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The "optimal" approximation in the presence of the realistic nucleon-nucleon forces is tested for
the proton-deuteron elastic scattering in the laboratory kinetic energy range between 100 and 450
MeV. The particular emphasis is put on the large scattering angles where the corrections to the pd
scattering amplitude are governed by the energy derivative of the off-shell nucleon-nucleon ampli-
tudes. At 180' the second-order relative corrections amount to 10 or 20% in the energy range up to
320 MeV and are much larger at higher energies, especially at about 400 MeV —the energy corre-
sponding to the zero of the scalar deuteron form factor. In the forward direction the corrections
are very small: 1 to 5%. Their maximum values are found for the proton-bound neutron scattering
at the intermediate angles close to 90'.

I. INTRODUCTION

The principal aim of introducing the so-called "op-
timal" approximation' for the projectile-nucleus elastic
scattering is to take into account the binding and recoil
efects at the relatively large momentum transfers where
the impulse or Glauber approximations break down. The
accuracy of this approximation has been studied for the
proton-deuteron elastic scattering at intermediate ener-
gies using the local nucleon-nucleon interactions indepen-
dent of the target nucleon spin. The deuterium target has
been chosen because the deuteron wave function is
sufficiently well known for the large relative proton-
neutron momenta. The direct studies of the three-
nucleon scattering at the incoming nucleon energies of
several hundred MeV are in progress for the modern
nucleon-nucleon forces although they have been done at
rather low energies of 10 and 20 MeV. At higher ener-
gies we still have to use some approximate schemes to de-
scribe the complex nucleon-nucleus interactions.

In previous studies of the "optimal" approximation the
nucleon-nucleon scattering matrix has often been
parametrized as a single Gaussian function of the
momentum transfer. Obviously, in this case no spin
dependence has been included. In this paper we use the
realistic spin-dependent nucleon-nucleon potentials to cal-
culate the scattering amplitudes. We restrict ourselves to
the proton laboratory kinetic energies lower than 450
MeV where the nucleon potentials reproduce well the
two-nucleon scattering data as well as the properties of
the deuteron bound state.

In the "optimal" approximation the nucleon-deuteron
single scattering amplitude is proportional to the on-shell
nucleon-nucleon amplitude calculated at the effective en-
ergy E,f growing with the increasing momentum transfer.
To study the corrections to this amplitude we also need
the off energy shell amplit'-udes w-hich have been, and are
currently studied in relation to many-particle calcula-

tions. As we shall see, the largest correction to the
backward pd scattering amplitude is proportional to the
energy derivative of the off-shell nucleon-nucleon scatter-
ing amplitude. In Ref. 1, this derivative has been es-
timated to vary as an inverse power of energy like it has
been done by Goldberger and Watson in the study of
corrections to the impulse approximation. Next, in Ref.
3, a more general parametrization with one free parame-
ter has been introduced. In the present article we can
verify the preceding estimations by separately calculating
the of-shell nucleon-nucleon amplitudes and their deriva-
tives. The result is that the energy variation of the ampli-
tudes for the scattering angles close to 0' or 180' is weak-
er than the estimated inverse power behavior. In the cal-
culations we apply the method developed in Ref. 5.
Three different potentials are used: The Reid soft-core
potential (RSC) modified by Day' for the potential
waves higher than 2, the super-soft-core C potential"
(SSCC), and the Argonne V~~ potential. ' The full range
of the scattering angles is covered with a particular em-

phasis on the backward hemisphere.
The analysis of the realistic nucleon-nucleon ampli-

tudes is the first subject of the paper. The second one is
its application to the study of corrections to the "op-
timal" approximation for the proton scattering on a sin-

gle nucleon bound in deuteron. Here, we take fully into
account the spin dependence of the amplitudes. This part
of our work could constitute the first attempt towards a
much more complicated analysis of the multiple-
scattering terms in the same approximation. So, at
present, our aim is not to test the results against the ex-
perimental proton-deuteron data. We should mention,
however, the fact that both the proton-proton and
proton-neutron amplitudes averaged over the nucleons
spin projections rise at the backward scattering angles.
This means that the modulus of the single nucleon-
deuteron scattering amplitude also has the backward
maximum. It is therefore very likely that the backward
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pd elastic amplitude is dominated by the single scattering
term (compare Ref. 13). If that is the case, then we can
expect that the magnitude of the corrections to the full
amplitude in the backward direction remains the same
after inclusion of other scattering terms. On the other
hand, for the small scattering angles we know that the
single scattering amplitude is the most important one and
the present approach gives us the information about the
binding and recoil corrections to it.

