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Application of a cubic barrier in exotic decay studies
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In exotic decay studies, the branching ratios for spontaneous emissions of fragments heavier than
alpha particle have been found to be very sensitive to the shape of the potential barrier. In order to
fix the top of barrier correctly, finite range effects are included in our calculations. Experimental Q
values for different decay modes are chosen so as to incorporate the shell effects. The shape of the
barrier in the overlapping region is approximated by a third-order polynomial suggested by Nix.
The cubic barrier is found to be more suitable near the penetrating region. This model is applied to
calculate the branching ratios for the spontaneous emission of heavier fragments. The results ob-
tained compare well with those of other theoretical models and experimental values.

I. INTRODUCTION

In the year 1939 itself, alpha decay processes were
recognized to be similar to the spontaneous asymmetric
fission. But it is conventional to treat the alpha decay on
a quantum-mechanical foundation while fission was stud-
ied for a long time classically in terms of the liquid drop
model. But after Strutinsky's hybrid model, microscopic
methods penetrated fission theory. Thus Poenaru et al. '

proved that the alpha decay or any other particle eva-
poration could be considered as a very asymmetric fission
and the methods used in fission for the computation of Q
values and half-lives can be adopted for treating such
processes also. A numerical super asymmetric fission
model' (NSAFM) was derived by them extending the
liquid drop model (LDM), finite range of nuclear forces
model, and Yukawa-plus exponential model to the sys-
tems with charge asymmetry different from the mass
asymmetry and by using phenomenological shell correc-
tions. This model was tested for alpha decay, the half-
lives being computed with Wentzel-Krammers-Brillouin
(WKB) method successfully used in fission. The NSAFM
involving manifold numerical quadratures was found to
be too slow to be used for a systematic search of new ex-
otic decay modes and hence an analytical relationship for
the half-life [analytical superasymmetric fission model
(ASAFM)] was derived and used by them.

The stability of a particular nucleus (A, Z) with
respect to the split into a heavy ( A „Z&

) and light
( A z, Z2 ) fragments can be studied by using the deforma-
tion energy curve V(R ) of the system, R being the dis-
tance between the centers of the fragments. If the energy
of the two nuclei at infinite separation is taken as the ori-
gin of the potential, the initial energy is equal to the Q
value which can be computed from the experimental
masses. For Q~O, the nucleus is unstable if V(R) is

monotonously decreasing with R or metastable if the
fragments are held together by the potential barrier. In
the latter case, there is a finite probability per unit time of
penetrating this barrier by the quantum-mechanical tun-
neling effect.

In the two-center spherical parametrization of shapes
during the deformation from the parent nucleus with a
radius RO=POA', to the touching point of the frag-
ments, R is varied between R; =Ra —R2 and
R, =R&+R2 where R =roA'r, (j =1,2) and
ro=1.2249 fm. In the framework of LDM for separated
spherical fragments, R &R„only the Coulomb interac-
tion energy Z, Z2e /R has been considered by Poenaru et
al. and the maximum of the potential energy at R =R,
was E; =Z~Z2e /R„where e is the electron charge. In
the overlapping region, a convenient analytical approxi-
mation of the potential energy curve V(R ) going from
V(R, )=Q to V(R, )=E, which allows them to get a
closed formula for the half-life T is a second-order poly-
nomial in R. The elegant ASAFM is known to have a
disadvantage that, in it, the height of the fission barrier is
overestimated.

Shi and Swiatecki have independently developed
another barrier penetration model based on the proximity
plus Coulomb potential (PPCPM) which has the virtue of
no adjustable parameters. The inclusion of the nuclear
proximity attraction by them reduces the barrier height
closer to the experimental values. The disadvantage of
this model is that the zero-point vibration energy E, can-
not be incorporated explicitly.

