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We use a percolation model of nuclear fragmentation to study the possibility of observing a phase
transition of nuclear matter in collisions of high-energy () 10 GeV) protons with heavy targets. It
is shown that the model is able to reproduce experimental results for inclusive mass yields, while

only using very simple physical assumptions. By employing event by event analysis of the moments

of the mass distributions it is shown how to extract possible signals of a phase transition and infor-
mation on its specific nature. Special attention is focused on the influence of the size of the frag-
menting system on our ability to observe the phase transition.

I. INTRODUCTION

Do nuclei exhibit critical behavior in their multifrag-
mentation after having been bombarded by high energy
( & 10 GeV) protons? This question has received renewed
interest after the publication of the results of the Purdue
group' who observed a power law

cr(AF) cc AF, AF (Ar/3
in the inclusive mass yield data for the reactions p +Kr
and p +Xe at beam energies of 80 to 300 GeV. The value
of the exponent A, was observed to be =2.6. Since the
mass yield distribution of droplets condensing at the criti-
cal point in a van der Waals gas follows a similar power
law

o(m) cc m

with a value of —', for the critical exponent ~, the authors
of Ref. 2 suggested that nuclear multifragmentation
proceeds via a liquid-gas phase transition of nuclear
matter.

Different theoretical fragmentation models based on a
droplet description of the nucleus have been proposed, '

and the liquid-gas phase transition has been studied ex-
tensively in theoretical calculations.

Power laws in the mass distribution, however, are by
no means unique to liquid-gas phase transitions. Hufner
and Mukhopadhyay pointed out that power laws similar
to Eq. (1) can be observed in other fragmenting systems
as well. As examples they cite the mass distribution of
asteroids in the solar system and the mass distribution of
the debris of macroscopic basalt pellets being shot at each
other.

Hiifner and his group have therefore proposed a so-
called minimum information model This tnod. el only
uses the law of charge conservation and the principle of
maximum entropy for its predictions based on statistical
calculations. It was later refined' and extended to in-
clude the law of total energy conservation. "

Another class of statistical models are the ones based
on percolation theory, first introduced by our group' '

and by Campi and Desbois. ' This class of models is now
widely used' ' to describe experimental mass yield
curves in high-energy fragmentation reactions.

In this paper we will apply percolation ideas to de-
scribe inclusive mass yield data in high-energy ( & 10
GeV) proton-induced fragmentation reactions of heavy
targets. In Sec. II we will, therefore, briefly introduce the
model used and show that using only very basic assump-
tions one is able to obtain good agreement with experi-
mental data for the mass distribution of the fragments.

Section III will be used to study the influence of the
finiteness of the fragmenting system on our ability to ex-
tract possible signatures of a phase transition. This point
is of major concern, since it is not a priori clear exactly
what signal of a phase transition to expect in systems of
typically only =100 constituents, and how to extract in-
formation about the specific class of phase transitions
from it.

Finally, in Sec. IV we will use our model predictions
for an event-by-event moment analysis of the mass distri-
bution similar to the one done by Campi. ' In Sec. IV fu-
ture experiments will be suggested, and predictions of
their outcome will be made. It will be argued that it is
possible to observe a phase transition of nuclear matter in
fragmentation experiments well within the capabilities of
present day accelerators and detector systems, and that
this transition is one of the percolation type.

II. PERCOLATION MODEL
OF NUCLEAR FRAGMENTATION

It is generally assumed that high-energy proton-
induced fragmentation reactions proceed via a two-step
process. In the first step the incoming proton reacts
with a tube of nucleons on its straight path through the
target nucleus. This tube is emit)ed in the forward direc-
tion. In this first step a huge amount of energy is deposit-
ed in the spectator matter surrounding the tube. There
is, however, only a small linear momentum transfer to the
spectators, which can be inferred from moving source
fits. In the second step the highly excited spectator
matter decays into fragments. We will use our percola-
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tion model to describe this step.
Percolation models ' are generally based on two in-

gredients: a description of the distribution of a set of
points in a d-dimensional space and a criterion for decid-
ing whether two given points are connected. Subsets of
connected points are called clusters, and the study of
these clusters constitutes percolation theory.

