' (9)

which is just the weighted average of the experimental
(t,p) and (p, t) measurements. In Table III we present the
experimental ' (corrected for Q-value eff'ects) and
model-calculated values of the Ge(p, t) and Ge(t,p)
cross-section ratios using the mixing probability parame-
ters quoted in Refs. 9 and 10 (i.e., Table I) along with the
best-fit calculations deduced from Eq. (9) above. We also
plot these ratios versus A in Fig. 2. It is clear from Table
III that these experimental ratios do not satisfy the con-
dition of Eq. (7), with the most notable exception occur-
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It is interesting to note that this condition on the cross-
section ratios is recognized in Ref. 10 [Eq. (2)] and be-
lieved to produce a "reasonable" fit to the experimental
data. In a "least-squared" sense, the "best-fit" calculated
values (in this morph limit) of the cross-section ratios
[denoted by T„and P„ in (t,p) and (p, t), respectively] as
functions of the experimental cross-section ratios with
their uncertainties [denoted by T„o+ATA p and

P„o+KP„O in (t,p) and (p, t) respectively] are obtained

by minimizing the "least-squares" function

g II

X I [(TA —TAo)/~TAo]
A =A'

+ [(PA —
PAo )/~PAO]' I

or

TA 1+x„x~+2

2

(5)

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

68 70 72 74 76 78

with

A similar calculation for the (p, t) cross-section
ratio o.["+ Ge(p, t) "Ge(02+)] divided by
o["+ Ge(p, t) "Ge(g.s.)], which we denote by P„, yi lds
the same results as in Eq. (4) so that

FIG. 2. Plot of the cross-section ratios T„' and P'„vs A for
germanium along with the predictions of the Vergnes two-state
coexistence model and the improved Rergl coexistence model.
Also plotted are the best-fit SML results. The experiment is the
solid line, the Vergnes ~h limit is the dotted line, the Rergl
model is the dashed line and the best-fit SML results are the
open circles with the point at A =70 overlapping the experi-
mental (t,p) data.
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TABLE III. Experimental and calculated two-neutron 02+/g. s. cross-section ratios in germanium, T„
and P„,using both the Vergnes' mixing probabilities in Table I and the best-fit SML results.

Ratio

P68
2

P70
2

P72
2

P74
2

Experimental

0.0071+0.0007
0.0680+0.0040
0.270+0.016

0.0090+0.0072

Vergnes' mph model

0.0
0.2847
0.0

Best-fit SML

0.0030
0.2350
0.0354

70
2

T72

T74
2

~76
2

0.0020%0.0005
0.200+0.016

0.0520+0.0057
0.0391+0.0040

0.0
0.2847
0.0
0.0

0.0030
0.2350
0.0354

value g =68.0 g =49.9

ring at A =70. Specifically, of the ratios of experimental
cross-section ratios T„o/Pzo, given by 0.029+0.008,
0.741+0.074 and 2.78+2.3 for A =70, 7-2, and 74, re-
spectively, only the A =74 result is equal to unity within
the experimental uncertainties. These are plotted versus
neutron number N in Fig. 3 along with the simple predic-
tion [Eq. (7)] of unity. The large uncertainty in

T74o/P74o is due to the large uncertainty in P~4o (see
Table III). Also shown in that figure are the same ob-
servables for zirconium and molybdenum which will be
discussed in a later section.

If we consider the cross-section ratios directly, we see
that according to Vergnes' numbers in Table, x70 x72
and x74 x76 x7s and so all T„(and hence P„) values
are predicted to be identically zero except for T7z ——P72,
for which Vergnes gets the value 0.28. Only T&2 and P72
are in approximate agreement with experiment. Even the
best-fit values (open circles in Fig. 2) are outside the ex-
perimental uncertainty for A =72 and 74. It is clear

then that there are serious conflicts between the ~ph
wave functions of Eq. (3) and the data consisting of Of»z
proton occupation numbers in the ground states of "Ge
and two-neutron cross-section ratios in the even gerrnani-
um isotopes.

