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The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear
structure. The reaction mechanism and nuclear structure aspects of the process are separated using
both the plane-wave and distorted-wave impulse approximations. Predictions are made employing
both the seniority model and a full shell model (with a single active orbit). Transitions to the double
analog state and to the ground state of the residual nucleus are computed. The seniority model
yields particularly simple relations among double charge exchange cross sections for nuclei within
the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are
discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing

ideas to single charge exchange are also presented.

I. INTRODUCTION

The double charge exchange (DCX) reaction has held
out the hope for many years that it would be a means of
probing the short-range part of the nucleon-nucleon
correlations in the nucleus. In order to realize this goal,
one must confront the data with calculations which in-
clude various degrees of correlations. In early calcula-
tions it was found that uncorrelated nuclear wave func-
tions gave qualitative agreement with experiment at the
highest energies ( ~300 MeV) and considerable disagree-
ment in the resonance region (~160 MeV).! More re-
cently it was found that, at low energies ( ~50 MeV), the
disagreement was very large (approximately a factor of
50)? with the uncorrelated wave functions, while theories
including correlation effects come much closer to the
data.>*

Aside from comparison with the absolute magnitude
discussed above, it is also possible to compare the DCX
reactions on various nuclides in the same shell, one of the
simplest cases being *“*Ca-**Ca-**Ca. If the reaction
proceeds by a long-range process then all excess neutron
pairs will take part, and the cross section is expected to
be proportional to the total number of such neutron
pairs, giving a ratio of 1:6:28 for the three isotopes given
above. These ratios had previously been observed’ to be
violated at resonance energies, and a recent v:xperimc.ant6
at 35 MeV found the ratio “Ca/*’Ca to be about 4 in-
stead of the 6 predicted by the uncorrelated picture.

In order to obtain a more detailed picture of the phys-
ics one needs to compare a number of nuclides
throughout a shell. The data should be compared with a
many-body solution or a full shell-model calculation.
However, there are simplified versions of the shell model
such as the seniority scheme’ which have proved quite
successful in providing expressions for the energy levels®
and neutron radii.” We will show (following Ref. 10) that
the DCX amplitude can be written as the sum of two am-
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plitudes in this model. The first amplitude favors the
long-range process and has the property that the cross
sections due to it alone obey the excess-neutron-pair rule
discussed above. The second amplitude corresponds to a
shorter internucleon range, and its dependence on the
number of excess neutrons is different but can still be ex-
pressed simply. [See Egs. (4.4)-(4.6).]

Since there are two complex amplitudes and the overall
phase is not measurable, there are only three independent
quantities, and the measurement of four (or more) cross
sections in a given shell provides a test of the seniority
model without specifying the reaction mechanism (except
that the operator must have a purely two-body nature).
The statements just made assume that all of the reactions
have the same Q value and that distortion of the pion
waves remains constant throughout the shell. Since this
is not true in practice, corrections for these effects must
be made, and experiments which minimize them are to be
preferred.

Beyond the test of the nuclear wave functions men-
tioned above, the reaction operator itself is also of in-
terest for two reasons. First, one needs to know the re-
gion of contribution of the ‘“short-range” amplitude so
that it is known at what internucleon distances the nu-
clear wave functions are being tested. The citation of this
distance provides a figure of merit for the wave-function
test. Second, if the range is very short, as is shown in
Sec. VI for the simple model of sequential exchanges,
then one is led to consider alternatives to this simple pro-
cess usually calculated.!!—13

We note that the uncorrelated model introduced at the
first of this section has served us well in showing that
correlations are needed. The hope is that deviations from
the present work on shell-model correlations will provide
evidence for short-range correlations beyond those of the
shell model.