In general one distinguishes between bond and site per-
colation models. While Campi and Desbois' used a site
percolation model, we have proposed a model based on
bond percolation theory. The connection with bond per-
colation theory is established in our model as follows.

We represent the target nucleons by points occupying
an approximately spherical volume on a simple cubic
three-dimensional lattice in coordinate space. In general,
it would be possible to use any lattice structure. Howev-
er, for infinite systems the universality concept tells us
that the results obtained (critical exponents) are indepen-
dent of the lattice structure. For the finite systems of in-
terest in this paper this will be demonstrated in Sec. III.

The lattice spacing b can be computed approximately
from the nuclear saturation density

1.8 fm
1

po"

The number of points used equals the number of target
nucleons and is conserved during the calculation, there-
fore automatically fulfilling the conservation law of mass
in the fragmentation process

Bethe-Weizsacker description of the nuclear binding en-

ergy and the result using our approach. Consider, for ex-
ample, the Ag nucleus. Calculating the binding energy
per nucleon using the volume and surface term only of
the Bethe-Weizsacker formula yields

Eb=15.75 MeV —17.8 MeVX108 ' '=12 MeV . (6)

which is quite close to the value obtained above. We can
therefore conclude that we are able to take approximate
care of volume and surface effects in the binding energy
by placing our gucleons on a lattice. In both approaches
the same Coulomb energy has to be added to calculate
the total binding energy.

Clearly, the breaking probability p of Eq. (5) has to be
dependent on the impact parameter b of the proton. A
physically sensible way of modeling this dependence
without any adjustable parameter is to integrate over the
nucleon density of the target along the path of the projec-
tile

Representing the Ag nucleus on our lattice requires
=240 bonds, every one of which represents a binding en-

ergy of

Eb,„d ——15.75 MeVX2/z=5. 25 MeV .

Therefore, we obtain an effective binding energy per nu-
cleon of

240Eb,„d
Eb = =11.7 MeV

108

where At„(i) is the mass number of fragment i and tn is
the total multiplicity of all fragments.

The nucleons are connected to their z=6 nearest
neighbors on the lattice via bonds representing the short-
ragged nuclear interaction. These bonds are then broken
with a probability p, which is the percolation parameter
and depends linearly on the excitation energy per nucleon
E* of the target

p=
Ebo~d z/2

(5)

Here Eb,„d is the energy required to break one bond
and E~ is the nuclear matter binding energy per nucleon
(16 MeV).

There is no straightforward way of calculating the ex-
citation energy E* as a function of beam energy. There-
fore, we will use p as an adjustable parameter which will
be used to fit the experimental mass yield data. We can
then use Eq. (5) to estimate the total excitation energy de-
posited in the target. We have to keep in mind, however,
that the Ansatz of Eq. (5) can only be valid for excitation
energies E* which are smaller than the nuclear matter
binding energy E~. For higher excitation energies, which
are for example reached in the participant matter in cen-
tral heavy-ion collisions at Bevalac energies, Eq. (5) can-
not be valid, because probability values greater than 1

would result.
It is interesting to note the similarity between the

po f p[R(b)]dR
p(b)= f p[R(0)]dR

For numerical calculations a standard Woods-Saxon
parametrization of the density p(r) is used. Thus p is a
monotonically falling function of b and p(0)=po. This
approach is motivated by the Glauber approximation and
will be used to describe the impact parameter dependence
ofp. For a given b we will use a uniform breaking proba-
bility for the entire lattice corresponding to a thermalized
system. We have used different spatial dependences of p,
but did not obtain satisfactory results.

For a given p (b) we generate a random number g;Jk be-
tween 0 and 1 for every bond B; k (where the indices cor-
respond to the spatial location of the center of the bond
on the lattice) and decide if the bond will be broken,

&p 8; k unbroken

(p B; k broken.

Then we use a cluster search algorithm described in
Ref. 12 to find out which nucleons are still connected via
bonds and identify these clusters with the fragments of
the nuclear collision.

By summing over all impact parameters and using a
large number of Monte Carlo events we are thus able to
generate mass inclusive mass yield distributions that can
be compared to experimental results
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f d bAF[p(b)]

d b
(10)

It should be mentioned here that the only adjustable
parameter in our model is the value of the constant po
entering into Eq. (8). The histogram in Fig. 1 has been
obtained using our model calculation with a value of
po ——0.92. The experimental data are taken from Ref. 23
and are represented by the circles. It is amazing that our
simple model is able to nicely reproduce not only the
right absolute normalization, but also the overall shape of
the mass yield curve. While the agreement for small and
large mass fragments is excellent, our calculations under-
predict the data by a factor of 2 to 3 in the mass region
between 40 and 90.