In Sec. II we derive the new formulae for the "op-
tirnal" amplitude in the presence of the spin-dependent
forces and examine its first-order correction. Section III
deals with the most important second-order correction.
In Sec. IV the dependence of the nucleon-nucleon scatter-
ing amplitudes and their derivatives as functions of the
energy and the scattering angle are presented. In Sec. V
we analyze the numerical results of the corrections and in
Sec. VI we give the concluding remarks.

II. "OPTIMAL" AMPLITUDE
AND THE FIRST-ORDER CORRECTION

In this paper we examine the first- and second-order
corrections 5i and 5z to the scattering matrix Ti corre-
sponding to the elastic projectile scattering on one of the
two nucleons bound in deuteron (we follow the notation
of Ref. 3). This matrix Ti gives the "optimal" scattering
operator for the transition from the initial state

I p, x, A, )
to the final state

I

p', a', A.'), where p and p' are the initial
and final projectile momenta, a and x' are the projectile
spin projections, and A. and A,

' are the deuteron spin pro-
jections. Let us take the proton as the incident particle,
so the scattering matrix T, has 6)& 6=36 elements.
These 36 elements can be expressed in terms of the 12 in-
dependent proton-deuteron amplitudes. ' For the further
discussion we choose from these 36 elements a scalar arn-
plitude T, which is given by the average over all the spin
projections in the both initial and final states

, (p', P, E,t)= —,
' g (p', , A, I, I P, ~, A, ) .

The amplitude T, which is also a function of the effective
energy E,f can be expressed in the factorized form

5, = —,
' g &p', ~, k

I
t, G, hG, t, I p, x, )(. ) .

KA,

(4)

does not vanish in general. It has the particular feature
that the two neutron spin-flip operators W and g act to-
gether. Moreover, we still have to perform the summa-
tion over all the spin projections after the multiplication
by the other t, operator standing on the left-hand side of
h in (4). It can be seen that many terms vanish and we
therefore neglect the remaining contribution of this at
least double target neutron spin-flip term. Once this is
done, the operator form of the correction 5i in the spin
space can be written exactly in the same way as in Ref. 3

(k'
I
t

I
ki)(ki

I

t
I
k)

5i ——f d Qd kig (Q+ —,'q)
(E,t k, /m)—

(k —k, ) Qx WQ ——,'q),

In this equation t, is an approximated ("optimal" )

proton-nucleon amplitude and the operator
h =G, ' —G ', where G, and G are the approximated
and the full Green's functions (see Ref. 3 for definitions).
The second Green's function depends on the deuteron
Hamiltonian H which in turn contains the proton-
neutron interaction V „. It depends on the both nucleon
spin operators as t, depends on the spin of the target nu-
cleon. Let us suppose that the incident proton scatters
on the target neutron. Then we can write

f+g H~

where f and g can still depend on the incoming proton
spin operator and cr„ is the target neutron Pauli spin
operator. The interaction V „can be written as

V„=V+W cr„,
and we admit that V and W can further depend on the
target proton spin operator. As previously indicated, we
use the Schrodinger equation when the operator h acts
directly on the deuteron initial state in

I p, v, p) [Eq. (4)].
The commutator [h, G, ]=0 as for the spin independent
forces but the second commutator

[h, t, ]=[V„,t, ]=2i(WXg) tr„

T, (p', P, E,t) =t, (p', P, E,t)gs(q), (2)

where t, is the spin averaged on-shell proton-nucleon am-
plitude

t.(P P E.f)=4 y (P x'~'9I t
I P ~ '9) (3)

Ps(q) is the scalar deuteron form factor and q=p —p' is
the momentum transfer. In the preceding equation g
denotes the target nucleon spin projection and t, is the
proton-target nucleon scattering matrix. The amplitude
t, is sometimes called a spin-independent nucleon-
nucleon amplitude because it constitutes the first term of
the amplitude expansion in the two-dimensional spin
operators space of individual nucleons. '