The article is arranged as follows. General properties
of the DCX operator in the shell model are studied in
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Sec. II. The matrix element of a general two-nucleon
operator in the seniority model with isospin is evaluated
in Sec. III. It is shown that there are at most three in-
dependent reduced matrix elements and, for nonisoscalar
operators, only two. Thus the model places powerful
constraints on matrix elements within a shell. For com-
plex scattering amplitudes, five independent measure-
ments suffice to determine an isoscalar operator, and only
three are needed for a nonisoscalar operator. (The
overall phase is unobservable.) The model is applied to
the isotensor (T =2) DCX operator in Sec. IV. As a
specific example the f5,, shell is examined, and relation-
ships among DCX reactions to both analog and ground
states are derived.

Within the f;,, shell-model space, the seniority model
is valid for nuclei with valence particles or holes of one
kind, for example, the calcium isotopes. However, for
nuclei with both valence neutrons and protons active,
seniority is not conserved.!* In Sec. V a more realistic
f7,» shell model is considered. Section VI is devoted to
reaction model calculations of the independent matrix
elements for the case of the f,,, shell. In Sec. VII this
model is used to calculate DCX cross sections for both
the seniority model and the realistic model both of which
are compared to existing data. The calculations, per-
formed in the plane wave impulse approximation (PWIA)
(appropriate to low-energy pions only) and the distorted-
wave impulse approximation (DWIA), reproduce qualita-
tively the DCX cross sections on the Ca isotopes for
T, <70 MeV.

Section VIII shows that similar considerations can be
applied to single charge exchange. Section IX carries the
ideas presented in the earlier parts of the paper to the
generalized seniority model, where more than a single
shell is involved.

II. THE DCX OPERATOR IN THE SHELL MODEL

The double charge exchange operator F is, in lowest
order, a two-nucleon operator. In this paper we shall ig-
nore the three-nucleon, etc., contributions and assume
that it is indeed a two-nucleon operator. Since it changes
two neutrons (protons) into two protons (neutrons) F is
an isotensor operator. The second-order processes con-
sidered in F will also contribute to both elastic and inelas-
tic scattering as well as single charge exchange. Howev-
er, in those reactions the lowest-order operator is a one-
nucleon operator which in general will dominate over the
second-order processes. In fact it is for this reason that
the DCX is a unique probe in nuclear physics.

The DCX operator will be a function of the coordi-
nates ry,r,, spin variables 0,05, and the isospin variables
T_(1),T_(2) of the two nucleons. A sufficiently general
form of the DCX operator which includes both the
sequential single charge exchange and the meson ex-
change mechanisms between 0% states will be

Flz(k,kl)= [70(['1,1'2)—{- 71(1'1,1'2)0'1'8102'82]
xT_(OT_(2), (2.1)

where €, , are model-specific unit vectors, k,k’ are the in-
itial and final pion momenta, and means scalar product.

The ¥, , are complex scattering amplitudes. Within the
shell-model space, we need only the matrix elements of
this operator with respect to the wave functions of two
nucleons in the valence shell.

The many-nucleon matrix elements of the operator are
then determined by the two-nucleon density of the
many-nucleon wave functions; these matrix elements will
be derived in Secs. III-V. For this purpose it is con-
venient to express the operator (2.1) in terms of the
operators a,,,b;, (ﬁjm,gjm) which create (destroy) a
valence neutron and proton, respectively, in the spherical
valence shell-model orbital with single-nucleon angular
momentum j and projection m. For 0t —07 transitions
the DCX operator in the multipole form is

F=Q3 Filok)b Ja) Pbla)'t /L +1) (2.2)

where Q=j+1, and ( )* means coupled to angular
momentum rank L. The complex amplitudes F; for even
L involve only the spin-independent F:

Fp =G [ d, dry o1, 0) YL (R))- YL (Ry)py(ryry),

L even, (2.3a)
where
2
G- 2I+1Qj+1) | L1 IL
= 4 L jj[looo]]"
(2.3b)
Py (P17 ) =W (r DWW (e )W Nry) . (2.3¢)

The single-neutron (proton) radial wave functions are
\l/(,,‘l’j’( r) [\l/(,,’[}’ r)] with orbital angular momentum / and
radial quantum number n, the Y, (T) are spherical har-
monics, and { } and ( ) are six-j and three-j symbols, re-
spectively. The complex amplitude for L odd involves
only the spin-dependent ¥,;:

FL EAADALIJDALI]

de r d ry 571(r,,r2)YAL(?I)'YA'L(fz)p,,U(rl,rz) ’

L odd, (2.4a)
where
MULVG
D;p= 'y Jilooo
I 3
XV22j + DA+ 121 +1) (2.4b)
and the Y, ,, is the vector spherical harmonic
Yo ®)=1Y, @)Y (€)]y (2.4¢)

The coefficients F; (k,k’) depend on the pion-nucleon dy-
namics, the pion energy, and the single-nucleon wave
functions. We treat the explicit evaluation of the F; in
Sec. VI. For the present section we consider them to be
complex parameters.

From (2.3) and (2.4) we see that, if the pion-nucleon in-
teraction is spin independent, only the even multipoles
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will contribute; if there is spin dependence the odd mul-
tipoles will also appear, L =0,1,...,2j. However, these
2j + 1 complex amplitudes are not all independent. This
can be seen by recoupling so that the pair of protons and
pair of neutrons are each coupled to angular momentum
J:

2j—1
=3 G,b/bN)@a)?, (2.52)
J=0
where
G,=—aS 1/ J LiF . (2.5b)
TliJjJ

Because of the Pauli principle only even values of J are
allowed, J =0,2,...,2j —1, and hence there are really
only j +1 independent complex amplitudes G,. Further-
more, since the monopole operator is proportional to the
isospin lowering operator T_,

£ —vanibfa,)©

the monopole part of the DCX operator is involved only
in the double-analog charge exchange transition. Hence
for non- double analog charge exchange transitions there
are only j — 1 complex amplitudes. Therefore, for both
spin- dependent and spin-independent transitions the
number of independent amplitudes are the same, but of
course their values depend on whether or not spin depen-
dence is included.

For a single j shell there is a particle-hole symmetry in
the double charge exchange reaction if other
configurations are ignored and the mass dependence of
the pion distorted waves and the nuclear mean field are
neglected. Making the particle-hole transformation

(2.6)

T -~
jm’b _’a_,m7Bjm ’ (2.73)
s by — — s =Bl (2.7b)

and using the anticommutation relations, the double
charge exchange operator becomes

F—F=Q3 F (a[B)P(a]B)" . (2.8)

L
Hence we see that the double charge exchange on the tar-
get nucleus with n_,n, valence neutrons and protons is

the same as the target nucleus with 7,7, valence neu-
trons and proton holes, where

n,=2Q—n_,
n,=2Q-—n,

(2.9a)
(2.9b)

which is equivalent to changing the fotal number of
valence nucleons (n =n_+n,) to holes and keeping the
same isospin:

n=4Q—n ,
T=T.

(2.10a)
(2.10b)

Of course this symmetry will not be exact because there
will be mass dependence in the coefficients F; from pion

distortion and the shell-model radial wave functions.
Also there can be admixtures of other configurations in
the nuclear wave function. However, it would be of in-
terest to do experiments on nuclear targets which are
particle-hole conjugates, particularly for pion energies for
which distortions are believed to be small and nuclear
targets for which configuration admixtures are small.
Even though this symmetry may be difficult to observe, it
is useful for calculations since the nuclear structure ma-
trix elements remain the same, only the F; change.

III. THE SENIORITY MODEL

The seniority model has been extensively covered in
the literature”!® we shall only briefly review the funda-
mental ideas in this section. The basic assumptions of the
seniority model are (1) the dominant effective interaction
between valence nucleons occurs for nucleons coupled to
angular momentum zero and isospin one, and (2) the
single-nucleon energies are degenerate or quasidegen-
erate. Assumption (1) is not good for nuclei which have
both valence neutrons and protons active'* as discussed
in Sec. V. A generalized seniority model'® has also been
proposed which removes the assumption (2) and it shall
be discussed in Sec. IX. In this section we shall deal with
a single spherical shell with angular momentum j so the
assumption (2) is valid. However, the results in this sec-
tion also apply to the seniority model with degenerate
single-nucleon energies.