As a further demonstration of the ineptness of the
two-proton excitation wave functions of Eq. (3), we focus
on the Zn(' 0, ' C) Ge reaction that was measured re-
cently. As shown in that reference, the wave functions
of Eq. (3) are not capable of reproducing the extreme
weakness ( =0.01) of the measured 02+/g. s. cross-section
ratio in the above two-proton stripping reaction.
Specifically, the calculated results are at least more than
an order of magnitude too large.

It is clear then that both the 2n excitation wave func-
tions of Fournier and the 2p excitation wave functions of
Eq. (3) are in conflict with certain experimental data. As
suggested in Refs. 38 and 39, perhaps an n-particle exci-
tation is the correct way of viewing the wave functions at
least for the low-lying 0+ states in Ge.
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FIG. 3. Plot of the experimental cross-section ratio ratios

Tgo /Pgo vs N for the germanium, zirconium, and molybdenum
isotopes as compared to unity required by the SML [Eq. {7) in
the text].

In each of the above refinements of the two-state
analysis of the even germanium isotopes, existing
conflicts with certain data were resolved, but at the same
time new conflicts arose. These considerations force one
to investigate whether the two-state coexistence model is

capable of describing the physical ground state and 0+
excited state in the even germanium isotopes. Perhaps a
third basis state with comparable strength is mixing also
with the basis ground state and excited state. Then a
two-state coexistence model would be inadequate for
describing the physical ground state and 0+ excited state
in the even germanium isotopes. This is surely a possibil-
ity. However, it does complicate the original simplicity
of the two-state coexistence model. As an alternate possi-
bility, perhaps the choice of the form for the basis states
P" and P,

"has so far been two restrictive.
In an attempt to keep only two-state mixing, we have

left Eq. (1) in its original form but made no attempt
to present an explicit form for Pg and P,". Our goal
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merely was to investigate whether a two-state coexistence
model with some reasonable assumptions is capable of
describing both the Of &&2 proton-occupation-number
data in "Ge(g.s.) and the 0+ /g. s. two-neutron cross-
section ratio data in a comprehensive and quantitative
way.

In Eq. (1) we make no assumptions about proton-
neutron factorization in the basis-state wave function
and, as mentioned, we offer no form for the basis-state
wave functions. The parameter o~ serves as a measure
of the mixing between Pg and P," and we assume only
that the 2n-transfer overlap ratios between the basis
states P" and P," (denoted by r„,s„, and R„and shown
schematically in Fig. 1 of Ref. 40) are A independent and
given by r, s, and R, respectively, and r =s. We denote
(as explained in Ref. 41) the two-state coexistence model
described by Eq. (1) and the above two assumptions as
the Rergl model. Using the Rergl model, we have been
able to describe the 0+/g. s. cross-section ratios in the
Ge(p, t) and Ge(t,p) reactions ' along with the (p, t)
and (t,p) reactions ' on a variety of other nuclei for
which enough data exist for a comprehensive comparison
between model and experiment. The results of the Rergl
calculation for (p, t) and (t,p) ratios in germanium
are given in Table IV and plotted in Fig. 2 where we ob-
tain almost an exact fit to the Tz and P„ratio data. In
addition, further application of the Rergl two-state
coexistence wave functions to the Of 5&& proton occupa-
tion numbers in the ground states of the even-mass ger-
manium isotopes shows (Table II and Fig. 1) also a nearly
exact fit to the data. In both Figs. 1 and 2, there exists
only one free parameter R which is restricted to a finite
range of values. Specifying a value of R is equivalent to
making a specific choice of basis states.