Let us discuss the first correction 5& to the "optimal"
amplitude (2) which is also averaged over the nucleon and
deuteron spin projections as in (1):

ti = &k'
I
t

I ki) =fi+gi ~.
t2 = (kl I

t
I
k ) =f2+g2 ~n (10)

are the operators in the spin space of two interacting nu-
cleons. The vectors k, k', and k

&
are the relative

projectile-neutron momenta. The product t, t2 can be
written as

t)t2 ——F+G.cr„,

where

where g is the deuteron wave function and m is the nu-
cleon mass. We should, however, remember that the in-
coming proton-target neutron half shell amplitudes
(E,t k /m =k' /m)——
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F=flf2+gl g2 (12) & tt ) =-,'tr(t, t, ),
and

G=flg2+f2gl+ gl+g2. (13)

F =-,'tr(t, t, ) (14}

and since we also need to average over the incoming pro-
ton spin projections, we introduce a symbol

In these equations we point out the dependence on the
neutron spin operator cr„since we shall further calculate
the matrix elements between the deuteron wave func-
tions. We stress, however, that all the operators f„f2,
g, , g2, F, and G also act in the incoming proton spin
space. In the target neutron space, F can be written as a
trace,

where the trace is taken in both the proton and neutron
spin spaces, as in (3}.

The contribution to 5, proportional to F [in (11)]van-
ishes after the averaging over the deuteron spin projec-
tions [see (24) of Ref. 3]. For the second part G tr„we
expect some contribution coming from

S(q p G}=fd'Q 0'(Q+-'q)Q pG ~.4(Q —-'q»

where p=k —kl. After some algebra we get the follow-
ing expression for the scalar part of S (S averaged over
the deuteron spin projection —a procedure equivalent to
taking the trace in the deuteron spin space)

S„„,(q P G) =12if d Q lid(pl)Q ppl p2 (pl Xp2) Gpd(p2), (17)

where III. SECOND-ORDER CORRECTION

Pl =Q+-.'q P2=Q ——.'q

Pl =Pl ~P l ~ P2 P2~P2

and gd(p) is the d state part of the deuteron wave func-
tion. Because of the presence of two d-state wave func-
tions we expect that its contribution is very small. In this
manner we have minimized the first-order correction to
the "optimal" amplitude T, .

The second-order correction depends on the second
power of the operator h appearing in (4):

52 —
—,
' g (p', a., A,

~
t, G, hG, hG, t,

~
p, lt, k, ) .

As in Sec. II we transpose h and t, operators neglecting
the multispin-flip terms of the target neutron. Then us-
ing the Schrodinger equation we find the expression

52= f d k, d Qp (Q+ —,'q)Q (k' —k, ) Q.(k —k, )ll(Q ——,'q), (19)
m

' (E t k lm)—
where the trace ( tt ) is defined by (9), (10), and (15); 52 has still to be summed over the deuteron spin projections.

In order to perform the above integrations we decompose the nucleon-nucleon scattering amplitude t in terms of the
partial waves summing over the total angular momentum J, the spin S of a two-particle state, and the angular momenta
I and l' in the initial and final states:

(k'Sv'
~
t(E,()

~

kSv) =+Dt, (,(k', k)Tt ( tkk, E, )t.
JI1'

Here

Dt„t (k'k)= g Y„'.(k')Y„' (k)(l'p'Sv'i JM)(JM
i
lpSv)

(20)

(21)

is given by the spherical harmonics depending on the angles of the unit vectors k ' and k; M, v, v', p, and p' are the spin
projections appearing in the Clebsch-Gordan coefficients. The partial wave amplitudes Tt t(k', k, E,t) are the functions
of three variables: two momenta k and k' and the relative energy E,&.

The scalar nucleon-nucleon amplitude t, (3) can be written as

t, (k', k, E,t)= g (2J+1)Tt( (k', k, E,t)Pl(k'. k) . (22)

Let us notice that only the diagonal elements in the angular momentum space I are present in Eq. (22) and P& is the
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Legendre polynomial which depends on the scattering angle 0 between the vectors k and k'.
The trace (tt ) in Eq. (19}reads

(tt)= —,
' g g gD(„( „(k',k, )D( ( (k), k)Tpj (k', k), E,f)T( ((k), k, E,f) .

Svvl Jl I I Illy

(23)

Writing this equation we have passed from the spin basis of two individual nucleons [in (15)] to the spin basis Sv,
without changing the trace value.