The ground state of the seniority model wave function
is composed entirely of J"=07, T =1 pairs of nucleons
outside a doubly magic core. These pairs are

s*_-z( 1V-"alal_,, (3.1a)
=\/%Z —1-mal bl ., (3.1b)
1——2( 1-mpl bl . (3.1c)

We shall also use a more compact isospin notation for
which

¢} s 1 (3.22)
imimw = .za
jm T b/tn’ p=-—1,

=Q(c) e 707! (3.2b)
where ( )"’ means coupled to angular momentum J and

projection M and isospin T and prOJectlon T,.

These three pair creation operators S form an isospin
triplet, where ¢ = —1,0,1 is the 1sospm projection. For
neutrons and protons outside the doubly magic core
denoted by | 0) the seniority-zero ground state is

|n,T,T,,v =J =0)=n(n, T)ST-§T)n-2D74

x(sH" o), (3.3)

where n is the number of valence nucleons outside the
core and must be even for seniority zero and n(n,T) is
the normalization of the state. The core has isospin zero
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and hence the isospin T is carried by the valence nu-
cleons. The isospin projection is T, =(N —Z)/2, where
N is the total number of neutrons and Z is the total num-
ber of protons in the nucleus. The notation (S 1)52 means

that T pairs are coupled to isospin T and projection T,.
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does not mean that nonzero angular momentum pairs
cannot be extracted for this state. This seemingly para-
doxical statement results from the fact that all nucleons
are antisymmetrized with respect to each other. For ex-
ample, for the four-nucleon system with maximum iso-

For T,=T, which is true for most targets, (SHT=(s")7, spin and projection T =T, =2, the state (3.3) reduces to

i.e., a product of all neutron pairs. The four-nucleon iso-
scalar product is

st.sT=(sf)?—2sis", .

|n=4,T=T,=2,0=J =0)=[2Q(Q—1)]" /2

xSistio)y, @5

(3.4)

The allowed isospin is T=n/2,n/2-2,.. 1 or O,
which includes all even-even nuclei.
Although the ground state of the seniority model as

given by (3.3) is the product of n zero-coupled pairs, this

where Q=j +3 [Q=3; (j +7) for the degenerate many
j-shell case] the number of nucleons in the half-filled
shell. However, we can recouple the neutron creation
operators to get

.

ln=4,T=T,=2,0=J=0)=20Q—1]"'2 3 (=14}, 4] ,|0), (3.6)
J cven M
and A;M creates a normalized pair of neutrons coupled to angular momentum J and projection M,
t o+ )7
A}M - a‘/‘iz n (3.7

where the subscript j has been omitted. Therefore, all angular momenta J and projections M exist with equal probabili-
ty.

For the many-nucleon system the amplitude for extracting a pair of nucleons with angular momentum J, and isospin
T, from an antisymmetrized n-nucleon state leading to an antisymmetrized (n —2)-nucleon state is given by the two-
nucleon coefficient of fractional parentage (cfp):

G'TBvad { | j" T B aJ 5j*T,d,) =[(2J + DQT + n(n _1)/2]_l/2<jnTl3vaJ“(chTC]T’r)JZTZHjn_ZTIBIUIJI ),
(3.8)

where a and 3 are additional labels needed to specify the many-nucleon states. For the initial state with seniority v =0,
vy=v,=0o0r 2 and J,=J,, and a,a,,B, are unnecessary. For v, =0, then J,=0, T, =1, and B, is unnecessary. For
v, =2, either J; even 40 and T,=1, or J, odd and T, =0, and for J, odd B, is unnecessary. In the above cfp’s 3, is
necessary only for J; even £0 and Ty =T=1. For j =1 this occurs only forn =8 and T, =1.

The seniority-zero cfp’s are given in Table I. In Appendix A we show how to derive these expressions. In general we
find that the probability of extracting a pair of nucleons with angular momentum J > O from the seniority zero state is
proportional to 2J + 1 which is consistent with (3.6).