Using Eqs. (5) and (8) we can also estimate the total ex-
citation energy deposited in the target. For a central col-
lision of the proton with the Ag nucleus we obtain a total
excitation energy of the spectator matter of

E total =p o Eb .A z- = 1600 MeV,

where a value of Eb ——15.75 MeV was used.
We have mentioned before that the experimental data

follow a power law given in Eq. (1). In an earlier paper
we have shown' that for every constant p a percolation
Ansatz will result in a power law for the low-to-medium
mass fragments with a falloff constant A, which is a func-
tion of p and has a minimum of X=2. 18 for
& =&crit =0'7'

In inclusive experiments one is only able to measure
fragment mass distributions that contain contributions
from all impact parameters. Thus one is only able to
measure an effective A. which is averaged over all impact
parameters. This is also true for the inclusive results of
our calculations displayed in Fig. 1. It is quite surprising
that the inclusive data also follow a power law with an
effective exponent k. However, it turns out that we can
extract a value of A=2. 6 from our data using all frag-

max
2n f bdb=

min 4

mRT

4
(12)

In this way the absolute normalizations of the fragment
spectra for all intervals are readily comparable.

The shapes of the mass yield curves in Fig. 2 agree
with what one would intuitively expect. For small im-
pact parameter b (central and most violent collisions) the
target breaks up into small fragments. In the ring 2.85
fm&b &4.03 intermediate mass fragments up to mass
Ar/2 are also produced. In the impact parameter inter-
val between 4.03 and 4.94 fm we are able to produce
essentially all fragment masses over the whole mass
range. For large b (peripheral collisions), finally, we ob-
tain typical spallation mass distributions: Only small
fragments are broken off the target nucleus.

In every impact parameter interval it is possible to ex-
tract a separate exponent k, from our calculations. The
values extracted from Fig. 2 are from top to bottom
A, , = —3.42, —2. 30, —2.41, and —3.67. Therefore, it is
clear that the exponent A, extracted from inclusive reac-
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ment masses between 1 and 20 via linear regression with
a correlation coefficient r =0.9995. For other values of
po one obtains different values for A, , and po was chosen
to reproduce the experimental findings for A, from Ref. 2.

It is very interesting to look at different impact param-
eter intervals and analyze the fragment mass distributions
from every interval separately. For Fig. 2 we therefore
chose four different intervals in a way that
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FIG. 1. Comparison of our calculations (histogram) for the
mass yield curve to the experimental data (plot symbols) of Ref.
23 for the reaction p +Ag at 300-GeV beam energy.

A,

FIG. 2. Contributions from different impact parameter inter-
vals to the theoretical curve shown in Fig. l.
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tions is by no means a unique constant, but varies with
impact parameter.

We have already mentioned that the critical percola-
tion probability for the system under consideration is

p, =0.7. Since p (0)=0.92 and p (b) falls off radially to 0,
there will be a certain impact parameter interval in which
p(b)=p, . The impact parameter at which this happens
is included in the interval 2.85 fm &4.03 fm, as already
indicated by the lowest value of A, , extracted for this in-
terval.

We conclude that we obtain overcritical events for cen-
tral collisions and undercritical events for peripheral col-
lisions. But there will be a certain impact parameter in-
terval which produces critical events. Therefore, col-
lisions of high-energy protons with heavy targets provide
an ideal laboratory to scan across this phase transition.
By looking at different impact parameters we can vary
the excitation energy of the spectators without changing
the beam energy. In addition, there is the phenomenon
known as limiting fragmentation ' which indicates that
only a finite energy can be deposited into the spectator
matter. Therefore, it is not even necessary to be very
careful in choosing the beam energy, as long as it is above
a value of =10 GeV.

III. FINITE-SIZE EFFECTS

Theories of phase transitions are generally formulated
for practically infinite systems. We therefore have to ad-
dress the question whether it is feasible to recover signals
of a phase transition in systems with typically only 100
constituents. Our numerical studies will again concen-
trate on finite percolation systems.