The next step in the evaluation of 52 (19) is the partial wave decomposition of two products:

2 p

Q (k' —k )Q (k —k )=4m g g Y ~(k, ) f „(Q,k, k', k, ),
p=On = —p

(24)

where the functions f „are defined as

foo(Q, k, k', k, )=(Q kQ k'+ —,'Q k, )Yo(Q),

fi„(Q,k, k', ki )= ——,'Q ugk, Y„' (Q),

and

(2S)

(26)

QY„' (Q)=( —1) &3/4+Q e

and we can rewrite F „ in terms of the suitable combina-
tions of G(a, b, q) and D(q). Next we average over the
deuteron spin projections which means that we take only
the scalar parts of the functions F „. In a few steps we

get

f,„(Q,k, k', k, ) = —,', Q k ', Y„' (Q ) . (27)

The vector u=(k+k')/2 is perpendicular to the momen-
tum transfer q. In the following calculations we choose
the z axis (spin-quantization axis) along q and the x axis
along u. Now we introduce the integrals

F~„=fd'Q P (Q+ ,'q)f-„(Qkk, k, , '),g(Q —
—,'q) (28)

which can be calculated in terms of the following func-
tions already defined in Ref. 3:

G(a, b, q)= f d Q p (Q+ —,'q)Q aQ b1(t(Q ——,'q), (29)

and

(Foo) =(4n') ~ (Go + ~~k, D )

(F,„),= —(4m )
' &2/3k, u —,'(D, —C, )n,

(F2„),=(4~) ' k fC, 5„0,3&S

where

Go, ———,'[u (D, —C, ) ——,'q (D, +2C, }],
Cs is the scalar part of the function (see Ref. 3)

C(q}=fd'Q 4(Q+-.'q}Q'F~(Q q}4(Q——.'q»

(33)

(34)

(36)

(37)

D(q}=fd'0 0'(Q+-.'q}Q'P(Q —
—,'q} . (30)

e+, ——+ I /&2(e„+i e ), e„=u/u, (31)

In (29) a and b are arbitrary vectors and for the calcula-
tion of F „ it is convenient to use the standard spherical
basis of unit vectors:

and Ds is the scalar part of D (q) given by (30). After the
integration over the variable Q we come back to (19)
where the integration over the angular part of k& should

be done. It can be made directly using the integration
formulae' for the product of the three spherical harmon-
ics [see (Al) in the Appendix]. As a result of splitting
(24} into the different parts the full second-order correc-
tion 52 is also splitted:

eo=e, —=q/q .

Then, for example,

(32)
5q ——52(p =0)+5~(p = 1)+52(p =2),

where

(3g)

dt, (k', k, E„)
52(p =0)= 3Ds(q)—

m dE,f

(E,r —k, /m)

g (2J+1)[T(( ( kk, ,E, )]r~
oo SJI

1

+ 2 [u (2Ds —Cs) —
—,'q Cs] g P((k k') f dk, k,

48m.m 1=0
(39}

and

5q(p= 1 ) =—
z (Ds —Cz) g Re[ Y', +„(k ') Y' „(k)]f dk, k3

It@
o (E q

—k)/m)

5,(p=2)=—,g Y'(k )Y (k)f dk, k41 CS(q}
g ~,

g
~ a) 4 Gg~(k) )

(E,r k, /m)—

(40)

(41)
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The expressions for the integrands FII,„and G&&„are rather long and their derivation is given in the Appendix. In (36)
we have the energy derivative dt, ldE, &

which can be directly calculated or related to the following integral expression

[compare (32) of Ref. 3]

dt, (k', k, E,r) [TP((k,k„E,r)]
g(2J+1)P,(k k')g f dk, k',

dE,f 16m. +JI (E,r —k) /m)
(42)

Let us remark that the term 52(p=O) is the most impor-
tant term, as one can see from (24)—(27), the part
5z(p=1) vanishes for the backward scattering (u =0)
and the correction 5z(p=2) vanishes for the forward
scattering [Cs(q =0)=0, Eq. (37)].