The matrix element of any two-nucleon operator can be calculated with the two-nucleon cfp’s in terms of the two-
nucleon matrix elements of the operator. For matrix elements between seniority-zero states only, the matrix elements
of a two-nucleon operator V,’z , where ¢ is the isospin tensorial rank, become

(G'T'T'=J"=0| V] | j"TT,v=J =0)

’

t

="t I | S CT T T2, + P T | VT,
V4 z V4 2
(3.9a)
where
— ’ 172
COTTiTyg, )= M=) 1 [QT+1)RT +1)]
2 27, +1
T T 1t
X3 G T =" =0{ | j" T 5jTyJ, ) (" To =J =0{ | j" 72T ;j*T,J,) [ (-,
1 T2 T2 Tl

(3.9b)
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TABLE 1. The two-nucleon cfp’s squared and summed over 8,. The quantum number S, is necessary only for T)=T=1 and

J,#0. For j =1 it occurs in this table only for n =8 and T, =1.

T, T, Ja 2 |(j"TU=J=0{|f"—231T1;j2T2J2)|2/(212+1)
B
(n —2TNT + 1)(4Q+6—n +27)
T+1 ! 0 4Qn(n— Q2T +1)
(n—2D){(2Q+ D[QT +3)(n —2T —4)4+2]—n —2T —2}
T+1 ! even>0 8QQ— )20+ Un(n — (2T +1)
(n —2T)(n +2T +2)
T 0 odd 40020+ n(n—1)
(n —2T)(n +2T +2)
T ! even>0 QD2+ Dn(n—1)
_ . 0 (n +2T +2)T(4Q+4—n —2T)
4Qn(n —1)2T +1)
_ | even s 0 (n 42T +2){(2Q+ D[(2T —1)(n 42T —2)—2]+n —2T]

38U —1)2Q+1)n(n —DQ2RT +1)

where the double-barred matrix element refers to the iso-
spin space. Since the operator is a scalar, J,=J3, and
since in the two-nucleon system the angular momentum
determines the isospin, it follows that T5=T,, even
though the operator may not be an isoscalar. Also for
seniority zero cfp’s, v,=v, and are determined by
J,=J,, as mentioned above, and hence v,,v,,J, are om-
itted from the notation to save space. Furthermore, from
Table I we see that the cfp’s for J, even 540 are equal ex-
cept for a factor of 1/2J, + 1 and the ones for J, odd are
equal except for the same factor. Hence the matrix ele-
ments of any two-nucleon operator between seniority-
zero states in a single j shell depend at most on three
two-nucleon matrix elements:

(V"),=(j*T=1,J=0||V'|j*T=1,J =0) , (3.10a)

(GT=1J|V|;*T=1,J)

t —
e Jev§>om+l) (Q—1)2Q+1) ’
(3.10b)
(j*T =0,J||V'||j*T =0,J)
t —_
v )"_8"°J§mm+“ Q20+1) ,
(3.10¢)

where (V'),, are average matrix elements. Further-
more, we see that for isovector or isotensor operators, the
matrix elements depend on only two two-nucleon matrix
elements since { V'), vanishes in these cases.

All the results in this section apply to the seniority
model with degenerate single-nucleon energies'® if we
take as (Q,

Q=3 +1). (3.11)

J

IV. DOUBLE CHARGE EXCHANGE
AND THE SENIORITY MODEL

The seniority quantum number is approximately con-
served only for nuclei with valence nucleons of the same
kind, i.e., nuclei with maximum isospin, T'=n /2. How-
ever, even when it is not quantitatively valid, the seniori-
ty model can give qualitative insights.

The double charge exchange operator in (2.1) changes
two neutrons into two protons and hence is a two-

nucleon isotensor operator, t =2 and ¢t,=—2. The two-
nucleon matrix elements of F are
(j*T =J||F|j*T =1J ) =2V'5G, , @.1)

where the factor V'5 is the three-j symbol involved in go-
ing to the isospin double-barred matrix element. From
(3.10) and the fact that F is an isotensor operator, only
two matrix elements will be involved for a transition be-
tween seniority-zero states:

(F),=V33 (—1DLF, , (4.22)
L
= 0+1
F),=V3|Fp——""— S F
(F. 0 (9—1)(2n+1)50 t
Ll _srF (4.2b)
2Q+1) Sy © .