The detailed mathematical development of the Rergl
model is presented in Refs. 40 and 41 and as mentioned,
the detailed application of the Rerg1 model to the ger-
manium isotopes is given in Refs. 41 and 42. One major

result of those developments is that the two-state Rergl
coexistence model is consistent with the two-neutron
cross-section ratio data if and only if the experimental
data satisfy

2
—P~ )(1+T~ )

L~—= = 1, (10)
(P„+2—T„)(P„2—T„)(1+P„)

for all A. This follows only from the two Rerg1 assump-
tions about the 2n-transfer overlap ratios in the basis
state and the requirement that the model be consistent
with the data. Equation (10) serves as an immediate test
as to whether or not the two-state coexistence model with
the above Rerg1 assumptions can be made consistent
with the 0+/g. s. two-neutron cross-section ratio data.
By minimizing the "least-squared" function of Eq. (8)
(with P2 and T replaced by P and T, respectively) sub-
ject to the conditions L~ =1 for A = A'+2, A'+4,
. . . , A"—2, one obtains the best-fit Rergl calculations
(Table IV) along with the best choice of signs in the
square roots T~ and P„. Note that the restrictions on
the data implied by Eq. (10) are less restrictive than those
of Eq. (7) (i.e., P„=T„).

When Eq. (10) is satisfied for all A, we then obtain a
constraint equation between the basis-state 2n-transfer
overlap ratios r and R, given by

r =R +K„(R +1) (11)

where K„ is defined by Eq. (24) of Ref. 40, is independent
of A, is completely determined by the experimental data,
and can be chosen to be negative. In other words, assum-

ing that the two-state Rerg1 coexistence model is
sufficient for quantitatively describing the cross-section
ratio data in (t,p) and (p, t) [i.e. , Eq. (10) is satisfied for all

A], we allow the data [via Eq. (11)] to dictate the rela-
tionship between the 2n-transfer overlap ratio between
the basis states. In this sense Eq. (11) becomes a very
simple test as to whether a particular choice of basis
states is consistent with the two-neutron transfer data.

TABLE IV. Experimental and calculated two-neutron 02+/g. s. cross-section ratios in germanium, T„' and P„, using both the
Vergnes' m.ph and Rerg 1 models.

Rergl model
Ratio

P68
2

P702
2

P74
2

Experimental

0.0071+0.0007
0.0680+0.0040
0.270+0.016

0.0090+0.0072

m.ph model"

0.0
0.2847
0.0

(P+'=P2+ in "Ge)

0.0071
0.0682
0.2675
0.0114

(0+ =0+ in ' Ge)

0.0071
0.0680
0.2740
0.0060

T70
2

T72
2

T74
T2 d

74

T76
T2 'f

76

0.0020+0.0005
0.200+0.016

0.0520+0.0057
0.0250+0.0034
0.0391+0.0040
0.0190+0.0020

0.0
0.2847
0.0

0.0

0.0020
0.2032
0.0516

0.0391
0.0190

0.0020
0.1950

0.0250
0.0391
0.0190

X value

'Using the mixing probabilities in Table I.
References 40—42.

'Using 0+ =02 in ' Ge.

y2 =68.0 g =0.023

Using 0 =03+ in ' Ge.
'Using 0+ =02+ in "Ge.
'Using 0+ =03+ in "Ge.

1' =0.042
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0+ =0&+ in ' Ge 0+ =0+ in '6Ge

70
72
74
76

+ 0.0651
+ 0.0501
—0.0207
—0.0452

—0.5352
—0.5545
—0.5710
—0.5586

+ 0.0629
+ 0.0502
—0.0141
—0.0314

—0.5292
—0.5478
—0.5679
—0.5618

TABLE V. The w& and v& Rergl parameters. Note that in
the SML one must necessarily have v„:—0 and w„=———,'.

model limit (SML) of which the ~h model is an example.
As mentioned, in the more general Rergl model, this is
possible only when K„=——,'. In the standard
interacting-boson model (IBM), in which the basis state

is vibrational and P,
" is rotational, the quantity r is

zero and R is much smaller than unity.
As noted in Refs. 40 and 45 and proven in Appendix D

of Ref. 41, it is possible to transform via a unitary trans-
formation from the basis set Igs, g,"I to an appropriate
basis set i/'", P,'"), such that

q'~l:"X(g s )l=&'~4,'"+&'~4,'"
(14)

For instance, Eq. (11) clearly shows that the ~h wave
functions of Eq, (3), which require R = 1 and r =0, can
hold if and only if K„=——,

' which is possible only
when P„+T„=O, or in terms of the measurable quanti-
ties P~ and T~, P~ =T„. This is precisely the result ob-
tained earlier in Eq. (7).