In Fig. 3(a) we display the average multiplicity (m ) of
all fragments per lattice site as a function of our percola-
tion parameter p. The solid line represents the result of
our calculation on a simple cubic lattice with 108 lattice
sites. The dashed line is the result for an infinite simple
cubic lattice. We can see that for p=0. 7 the average
total multiplicity per site is about twice as high for the
finite system as compared to the infinite. Since this is the

Nbonds
Zeff

nucleons

(13)

For our problem with 108 lattice sites representing the
Ag nucleus we obtain z,&=4.44.

To eliminate most of the effects of the lattice structure
one usually defines the mean coordination

(r)=z (1—p) (14)

in percolation theory. In Fig. 3(b) we plot again (m )
per site, but now as a function of (r). The dotted line
represents the face-centered cubic lattice (z=12), the
dashed-dot ted line stands for the diamond structure
(z =4), and the dashed line is the result for a simple cubic
lattice (z =6). Using the value z, fr obtained above we can
compare the result of the finite system (solid line) with
the infinite lattices. It is apparent that our results are
practically independent of the lattice structure used, and
that it is also possible to include most finite-size effects in
the way just described.

In the next section we will use the moments of the clus-
ter mass distribution to analyze our data. Therefore, it is
important to investigate if and how the finiteness of the
system affects a moment analysis. We define the mo-
ments of the mass yield distribution

Mk(p)= g(Af)" X„(p),
A

f
f

(15)

where NA is the number of fragments with mass Af ob-f
tained for a given p

tot

N„(p)= g n;(Af, p) .
tot

(16)

region we want to explore in studying the phase transi-
tion, it appears that this is a large discrepancy.

Similar to treating the surface effects on the binding
energy, we will try to incorporate finite-size effects on
(m ) per site by defining an average effective number of
nearest neighbors on the finite lattice

1.0

O. B

0.4

& 0.2

O.o

tice

sites.

ite

1 O. B 0.6 0.4 0.2 0

Here N„, is the total number of events used in the aver-
age (we typically used X„,=1000) and n;(Af, p) is the
number of times a cluster of mass Af is obtained in the
event i.

In standard percolation theory the Af sum in Eq. (15)
is carried out over all finite-size clusters. The infinite per-
colation cluster is excluded. In our finite percolation
model the obvious upper limit seems to be the target
mass.

In Fig. 4(a) we display the ratio M2/M& as a function
of p with the sum of Eq. (15) terminating at AT. Even
though percolation theory tells us that M2/M& should
diverge for p =p„we cannot see this in the figure. The
ratio decreases monotonically with p froin 108 ( = AT ) to
1.

FIG. 3. (a) Comparison of the mean multiplicity per site as a
function of p for an infinite simple cubic lattice and a finite sim-

ple cubic lattice of 108 sites. (b) Comparison of the mean multi-
plicity per site as a function of the mean coordination for the
finite simple cubic lattice and three different infinite lattices.

In finite systems it is therefore not enough to sum only
over all finite clusters, but we have to truncate the sum in
Eq. (15) before the clusters reach the size of the system
(in this case 108 sites). In part (b) of Fig. 4 we have intro-
duced an upper cut in the summation for Eq. (15). The
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curves represent from bottom to top the results for cutoff
masses m, „,=5, 10, 20, 30, and 40. We can now see an
indication of the expected divergence around p, =0.7.
We found that for practical applications it it not useful to
work with cutoff masses m, „,y A r /2, because the
inAuence of the "infinite" cluster will be visible in the mo-
ments of the fragment mass distribution. This is of spe-
cial importance in cases where fission of the target
occurs. The large values of the moments for these non-
critical events would otherwise contaminate the results
obtained from our analysis.

FIG. 4. (a) Value of M&/Ml as a function of p using no cutoff'

in the fragment mass. (b) M&/Ml as a function of p using cutoff
mass values of (from top to bottom) 40, 30, 20, 10, and 5.

the specific nature of the phase transition, as we will
show in the following.