IV. NUCLEON-NUCLEON AMPLITUDES
AND THEIR ENERGY DERIVATIVE

In (39) and (42) we meet the partial derivative over the
effective energy of the nucleon-nucleon scattering ampli-
tude. We stress here that during the calculation of this
quantity we Px the incoming and outgoing relative mo-
menta k and k', so we are dealing with ogshell ampli-
tudes. The energy dependence of this derivative as well
as the nucleon-nucleon amplitude itself is important in
the study of the 52(p=O) correction. In Ref. 3 dtldE, &

was parametrized as

center of mass energy E,r [the formulae for E,~ are in

Ref. 3, Eqs. (21) and (46)]. In Figs. 1 —4 we notice the
substantial dependence of a on the energy, the scattering
angle, and the type of the potential. One common feature
of a is that both the real and imaginary parts remain rela-
tively small in comparison with l. It means that the so-
called time delay in the nucleon-nucleon interactions at
these energies is small (of the order of 0.5 fm/c or less
where c is the light velocity).

In Figs. 5 and 6 we plot the modulus of a. For the
proton-neutron scattering at about 150 MeV it is smaller
than about 0.2 for the forward and backward scattering
and then gradually grows with energy. For the proton-
proton case at 0'

~

a
~

increases with energy while for the
backward scattering it firstly decreases, has a minimum
at about 325 MeV and then slightly increases. In general

~

a
~

is larger for the pp scattering than for the pn
scattering.

dt

dE ef
(43)

where a was a parameter. Two values of this parameter
has been considered: a = —1, and a = + 1. Now we can
calculate exactly dtldE„. The calculations have been
done numerically for the three realistic nucleon-nucleon
potentials as indicated in the Introduction. We discuss
two cases: the proton scattering on the target neutron
and the proton scattering on the proton bound in the
deuteron neglecting the Coulomb part of the realistic in-
teraction.

Let us define the complex function (which we also call
a) of the energy E,r and the scattering angle 8~ (in the
nucleon nucleon cente-r of mass system)

Re&
Q.8-

.6

pn
180'

E,f dt,

t, dE,f
(44) Q.6-

(45)

Ime =E,f
ef

(46)

Since we use the nonrelativistic kinematics the effective
laboratory kinetic energy E&,b is twice as large as the

In Figs. 1 and 2 we show the laboratory energy E],b
dependence of the real part of a for the pn and pp scatter-
ing, respectively, and in Figs. 3 and 4 the imaginary part
of a for the two angles t9N

——0' and 180'. The real part of
a is related to the behavior of the amplitude modulus and
the imaginary part of a to its phase P:

Q. 2

100 200 200 400
E (ME'V)

FIG. 1. Real part of the parameter a defined by (44) as a
function of the effective laboratory kinetic energy for the
scattering angles 0' and 180' in the pn c.m. system. The solid
line corresponds to the Argonne potential, the dashed line to
the SSCC potential, and the dashed-dotted line to RSC poten-
tial.
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Rect,

0.8
Imcc

0.2-
pp
180'

Ree(,'

0,6 00
r'

r

Imc
0.6 0'

»» ~
~»»

W ~

100 200 300
Et (Me)I)

400

100 200 300
E,(MeV)

400

FIG. 4. Same as Fig. 3 but for the pp scattering.

FIG. 2. Same as Fig. 1 but for the pp scattering.

The angular dependence of a also varies with energy,
type of the target particle and the potential. As a general
rule the energy derivative is more sensitive to the type of
potential than the scattering amplitude itself because the
latter has been constructed to reproduce the known
nucleon-nucleon scattering data or the experimentally
found phase shifts. The moduli of the nucleon-nucleon
scalar amplitudes t, in the region of our interest have the

maxima at 0' (forward diffraction peak) and 180' (the
backward peak, due to the existence of exchange forces).
In some cases the backward peak is even more pro-
nounced than the forward one. In general we observe a
more rich angular structure in t, and dt, IdE at higher
energies. This is due to the interference of higher partial
waves which become important only at high enough ener-
gies. In the preceding calculations we have summed over
all the partial waves up to J =7, the maximum I value
was 6. For I )l,„we have added the one-pion-exchange

Imcc pn
0

I

pn
0

-0,2
02==:==--

1m'
0.4-

pn0'
I

pn
0

200 300
E,(Me)I)

400

FIG. 3. Imaginary part of the parameter a. See Fig. 1 cap-
tion.

100 200 300 400
EL(MeV)

FIG. 5. Modulus of the parameter a. See Fig. 1 caption.
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I I I

PA
300 MeV

2.5

2.0

1.5

1.0

f
ocf

O. 5

0 I I I I I I I I

0 20 40 GO 80 100 120 140 150'

FIG. 8. Angular dependence of the a modulus. See Fig. 7
caption.