Our aim is to develop a model in which the height of
the barrier is correctly determined and E, is explicitly
taken. In order to fix the top of the barrier correctly,
finite-range Yukawa-plus-exponential model with latest
constants ' is used in our calculations. Q values for
different decay modes are calculated using the latest mass
table and used so as to incorporate the shell effects at the
ground states. The shape of the barrier in the overlap-
ping region which connects the ground state and the con-
tact point is approximately by a third-order polynomial
suggested by Nix. According to Nix, the shape of the
fission barrier departs from a parabola at very low ener-
gies. Although the true shape of the barrier is not
known, there are nevertheless two firm guidelines that
one should follow when choosing a shape for it; the bar-
rier should be parabolic near its top, and it should have a
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TABLE I. Comparison of interaction barrier heights.

Decay mode

221Fr 207Tl + 14C

221Ra 207pb + 14C

222R 208pb + 14C

223R ~209pb + 14

224' 210pb + 14C

c~ "Bi+
»2pb+14C

231pa 207T1+24Ne
232U 208pb+ 24

Pb+

LDM

37.3439
37.0811
36.3418
37.4630
38.7046
39.5300
38.6091
47.7879
47.1156
48.8080

Barrier height (MeV)
YEM

26.6349
26.2740
25.5570
26.7025
27.9625
28.7198
30.1728
33.6222
32.8608
34.5784

Experimental

28.4476
27.9502
27.2902
28.4902
29.8102
30.4828
29.8702
32.3880
31.5190
33.3290

local minimum corresponding to the ground-state equi-
librium configuration. The cubic shape is the simplest
form which satisfies these two physical requirements. We
therefore employ in the prescission region a cubic barrier
whose form was given by Nix. It should be emphasized
that there is no evidence that the true shape of the poten-
tial is entirely cubic, but for spontaneous fission yielding
heavier fragments the assumption that it is cubic in the
prescission region is intrinsically more reasonable than
the assumption that it is parabolic. In Sec. II we describe
the main features of our model. Section III contains the
results obtained and conclusion.

of mass centers of the fragments) for the post-scission re-
gion is given by

Z) Z2e
V(r)= +V„(r), r)r, ,r

where

r —r, r,—exp[(r, r)/a—],V„(r ) = DF+-
a

and r, =R, +R2 is the sum of their equivalent sharp-
surface radii. The depth constant D is given by

II. THE MODEL

If the Q value of the reaction is taken as the origin,
then the potential as a function of r (which is the distance

4a g, g2e
' [C,(1) C, (2)]'~

2ror,

The constant F is given by

48—

i
~ 0.8536 Ro

32—0

V (R&)

16—
V (et)

r (tm)

-16—

FIG. 1. The shape of the potential barrier used in this work (

( ———) for ' C emission from Ra.
) and the liquid drop model barrier in post-scission region
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« fiF=4+——
a

where

g2

LDM [V(R, }] and by YEM [V(r )] which are corn-

pared with the experimental values obtained by the rela-
tion

[V(r)] '"=10.107+0.1021Z,Zz —Q .

dV(r)
dT

m

=0.

Q values are computed as

Q =[M( A, Z) —M( A i, Zi ) —M( A2, Z2)]

g =(R, /a ).cosh(RJ. /a ) —sinh(RJ /a ),
f =(R. /a ) sinh(R J /a ),
C, (j)=a,(1 K,I—},
I =(1V —Z. )/AJ, (j=1,2) .

Here, TO=1. 16 fm; a=0.68 fm; a, =21.13 MeV, and

E, =2.3.
The interaction barrier of the two fragments can be

easily computed in this one-dimensional parametrization
as the maximum of the interaction potential energy. For
spherical fragments, this maximum V(R, ) occurs at a dis-

tance of R, from the origin in the LDM. But, in the
Yukawa-plus-exponential model (YEM), the maximum
V(r }, occurs at a distance of r that can be calculated

by using the relation

It is seen that while the LDM overestimates the barrier
heights by about 10 MeV or more, the YEM reproduces
the experimental values which are uncertain by about 2
Mev. "

For the overlapping region, we approximate the barrier
by a third-order polynomial in r having the form (see
Figs. 1 and 2)

'2
T —Ti

V(r)= E, +—[V(«)+E„] s&
t i

3
T —T.—$2
T —Tt i

T] (T (Tt

where T, is the distance between the centers of mass of
two portions of a sphere cut (by a plane) in two pieces,
with volume asymmetry of the decay in question. For T;,
we obtain the expression

h h
+

4 Ro+A ) Ro+62
X 931.501 MQV, (3)

A=A)+A2, Z=Z)+Z2 .