In Fig. 5 we investigate the question what the signature
of the occurrence of a phase transition in our finite sys-
tem is. For Fig. 5(a) we simulated 5000 events using our
model and a value of po ——0.6. Therefore, all values of p
used in generating Fig. 5(a) are below the critical value of
0.7. We have computed the values of M& and
MD=multiplicity, and every point represents one event
simulation. A cutoff mass of m, „,=30 was used. In part
(b) of Fig. 5 we used the same procedure, but this time us-

ing a value of po
——0.92 which was also used to generate

the calculations for Fig. 1. The target mass was again
taken to be 108. While part (a) only contains undercriti-
cal events, part (b) contains undercritical as well as criti-
cal and overcritical events.

We can see a clear difference in the two results. First
of all, we note that in Fig. 5(b) much higher multiplicities
are reached. This is not too surprising, since we know
that the total multiplicity is monotonically increasing
with p. But more important, we can see that Mz reaches
a maximum for intermediate values of the multiplicity
and then slowly falls off again. This has to be interpreted
as the signal that the event spectrum contains critical and
overcritical events as well as the undercritical ones.

Since we were able to reproduce the features of the in-
clusive mass yield curve for the p+Ag reaction in Fig. 1

with the value of p=0.92, we predict that a similar
analysis of the experimental data should show a result
such as Fig. 5(b). This then could be interpreted as a sig-
nature that a phase transition has occurred. Therefore, it
would be strongly desirable to perform this kind of frag-
mentation experiment using 4m mass detectors.

IV. EVENT-BY-EVENT ANALYSIS

Up to now we have displayed the moments of the clus-
ter size distribution as a function of the breaking proba-
bility p which is not a direct experimental observable.
This is due to the fact that in the definition of the mo-
ments in Eq. (15) we used distributions N„which aref
averages over many events for one constant value of p.
To avoid this diSculty Campi' proposed an event-by-
event analysis of the momenta of the cluster size distribu-
tion. Now every event i produces a value M/(p) which is
defined as

M/(p)= g ( Af )".n, (Af,p) .
Af

The advantage of this technique is that Mk(p) can be
computed without a knowledge of p for this event. One
can therefore plot values of different moments versus the
multiplicity or versus each other without having to have
prior knowledge ofp in every event.

With this event-by-event technique it is possible to ob-
tain valuable insight into the question whether a phase
transition occurs in nucleon-nucleus collisions. In addi-
tion, one should be able to make statements concerning

0

(b)

0 20 40 60 BO 100

multiplicity

FIG. 5. Event-by-event spectrum of M2 vs the total multipli-
city in a theoretical simulation containing only undercritical (a)
and both undercritical as well as critical and overcritical (b)
events. In both cases a target mass of 108 and a cutoff mass of
30 were used.



1302 WOLFGANG BAUER 38

It is worth mentioning that the events with the highest
multiplicities are not the ones with the highest values of
M2, the critical events. Therefore, one should not trigger
the experiments on the highest values of the multiplicity
reached in these reactions. It is more desirable from our
point of view not to use any trigger condition and plot
the data in the way done in Fig. 5 which will then deter-
mine if the data contain events in the critical region.

We should point out that a similar analysis has been
done by Campi' analyzing the data of Waddington and
Freier. However, he plots M2/M, versus the mass of
the largest fragment. It appears to us that our approach
is more robust with respect to experimental detection un-
certainties. In these target fragmentation reactions the
heaviest fragment usually has only a very small velocity
in the laboratory frame and is hard to detect. Using our
method one has only to detect the light fragments up to a
certain cutoff mass. For the multiplicity it is not even
very crucial if one of these fragments is not detected,
since the value of the total multiplicity would change
only by 1 which is only a small change and does not
change the result qualitatively.

The main question of interest is now whether we are
able to recover the correct values of the critical ex-
ponents for the phase transition from our finite systems.
Scaling theory ' relates the values of the critical ex-
ponents 0 and r to the moments Mk of the mass distribu-
tion via
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I
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I
s ~ ~ ~
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FIG. 6. Event-by-event spectrum of M3 vs M2 in a doubly
logarithmic plot. A target mass of 108 and a cutoff mass of 30
were used, and a sample of 5000 events was generated in the
theoretical simulation.