Hence only the monopole (L =0), the sum of the higher
even multipoles, and the sum of the odd multipoles occur
for the DCX between seniority-zero states. The mono-
pole piece has particular physical significance because it
corresponds to successive single charge exchanges
through the intermediate analog state as seen in (2.6).
For the same reason, the monopole part of the DCX
operator cannot change the isospin of the target even
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TABLE II. The values of X and Y for j =1, Q=4.

n,n T Nuclei VTQ2T—1) X Y vVTQR2T-1)Y
2 1 “2Ca, %*Fe 1 1
4 2 4Ca, *’Cr 2.4495 0.1111 0.5132 1.2571
6 3 46Ca, OTj 3.8730 —0.0667 0.3556 1.3771
6 1 46T, °Cr 1 1.4741
8 4 48Ca 5.2915 —0.1429 0.2199 1.1638
8 2 A 2.4495 0.1675 0.6184 1.5147

though it is an isotensor operator. This statement is only
valid for a single j shell; for many j’s there are many
monopole operators and only one linear combination is
proportional to the isospin generators. With this in mind
we define the amplitudes

A=F,—~ S F,, (4.3a)
Q L odd
B=s -2 s p (4.3b)
L>0 Q L odd

even

Hence, if there is no spin dependence, i.e., F; =0, L odd,
then the amplitude A is the long-range (monopole) part
of the DCX reaction while B is the short-range part.
However, spin dependence, while not changing the num-
ber of amplitudes that the DCX depends on, will alter the
values of the amplitudes. If the spin dependence is dom-
inant, then this separation into long range and short
range may no longer be valid. Using Eqgs. (3.10), the
DCX matrix element for the transition from a target with
T,=T=(N—-Z)/2, v=0, to the double analog state,
T'=T,T,=T—-2,v'=0, is,

_

<jnT=£’Tz:

n
2 2

—2,u=J=0|F |j"T=TZ=§,u =J=O>=

("T,T,=T —2,0=J =0|F | j"T,T,=T,v0 =J =0)

=VTQT-1){4+XB}, (4.4a)
where
X = 1
T (Q-1DQRT+3)2T 1)
X [ (n+3)(Q+1—n)
+(n—2T)(n+2T+2)(3Q+2) _ (4.4b)

22Q+1)

We see from this expression that for a given number of
valence nucleons the effect of the monopole amplitude A4
increases as the isospin increases, but the importance of B
with respect to A4 decreases, i.e., the pairs coupled to iso-
spin zero in (3.3) do not contribute to the monopole part
of the DCX. However, for a fixed isospin the contribu-
tion of B with respect to A4 increases as the number of
valence nucleons increase.

For targets with identical nucleons only (T =n/2)
(4.4) reduces to

172
nin—1) ’ (Q41—n)

(Q—1)n —I)B @3

A
) +

which agrees with Ref. 10. This formula is valid for the calcium isotopes. If B is zero, then the DCX cross section will
increase in proportion to the number of neutron pairs =T (2T —1). However, the fact that B, the short-range part,
does not vanish produces the observed cross section>® as discussed in the Introduction.

The DCX transition to the ground state T'=T —2 depends on B only because, as we mentioned previously, the
monopole term cannot change isospin. This matrix element is given by,

(Jj'T'=T-2,T;=T',w'=J'=0|F | j"T,T,=T,v=J =0)=VTQ2T —1)YB , (4.6a)
where
172
Y- Q (T—1)(n +2T +2)(n —2T +4)(4Q+4—n —2T)(4Q+2—n +27) (4.6b)

T 4Q-1DRA+1)2T —1)

All of these expressions have a particle-hole symmetry
which is consistent with the relation derived in (2.10).
This means that the DCX reactions will be the same for
particle-hole related nuclei, except for the dependence of
the pion dynamics on atomic mass, i.e., the mass depen-
dence of the amplitudes 4 and B.