In Table I we show the barrier heights calculated by

where h& and h2 are the heights of the spherical seg-
ments. For symmetric case (h, =hp=Rp}, this reduces
to T; = —,'Ro.

V(Rf )

V (rm)52—

I

24

FIG. 2. Same as Fig. 1 for the case of ' Ne emission from ' U.
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Table II. Comparison of theoretical and experimental values of Log10( T/T ).

Theoretical

Decay mode

221Fr 207Tl + 14C

221Ra +207pp+ 14

222Ra ~208pg + 14

223Ra 209pl + 14C

224Ra~»0pg+ 14C

c~ "Bi+'
226R a~212pg + 14

»1pa~207T1+ 24Ne
232U 208pl +24Ne

»3U ~209pg+ 24Ne

Ref. 11

12.5
11.9
11.0
8.5

11.8
12.2
11.7
10.0
10.9
10.3

Ref. 3

11.1
11.1
8.8
8.2

10.2
11.8
10.5
11.0
10.3
10.4

this
work

12.0
11.7
10.2
8.2

11.6
12.4
11.8
10.5
11.5
11.2

Experimental
Ref. 15

& 13.1
& 12.9

9.43
9.21

10.37
& 12.4

10.5
11.22
11.7
12.12

The constants s& and sz appearing in Eq. (5) are deter-
mined by requiring that the value of the potential V(r)
and its first derivative be continuous at the contact point
r=r

When one wants to include E„ in the calculation of the
lifetimes, one has to be careful to see that the conserva-
tion of energy is preserved. In order to accomplish this,
we follow the consistent procedure to fit the cubic part of
the barrier not to zero at r = r, but to —E„.

For calculating the half-life of the system, we use the
formula"

W (2Q/p)'~
2 (C)+C2)

(10)

Here, the "central" radii C& and C2 of the fragments are
given by

C =R, (b~/R )—(j=1,2),

the nuclear "surface width" b = 1.0 fm, R 's are
equivalent sharp-surface radii of the fragments.

1.4333 X 10
[ ]E,

where

K =—I [2B„(r) V(r )]' dr
r~

rb

+—J [2B„(r)V(r)]' dr . (8)

B„(r) =p+ fk(B„'—p),
where

4r —r
) r(rt

0,

k =16,

The limits of integration r, and rb are the two appropri-
ate zeros of the integrand. In Eq. (8) it is to be noted that
the effective mass B„(r) is taken to be deformation depen-
dent' as

III. RESULTS AND CONCLUSION

Our model is applied to calculate the half-lives ( T) for
the spontaneous emission of heavier fragments from cer-
tain actinide nuclei. The branching ratios are then ob-
tained by using the experimental half-lives' of the
respective alpha disintegration ( T ). The results are tab-
ulated in Table II and compared with the values of
ASAFM, PPCPM, and the experimental values reported
by Barwick et al. ' Our results are found to compare
well with those of other theoretical models and experi-
mental values.

To compare our model with the other models, we can
say that ASAFM is completely analytical which can be
easily extended to numerous cases, but in it the barrier
height is overestimated. The PPCPM has the virtue of
no adjustable parameters and includes proximity effects,
but E„cannot be included explicitly. In our model,
finite-range effects are included which brings down the
barrier heights closer to the experimental values, and E,
appears explicitly. Our model involves very short com-
putation time, but numerical.

Considering the main limitation of all these models,
namely the fact that only one-dimensional barrier is used,
it can be concluded that our model can be used for study-
ing exotic decay modes with confidence.

8,'=p+ —",,p exp
Ro

128 r —r;
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