Since r and R are related via Eq. (11), the mixing prob-
ability az becomes a function of the one parameter R
and is given by Eq. (33) of Ref. 40. In the Rergl analysis
of the even germanium isotopes, we had assumed that the
physical mixed 0+ excited state was the 02+ in ' ' Ge,
while for Ge we considered two calculations —one with
0+ =02+ and one with 0+ =03+. The parameters w„and
v„(which are —

—, and 0, respectively, in the simple limit
of R =1 and r =0) are defined by Eqs. (27) and (28) of
Ref. 40 and depend only on the values of Tz and P„.
The mixing probabilities a„(which are functions of R)
and the values of w„and U„ that result from that
analysis and that produce the fits in Tables II and IV are
given in Table V and Figs. 3 and 7 of Ref. 42.

IV. THE SIMILARITIES AND DIFFERENCES
BETWEEN THE RERG1 MODEL AND EARLIER

TWO-STATE COEXISTENCE MODELS

In discussing the similarities and differences between
the Rergl model and earlier mph models of Eq. (3), we
must examine the expressions for T„and P„since they
represent the starting (and ending) points in both calcula-
tions. In the limit of Eq. (3), these become

which will lead to calculated two-neutron cross-section
ratios

+A +A+2~
TA t t0+xgxg +2

where x „' =a'z /P'„,

Xg+2 —Xg0
and P~ =

0+xgxg
(15)

(16)

and 5=+(1+4K„)' (remember that K„ is indepen-
dent of A ).

If one compares Eq. (15) with Eq. (12), one sees that in
this "prime" basis, we almost have the SML. In fact, it is
clear that the deviation of 0 from unity (or the deviation
of b from zero) is a measure of the validity of the SML.
So we see that the Rergl generalization proposed in Ref.
40 is "almost" just a unitary transformation away from
the simpler ~h models. However, there exist (see Ap-
pendix D in Ref. 41) an infinite number of these unitary
transformation matrices U(R) all described in terms of
the one parameter R. In addition, it is important to note
that in the prime basis, one is requiring that the uertices
of the ellipse represented by Eq. (16) in the R rplane-
determine the values of 0, b„and x„' (i.e., when r =0 in
Eq. (16), then R =0). This, however, may not always be
possible for a given assumed phase convention.

If in Eq. (11) we try requiring that R =1, but then one
must insist that r =b, and Eqs. (13a) and (13b) become
(with x„"=x„evaluated at r =b, and R = 1)

Xg —Xg+p
TA

1+~w~w+2
&x+2—Xw

and Pq ——

1+xgxg +p
(12)

xg +( 1 —xg xi +2)r —xg +2R
TA

R +(x~ +2+x' )r +xg+2xg
(13a)

with x„=a„/P„. In the more general case in which Eq.
(1) applies with the Rerg1 assumptions about the 2n
transfer overlap ratios in the basis states, we have

and

xg +(1—xgxg+2 )5—xi+2
TA

1+(x„"+2+x„")5+x„"x„"+2

x~+z+(1 —x~x~+2 +—x~
P~ ——

I+(x~+2+x~ )~+x~x~+2

(17a)

(17b)

and

xg +2+( 1 —xgx g +2)r —xgRP„=
R +(xq+2+xq )r +xg+2xg

(13b)

Thus the ~ph model as applied earlier to germanium is
one that assumes both R=l and r =0. In general, we
refer to the limit with R:—1 and r:—0 as the simple-

In this sense, the deviation of 6 from zero is again shown
to be a measure of how well the SML will reproduce the
0+/g. s. cross-section ratios in the (p, t) and (t,p) reac-
tions.