200 300
EL(Me V)

I

400

FIG. 6. Same as Fig. 5 but for the pp scattering.

8 we give the corresponding
~

a
~

plot. We see that
~

a
~

has the maximum values at the angles close to 90 which
is the natural reflection of the minimum of

~

t ~. We
therefore pay a special attention to this angle during the
discussion of the second-order correction values.

amplitude calculated as in Ref. 9. The results shown in
Figs. 7-17 have been obtained for l,„=8. We have
checked that the differences between l,„=6and l,„=8
or 10 are at most a few percent of the

~

a
~

values.
In Fig. 7 we give the example of the t, and dt, /dEL

variation as a function of the scattering angle and in Fig.

V. NUMERICAL RESULTS AND DISCUSSION

We stress the fact that the results depend on the
egectiue laboratory energy EI,b which is an increasing
function of the scattering angle. For example the labora-
tory effective energy E~,b

——450 MeV at 180' corresponds
to the beam laboratory energy of 253 MeV only.

We wish to evaluate the second-order correction terms
given by (38)—(41) in comparison to the "optimal" ampli-
tude (2). Therefore, we introduce the relative correction

r10

fm
MeV

d~s
dEL

(47)

10

300 Me Y

~ P

«10
fm2

10-

0 I I I I I I I I

0 20 40 GO 80 100 120 140 160'

FIG. 7. Angular dependence of the modulus of the scalar pn
scattering amplitude and its energy derivative calculated at 300
MeV for the Argonne potential.

The value of T, is proportional to the scalar deuteron
form factor Pz which is plotted in Fig. 9 as a function of
the momentum transfer q. The region of the momentum
transfer which is a subject of our interest in this paper is
limited to the value about 4.7 fm ' which is related to
the maximum energy 450 MeV for the backward scatter-
ing. It roughly corresponds to the zero of the scalar form
factor. The other deuteron functions Ds(q) and Cs(q)
are plotted in Figs. 10 and 11. They have the values mea-
sured in fm and enter in some linear combinations as
seen in (39) and (40). The function Cs(q) is, however,
much smaller than the corresponding function Ds(q). In
the region of q up to 4.7 fm ' the maximum values

~
Cs/Ds

~

are 5.5%, 8%, and 10% for the RSC, Ar-
gonne, and SSCC potentials, respectively. By inspection
in the structure of (38)—(41) we notice that the 52(p=2) is
very small in comparison with 62(p=0) and therefore we
neglect it. Since our main interest lies in the relatively
large rnornenturn transfer range we can also neglect the
52(p=1) correction which vanishes for the backward
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10 ~-

10— I

ti
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Ili
«Ir

I

I~I

«i'I

lj
'11

I
~ I

0 2 4 6 8 10
(fm ')

FIG. 9. The deuteron scalar form factor as a function of the
momentum transfer. See Fig. 1 caption.

-lg

O 2 4,6 8 1O
(fm ')

FIG. 11. Momentum transfer dependence of the scalar part
of the function C defined in (37). See Fig. 1 caption.

scattering at any energy. Next we observe that at 180'
the second term of 5z(p=0) is proportional to Cs(q) (be-
cause u =0 here) and therefore, for the backward scatter-
ing we get a very simple approximated result

Using (44) this correction can be written as

Ds(q)
5,= —,'a t, .mE„' (49)

S
-2

f «

dts
5.= ~~Ds(q)

m dE,f
(48)

Let us remark that if a = —1 we get exactly (40) of Ref. 3,
the only difference is that now a is not a fixed parameter
but the calculable function of the angle and the energy.
The approximation (48) amounts to 85% or even 100%
of the whole 5z contribution for the backward scattering
angles 8~90' (8 is defined in the proton deuteron c-enter
of mass system) provided we treat the range of q where
Cs(q)/Ds(q) remains small. In our case this covers all
the energy range for the Reid-Day and Argonne poten-
tials and up to about 380 MeV for the SSCC potential.
For the latter case the functions

I
Ds(q) I

and
I Cs(q)

I

have the similar values starting from q =4.3 fm
The relative correction p, valid for the large scattering

angles where 5z can be approximated by (49), is

s(q)l
mE, r I ds(q) I

(50)

1
2 1

0 1 ]

1

g I

~ I

II

I

0 2 4,6 8 10
q(fm')

FIG. 10. Momentum transfer dependence of the scalar part
of the function D defined in (30). See Fig. 1 caption.