In Table II the seniority-zero matrix elements are tabu-
lated for j =%, i.e., =4. We see that the value of X
varies substantially for the different isotopes. We also see

(2T +1)

r

that for the same target the value of Y is always larger
than X indicating that nonanalog transitions are more
sensitive to the nonmonopole amplitude than the analog
transition.

However for nuclei with T < n /2, i.e., nuclei with both
protons and neutrons filling the valence shells, seniority
will not be a good quantum number. We shall study
more realistic transitions for these nuclei in the next sec-
tion.
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V. DCX IN A MORE REALISTIC ( f,,, )" MODEL

The seniority quantum number is not conserved for
neutrons and protons filling the same major shell,' that
is, for nuclei with isospin 7 <n /2. We can use more
realistic (f,,,)" eigenfunctions to calculate the DCX
transition.'*!’=!° The double analog transitions from the
calcium isotopes will remain the same since T=n/2 in
both the initial and final state. However, the transition
from the calcium isotopes to the ground state of the ti-
tanium isotopes will change since these states have lower
isospin, T'=n /2 —2. Furthermore, the DCX reaction to
the double analog with the titanium isotopes as targets
will be different from the seniority predictions.

We use a neutron-proton basis for the titanium eigen-
functions.?’ Since the titanium isotopes have two valence
protons, the eigenstates have the form

_nr
Q-1

Br(n)=

1/2 .
; ] VG- 1120+ 2—na(n;00)( — DE+20Vn =2 3 l’. !

"T=T,=%

:=7 —2,J=0>=2 aln;vl)

vJ
X | G552 @)
(5.1

where a(n ;vJ) is the amplitude for neutrons with seniori-
ty v and angular momentum J.

For the calcium isotopes as targets, the DCX matrix
element is derived in Appendix B and given by
<J”, T=T,=2—

n
2,J=0|F |j",\ T=—=T,,v=J=0
. [F1j"T =% =T,.0 =1 =0)

=3 B(n)F,, (52a)

L0

where

L|
. v ; . 5.2b
Z Jl 2J +la(n;2J) ( )

We note that the neutrons with seniority four do not contribute since the calcium ground states have seniority zero.

Because these transitions are nonanalog the monopole coefficient 3, equals zero, which also provides a check on the
calculation. Hence in general the nonanalog DCX will depend on three complex amplitudes F;, L =2,4,6, rather than
on only one (that is only B) as in the seniority model. We use the wave-function amplitudes a tabulated in Ref. 20 and
reproduced in Table III for the titanium isotopes. In Table IV we give the resulting B, for the calcium isotopes as tar-
gets.

From Table III we note that in the titanium isotopes the J =0 and J =2 proton pairs account for more than 95% of
the ground-state wave functions. This result is consistent with recent models of nuclear collective motion?! =23 which
assume that J =0 and 2 pairs dominate the low-lying states of nuclei. If a,=a¢=0 identically, then B,=p. Because of
this the ratio B,/Bg in Table IV is almost the same (~0.93-0.97) for all calcium isotopes so that in practice the nona-
nalog DCX depends on approximately two complex amplitudes for the calcium isotopes.

The DCX matrix element for the double analog transition from the titanium isotopes as targets is derived in Appen-
dix B and given by

<j",T=%—2, TZ:§—4,J=0|F |j",T=%—2=TZ,J=0>=2 yoL(nF, , (5.3a)
where
12(n —2)(n — - jJjL _
yi(n)=— VE%_—:%QZa(n;vJ)a(n;vJ)lj ; K}(—l)’“(j"‘va{|j”“‘v’J’;j2K>(j4v’J'{|j2J;j2K)

X G P R G TR (5.35)

where the cfp’s in the above are those for identical parti-
cles only and hence the isospin in (3.8) is maximal and the
other quantum numbers are not needed. Since the mono-

TABLE III. Values of a(n;vJ) for titanium isotopes. The
notation a,; (***"Ti) is used.