To summarize, one can assume a simple two-state
coexistence analysis of these cross-section ratios with
r =0, provided we let R =Q, or with R =1 provided we
let r =6, but we may not allow for both r =0 and R =1
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XA —XA

1+xAx A

depends only on TA and PA and is given by

(18)

un1ess the data is very symmetric in that PA ——TA for a11

A. In this sense either the deviation of 6 from zero or
the deviation of 0 from unity become very sensitive tests
as to whether SML wave functions will consistently de-
scribe the data. If the experimental ratios T„o and PAO
are equal to within their uncertainties, then the best the
SML can do in a least-squared sense is given by Eq.
(7). For the germanium data using 0+ =03+ in Ge, we
have I(.„(Ge)= —0.2452+0.0009, giving 6(Ge)
=0.139+0.013 and Q(Ge)=0. 756+0.020, results clearly
not equal to zero and one, respectively.

In Refs. 40 and 41 it is shown that the quantity eA A,
defined by

vs+2(ea a+2+1)2

PA ~A, A+2+
WA +VA +2~A, A +2

while in the SML [i.e., Eq. (12)], one has

TA =+CA A+2 and P

(22b)

(23)

In this sense, Eqs. (22a) and (22b) represent higher-order
corrections to Eq. (23). In Table VI we present the e„„.
values deduced from Table I and Eq. (18) (the n.ph model)
and those deduced from Table V and Eq. (19) (the Rerg1
model} for the case in which the physical excited 0+ state
mixed with the ground state is the Oz+ state in all even Ge
isotopes. Note that in the SML, one has vA =0 and
w„= ——,

' for all A and so Eq. (19) does not produce
e„z. Instead, the defining equation [Eq. (18)] must be
used. In addition, one notes that under the SML, the
best-fit values of e„„+2are obtained from Eq. (23) with
the additional e„„values obtained via Eq. (21).

WA —WA'

VA+VA~ 1+WA+WA~
(19)

%e note that e A A are elements of a skew-symmetric ma-
trix that satisfy the equations

and

6A A'+CA' A 0 (20)

~A, A'+~A', A"
~A, A"

1 —&A A.e
(21}

In terms of eA A. one can show that in the Rergl model,
T„and P„become

and

v. (e., ~+2+1)2

TA +~A, A +2+
WA VAJA A+2

(22a)

70 72 74 76

TABLE VI. The e» parameters in the Rerg 1 model (as-

suming that 0+ =02+ in all "Ge) and in Vergnes' ~h model.

V. COEXISTENCE MODELS AS APPLIED
TO ZIRCONIUM AND MOLYBDENUM

A. Zirconium

Early two-state mixing models for the zirconium iso-
topes" were first applied to the low-lying 0+ states of

Zr by Bayman et al. " These existed many years before
similar two-state mixing models were postulated in the
germanium isotopes. ' Early in the life of the shell
model it was discovered that 50 neutrons form a very
stable closed core. It was, of course, then reasonable to
assume that only the protons are active in the ground
state and first excited 02+ of Zr and thus allow for only
two valence protons that are distributed in the lp& &2 and

Og9/2 subshells. Since then many others' have found
this simple idea on Zr consistent with a variety of ex-
perimental data.

The same idea was later extended' ' to include all
the zirconium isotopes. In particular, Saha et al. and
Tickle et al. used a two-state coexistence model' for
describing the ground state and 02+ excited state in AZr in
an attempt to account for cross-section ratio data in the"+ Mo( Li, Be)"Zr and ' Mo(d, Li) Zr reactions.
Their results show that proton configurations given by

70
72
74
76

0.0
0.0

—0.5335
—0.5335

Vergnes' ~h results' for e„„
0.0 + 0.5335
0.0 + 0.5335

—0.5335 0.0
—0.5335 0.0

+ 0.5335
+ 0.5335

0.0
0.0

0 z [ "Zr(g. s. )]=)'„m( lp]t2)o+5w m(Og912 }0

'P a [ "Zr(Oz+ ) ]=5 a a( 1P i t2 }o 1' a ~(Og9n }o

(24)