M ~ ~p p ~

—(i+k-

In the derivation of Eq. (18) the scaling assumption

N„(p) ~ AI ' f[ A/ (p p,)]—
(18)

(19)

( —1 —3+r)/cr b,ln
~ p —p, ~

( —1 —2+r)/a kin
~ p —p, ~

r—4
r—3

was used which is a generalization of Fischer s scaling
function

=2.25, (21)

Nq (p) cc AI
' exp[const AI. (p —p, )] . (20)

The values of a and r entering into Eq. (18) are charac-
teristic for the specific class of phase transition. For a
transition of the three-dimensional (3D) percolation type
we expect r=2.2 and can=0. 45. For a liquid-gas phase
transition in mean field approximation one obtains a
value of r= —', and cr =—', . Using the Wilson renormaliza-
tion group techniques one obtains a values of r=2.21
and o. =0.63.

In Fig. 6 we show a plot of M2 versus M3 using the
event-by-event technique. Since both moments diverge
for infinite systems and we know that remnants of this
divergence are present in finite systems (as shown in Fig.
4), M2 and M3 assume their maximum around the critical
value ofp. In order to find out if we can recover the criti-
cal exponents in finite systems, we have to extract them
graphically and compare the exact values as obtained us-
ing Eq. (18).

Using this equation we see that around the critical
point the points (M3, M2) should fall on a straight line in
a doubly logarithmic plot. The slope of this line is given
by

where in the last line the percolation value of r=2. 2 was
used.

From the slope of the highest values of M& and Mz in

Fig. 6 we graphically extract a value of @=2.21+0. 1

which is in reasonable agreement with the theoretical
value for the infinite system.

For comparison, we mention that the theoretical value
for p would be 2.5 in a liquid-gas-type phase transition
in mean-field approximation, and that one obtains p =3.0
for percolation on a Bethe lattice. Therefore, the slope p
is characteristic for the specific nature of the phase tran-
sition. In addition, as we have shown, one is able to re-
cover the proper value of the critical exponents even in
finite systems of only =100 constituents. It is therefore
worthwhile to perform a similar analysis of experimental
exclusive mass yield data. As already mentioned, Cam-
pi' has done such an analysis to a very small sample of
data points (about 400 events) and finds that the value of
p extracted from the data is 2.22+0. 1, from which he
concludes that nuclei might indeed breakup like percola-
tion clusters. However, as mentioned before, the value of
r= 2.21 obtained from the Wilson renormalization-group
approach is very close to the percolation value, and thus
it will also yield a value of p =2.25.
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V. DISCUSSION

We have forwarded a statistical model of multifrag-
mentation for high-energy proton induced reactions. The
model is not meant to deliver a self-consistent description
of the whole fragmentation process in the way that ap-
proaches based on nuclear transport theory attempt
to do. However, it is very useful in modeling the statisti-
cal decay of the highly excited nuclear matter and en-
ables us to undertake studies of the features of the reac-
tion without a large usage of computer time.

Using only one free parameter and simple geometrical
considerations we are able to reproduce experimental
mass yield curves with a surprising degree of accuracy in
high-energy proton induced multifragmentation reactions
of heavy targets. Even though nuclei are not lattices and
one should be very careful with applying such a concept
to nuclear physics, we think we have shown the useful-
ness of percolation ideas in nuclear fragmentation.

From our analysis we extract that the observed power
law in the low-to-medium mass fragments is not a charac-
teristic feature of the specific reaction, but is rather an
averaged quantity with different contributions arising
from different excitation energies for different impact-
parameter intervals.

We predict that the inclusive data contain critical and
overcritical events as well as undercritical ones, or in oth-
er words, that is is possible to detect signals of a phase

transition of nuclear matter in the reactions under con-
sideration. To do this, experiments using 4~ fragment
mass detectors and an analysis similar to the one done
above are needed. It should then be possible to not only
detect traces of a phase transition, but also make state-
ments about the specific nature of it.

Finally we should point out that similar excitation en-
ergies such as the energies deposited in the spectator
matter in the reactions discussed above could also be
obtained in central intermediate energy (40—100
MeV/nucleon) heavy-ion reactions for the participant re-
gion. This might offer an additional chance to observe
the phase transition, provided that a stage of thermaliza-
tion is reached in these reactions. The main difference in
heavy-ion collisions would be that the decaying nuclear
system starts out from a compressed initial state at
roughly twice nuclear matter density instead of normal
nuclear matter density as in the case of the proton-
induced reactions.
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