From this formula one can easily estimate the order of
magnitude of p knowing

I
a

I
(from Sec. IV) and the ra-

tio Dsl«()s. It becomes relatively small and stable at 180'
up to E„b=330 MeV both for the proton-neutron and
proton-proton interactions. The factor E f' in (49) is bal-
anced by the increasing ratio Dslgs and increasing
modulus of a for larger energies (especially for the pn
case). The energy dependence of p calculated using the
complete 52(p =0) term is shown in Figs. 12 and 13 where
the sensitivity of the results to the form of the chosen po-
tential is exhibited. The corrections are of the order of
10—20%. We should mention, however, that at about
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FIG. 12. Energy dependence of the relative second-order
correction (47) for the pn scattering at 180'.

700 2gg 300
EL(MeV)

I

400

FIG. 14. Relative second-order correction as a function of
energy for the pp scattering at 90' in the p-d center of mass sys-

tem.

400 MeV there is a region where the relative corrections

P become large. The reason of this behavior is the vicini-

ty of the zero of the scalar deuteron form factor Ps to
which is the proportional the "optimal" amplitude (2).
Similar situation, where the "optimal" approximation is
not valid, exists in the case of very small value of the
modulus of the proton-target nucleon amplitude

~
t, ~.

An example of such a situation is illustrated in Fig. 14.
We see the clear peak at the energy of about 125 MeV
and 8=90' for the proton-proton scattering. The origin
of this maximum is that both the real and imaginary
parts of t, go through zero at the close (but not identical)
angles. From Fig. 14 and especially from Fig. 15 we can
notice the larger values of the corrections p at 90' than at
180'. The primary reason of this dependence is the small-
er value of

~
r,

~

at 90'.

The correction p in the forward direction is given in
Fig. 16. It is extremely small (1—2 %) for the pp case and
stays within about 5% for the pn case. Its smallness
confirms once again the fact that the impulse approxima-
tion which is equivalent to the "optimal" approximation
for this particular angle is a good approximation of the
full amplitude.

For completeness we show in Fig. 17 the full angular
dependence of P for E„b=300 MeV. The smallest values
of p are in the forward and backward directions where
the nucleon-nucleon amplitude moduli have the maxima.

VI. SUMMARY AND CONCLUSIONS

We have calculated the first- and second-order correc-
tions to the elastic proton scattering on the proton or

1.2-

1.0-

pp
180'

I

II
~ I.il

", Ii~I

iit I
I I

(

l

I I

I

I

1.0-
pn
90'

0,2 0.2
0-

100 200 300
E,(MeV)

400

FIG. 13. Same as Fig. 12 but for the pp scattering.

4001gg 200 300
E,(Me V)

FIG. 15. Same as Fig. 14 but for the pn scattering.
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n
0

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

100 200
EL(MeV)

I

300 400

FIG. 16. Same as Figs. 14 and 15 but for the forward scatter-
ing.

I I

pp
300MeV

pn

0|-

0.2
0--

0 20 &0 GO 80 100 120 140 160'

FIG. 17. Angular dependence of the second-order relative
correction for the pp and pn scattering at 300 MeV. See Fig. 1

for description of lines.

neutron bound in deuterium. Three types of realistic
nucleon-nucleon interactions have been applied. The lab-
oratory energy has been varied between 100 and 450 MeV
and the full range of the scattering angles has been
covered. The special emphasis has been put on the
large-angle scattering. We have evaluated the relative
correction to the "optimal" amplitude averaged over the
proton and deuteron initial and final spin projections. In
the forward direction this correction is of the order of
1 —5% and does not vary rapidly with energy. For the
backward scattering up to energy of about 320 MeV the
pn corrections are smaller than the pp ones both being of
the order of 10-20%. In the vicinity of 400 MeV they

become very large because this energy corresponds to the
zero of the deuteron scalar form factor. In this region
the "optimal" approximation cannot be applied. The
magnitude of the corrections seems to be related to the
hardness of the core of the realistic potential and in the
same manner to the percentage of the deuteron D state
wave function. The smallest corrections are for the
super-soft-core potential, the largest one for the Reid-
Day potential. The Argonne potential leads to the inter-
mediate values between the above potentials.