70
72
74
76

0.0
—0.1675
—0.8063
—1.1759

Rerg1 results

+ 0.1675
0.0

—0.5612
—0.8367

from e„„
+ 0.8063
+ 0.5612

0.0
—0.1882

+ 1.1759
+ 0.8367
+ 0.1882

0.0

Using the mixing probabilities in Table I and x„=a„/P„&0
and Eq. (18) in the text.
Using the w„and u„parameters in Table V and Eq. (19) in the

text.

for zirconium and a pure [(lp, z2 ) (Og9y2 ) ]o proton
configuration for the molybdenum ground state lead to
02+/g. s. two-proton and a-transfer cross-section ratios in
reasonable agreement with experiment.

Following Preedom et al. ' and Cates et al. , Saha
et al. extended the zirconium wave functions to include
the 02+ excited state in Zr and made the additional as-
sumption that the neutron configurations of the zirconi-
um excited states for each even zirconium isotopes be the
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TABLE VII. Mixing probabilities for the ~h zirconium and molybdenum wave functions (taken from Refs. 18, 22, 24, and 25)
and the two-neutron cross-section ratio predictions using both these mixing probabilities and the Rerg 1 model results.

morph model
Zirconium

Experimental ~h model Rergl

88
90
92
94
96
98

0.59
0.59
0.50
0.66
0.90
0.96

0.41
0.41
0.50
0.34
0.10
0.04

0.129+0.039
0.013+0.001
0.035+0.003
0.039+0.004

0.050+0.005
0.040+0.005
0.427+0.047
0.001+0.001

0.0
0.008
0.025
0.099
0.015

0.129
0.013
0.031
0.038

0.057
0.037
0.442
0.001

J =60.59 g -0 533

~h model

9A

Molybdenum
Experimental ~h model Rergl

TA

90
92
94
96
98

100

0.44
0.12
0.34
0.15

0.56
0.88
0.66
0.85

0.074+0.030
0.048+0.021
0.001+0.001

0.158+0.014

0.094+0.012
0.013+0.001
0.017+0.003
0.162+0.018
0.48 +0.13

0.152
0.076
0.052

0.074
0.042
0.002

0.158

0.095
0.013
0.017
0.163
0.479

g =8521 g =0.121

nucleon and four-nucleon transfer reactions. These wave
functions were later simplified by van den Berg et al.
and written as

'p „["Mo( g. s. ) ]=g „n(Og 9/2 )o+ g g m (Og9/2 )o( hole )o,
(26)

P „["Mo(02+ )]='9~ ir(0g9/2 )0 kA ir(Og9/2 )o(hole)o

T~ =P„=0.083, 0.007, and 0.160 for A =92, 94, and 98,
respectively. Out of the three sets of nuclei considered in
this report, the molybdenum two-neutron cross-section
ratios follow the SML best. However, the mixing proba-
bilities used in Ref. 26 (taken from Ref. 23) and repro-
duced here in Table VII result in an enormous deviation

where (hole)o is a sum over two-proton hole states in a
Z =40 core, i.e., 0.6—

I
)

i I i I
)

i I I I
I

I I I I
)

i I i I
)

I I i I

(" l )0= ader(lpi/2)o +barr(lpga/2)o

+c~~(Ofs/2)o ' . (27)

EXP DATA

This is consistent with experiment, but van den Berg
et al. also assumed the neutron wave functions for the
ground state and first-excited 02+ state in the even
molybdenum isotopes were the same. This implies that
the SML of the Rergl analysis above should describe the
Oz+Ig. s. cross-section ratio data in Mo(p, t) and Mo(t, p),
i.e., P~ = T„. The Mo(p, t) and Mo(t, p) reactions
have been measured and the results are summarized in
Table VII and plotted versus A in Fig. 6. It is again clear
that the condition P„=T„(required by the rrph wave
functions van den Berg used) is not satisfied for all A.
The value of the cross-section ratio ratios, Tgp/Pgp
(plot ted versus neutron number N in Fig. 3), are
1.97+0.90, 8.88+5.9, and 1.02+0. 15 for N =50, 52, and
56, respectively, with the largest deviation from unity
occurring at N =52. The best-fit results using the SML
in the Mo isotopes are [via Eq. (9)] given by