The relative correction can be comparatively large for
the scattering angles close to 90' as Fig. 15 indicates for
the pn scattering. In some cases the dip in the modulus
of the nucleon-nucleon amplitude can enforce the relative
ratio of the corrections as it is seen in Fig. 14 for the pp
scattering at about 125 MeV. This fact illustrates the
necessity of a careful application of the "optimal" ap-
proximation in the kinematical situation where the single
scattering amplitude is small or goes through zero. In
this energy region the most important relative correc-
tions are present at the angles close to 90', the presence of
the backward peak of the nucleon-nucleon amplitude
modulus diminishes the relative correction values.

At the end we would like to make the following remark
on the eventual extrapolation of the energy dependence
of the relative corrections at the backward scattering an-
gles. We have already seen that it is a rather complicated
function of energy. At lower energies between about 100
and 200 MeV it has a tendency of decreasing especially
visible in Fig. 13 for the pp case. We cannot, however,
say that after the peak at about 400 MeV the corrections
will decrease in a monotonic way. First of all, as men-
tioned in Ref. 3, the ratio Dslgs continue to increase
with energy at the fixed angle. The second point is that
the coefficient

~

a ~, related to energy derivative of the
nucleon-nucleon amplitude, has a slight tendency to in-
crease with increasing energy (more clear for the pn case},
so the correction /3 does not behave like E,&'. The
present approach of using the realistic potentials to cal-
culate the nucleon-nucleon amplitudes is no longer possi-
ble for the energies larger than about 450 MeV because
the pion production processes become important and the
potential formalism cannot be applied without a substan-
tial modification. We can, however, expect an increase of
the energy derivative of the scalar nucleon-nucleon am-
plitude because the latter is closely related via the optical
theorem to the increasing total cross section for the
nucleon-nucleon interaction. Testing the validity of the
"optimal" approximation in the higher-energy region
remains an open problem.

As the final remark we would like to point out that the
present test of the pd single scattering amplitude in the
"optimal" approximation can be easily extended to the
elastic nucleon scattering on the complex nuclei. The
structure of the first-order optical potential in this ap-
proximation is the same as considered above for the pd
single scattering amplitude (see Ref. 2}. The main
difficulty lies in a rather poor knowledge of the high
momentum components of the heavy nucleus wave func-
tion which fortunately has not been the case in the
present analysis done for the deuterium target.
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APPENDIX

The direct step to get the formulae for the functions Fii.„(k i ) and Gii.„(ki } appearing in (40) and (41) is the following

integration formula over the angles of the k& vector:

J dk, Yi'(k, )Di„i „(k',k, )D, i„(k,, k)

= (2J+ 1)(2I+1)(4n) 'i [(2p+1)(2!i+1)(2l2+1}]'i( —1) '

P I1 I2,,
I' S J I S I

X Y' (k ') Y' (k)0 0 0 m+l" ~ m +p v —m —v —p p v —p —v

S l~ S I p
X (Al)

m +v —vi+p vi —m —p —v p+v —vi vi —p —v m —m —p —v+vi p+v —v)

For p=0 further simplifications are possible which after a suitable rearrangement of the factor k, (E,f —ki /m) lead
directly to (39). For p= 1 and p=2 the formulae are given below:

1 I, I

Fiick(ki)= g (2J+1)(2I+1)[(2&i+1)(2l2+1)] () 0 () Vii t'iTii (k', k, ,E,r)Ti i(k, , k, E,i),
SJII i l~

where

(A2)

1

VVi

—1 —p —v+ v& p+ v —v& 1+p v —1 —p —v

S I I S I

and

X 1+v —vi+p vi —1 —v —p p+ v —vi vi —p —v p v —p —v
(A3)

Gii „(k i ) = g (2J + 1)(2I + 1)[(2l i + 1)(2l2+ 1)]'
SJII

l l2

where

2 li l2

() () () Wi i I'iTi. i (k', ki, E,f)Ti, i(kt, k, E,f),

I' S

VVi

—p —v+v) p+v —vi 0 p v —p —v

I, S lz S I
X v —vi+p vi —p —v p v —p —v v —vi+p vi —p —v

(A4)

In (Al), (A2), and (A3) we used the symmetry relations of 3j symbols and the spherical harmonics to relate n = —1

term (34) with n =1 term.
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