Z 04—
O

(f)

0.2—
O
CC

O

0.0—
~ i I »» I i i i i I i i ) i I » i i I » i i I i—

90 92 94 96 98 100

FIG. 6. Plot of the cross-section ratios T~ and P~ vs A for
molybdenum along with the predictions of the van den Berg
~ph two-state coexistence mode) and the improved Rerg1 coex-
istence model. The experiment is the solid line, the ~ph limit is
the dotted line, and the Rergl model is the dashed line.
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FIG. 7. Plot of the mixing probabilities a ~ as a function of R
in the Rergl model as applied to the molybdenum isotopes as-
suming 0+ =02+ in all Mo.

VI. CONCLUSIONS

between model and experiment. In the more general
Rerg1 analysis, we obtain from the molybdenum data '

the mixing probabilities given in Fig. 7 resulting in the
fits shown in Table VII and Fig. 6. In addition, we obtain
the value K„(Mo)= —0.2492+0.0003 giving b, (h4o)
=0.057+0.011 and Q(Mo) =0.893+0.019. Again, b,&0
and 0&1 within the uncertainties of the data.

We can conclude then that the wave functions of Eqs.
(26) and (27) along with the extra assumption that the
neutron part of the wave function is the same for the
ground state and the first-excited 02+ state are not con-
sistent with the two-neutron cross-section ratio data in
zirconium and molybdenum, respectively. In most cases,
it is this extra assumption about the neutron
configurations that leads to inconsistencies with the two-
neutron transfer cross-section ratio data.

um, zirconium, and molybdenum —although very suc-
cessful in describing some direct-transfer data in those
nuclei —suffer from some serious inconsistencies.
Without losing much of the original simplicity in the
two-state model analysis, we have generalized the two-
state coexistence model wave functions by using Eq. (1) in
its original general form and requiring only the two
Rergl assumptions about the 2n-transfer overlap ratios
among the basis states and thus removing many incon-
sistencies between the experimental data and model as far
as two-neutron data is concerned.

We have presented a simple test in Eq. (10) as to
whether the two-state model wave functions are capable
of describing the two-neutron transfer ratio data. In ad-
dition, instead of assuming both R =1 and r =0 in the
basis state 2n-transfer overlap ratios, we have allowed the
cr(0+ )lo (g.s.) ratio data in the (p, t) and (t,p) reactions
to dictate the nature of the relationship between r and R
via Eq. (11).

We have shown that the earlier simpler models will
work provided K~ = ——,

' or alternatively, 6=0, or alter-
natively, 0=1, all possible only when P~ =T„. The re-
quirements R =1 and r =0, taken separately, could, in
principle, mathematically account for the o(0+ )/tT(g. s.)

ratio data in (p, t) and (t,p), but taken together, they do
not (unless P„=T„).

The two-state model basis wave functions of the Rerg1
analysis are infinite in number in that the parameter R is
a variable and not determined from (p, t) and (t,p) data
alone. In addition, these Rergl mixing probabilities are
found to be consistent with other experimental data in
the germanium isotopes, particularly the Of&&2 proton
occupancies in the ground states of the even-mass Ge iso-
topes.

Finally, of course, our model suffers from the fact that
we offer no form for the basis-state wave functions. How-
ever, the model is developed far enough so that any
choice for the basis-state wave functions can be easily
tested against Eq. (11). In this sense, the Rergl model al-
lows the two-neutron cross-section ratio data to dictate
the relationship between the 2n-transfer overlap ratios in
the basis states and thus becomes the first step in their
(Ps and P,")explicit construction.

We have shown that the simple ~ph coexistence mod-
els of Vergnes and van den Berg as applied to germani-
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