44 46 4813
pole part of the interaction is proportional to the isospin, 0 ol o (T @ (7T @ (7T
0 0 0.7608 0.8224 0.9136
AT I (n —2)(n —3) 2 2 0.6090 0.5420 0.4058
Vo) =V T Q2T —1)= > 2 4 0.2093 0.0861 0.0196
2 6 0.0812 —0.0127 —0.0146

6,48 4 2 0.0 0.0563 0.0

In Table V the y, (n) are tabulated for *6*8Ti. 4 p 0.0 —0.1383 00

The remaining f7,, transition to be calculated is the
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TABLE IV. Values of B;(n) for **"Ca—**"Ti (ground
state).

L Br(n=4) Br(n=6) Br(n=8)
2 0.7976 0.6574 0.4922
4 1.1284 1.2617 1.1923
6 1.2056 1.3530 1.2343

“Ti—~*Cr (ground state). However, the T =0 wave
functions of *Cr were not calculated in Ref. 20, and,
hence this transition is not calculated in this paper.
However, with this exception, all DCX analog and
ground-state transitions can be obtained for f7, using
the results of Tables IV and V, Egs. (4.3), (4.5), (5.2), and
(5.3), and the particle-hole relations of (2.10).

VI. REACTION-MODEL CALCULATIONS

The purpose of this section is to evaluate the double
charge exchange amplitudes F; [defined in Egs. (2.3} and
(2.4)] within the double-scattering (and meson exchange)
models.

A. Sequential single charge exchanges on nucleons

In a full multiple-scattering model the DCX operator F
is an explicit function of all of the nucleonic coordinates'!
so it is not a two-nucleon operator as in Eq. (2.1). To ap-
ply this equation we must introduce an effective operator
which depends explicitly only on the pion coordinates
and those of the two neutrons undergoing charge ex-
change. Implicit dependence on the other nucleonic
coordinates may be incorporated through use of distorted
pion waves, final-state interactions, etc. A simple and
physically reasonable operator of this form arises from
the double-scattering model, in which DCX proceeds
through two successive single charge exchanges (SCX)
(see, for example Refs. 10, 11, and 3).

The DCX operator may be expected to be nonlocal in
the nucleon coordinates for two reasons: (1) The pion-
nucleon interaction is usually assumed to be nonlocal
(typically separable, at least in the P;; channel), and (2)
the m-nuclear Green’s function, which describes the prop-
agation of the 7° in the nucleus between the two pion-
nucleon charge exchanges, is nonlocal. While Eq. (2.2)
does not require F to be local in the nucleon coordinates,
it is far simpler to calculate and easier to interpret in a lo-
cal approximation. To this end we make two simplifying
assumptions. First, recoil corrections to the pion-nucleon
charge exchange operator are approximated by a simple
angle transform [see Eq. (6.6)]. Nonlocality still remains
in the pion dynamics, but the SCX operator f is now lo-

TABLE V. Values of y(n) for ¥*"Ti—*+"Cr (double ana-
log).

L Y,_(n =6) ‘yL(n =8)
0 1.0 2.450

2 0.7973 0.2067
4 1.311 0.3790
6 1.269 0.3366
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cal in the nucleon coordinates. Second, as in Ref. 11, we
evaluate the nuclear Hamiltonian in the Green’s function
at an effective excitation energy. The sum over inter-
mediate nuclear states is evaluated by closure. This
renders the DCX operator local in the nucleon coordi-
nates.

In this section we assume that the pion energy lies
below 70 MeV. For these energies the pion-nucleus in-
teraction is relatively weak which allows us to approxi-
mate the pion wave function as plane waves at the quali-
tative level. However, for detailed comparison to data, a
proper account of pion distortion is necessary even at
these low energies. See Refs. 3 and 24 for the case of '*C
and for the relation of the present work to that of Ref.
11. The effect of distortions on Ca isotopes is also treat-
ed.

Within the approximations just noted, the DCX opera-
tor becomes

F(rn,k k)=2 [ dad, () f(K,q)

_ 1

272
(+)
q+ (

1'2) i{— )(rl )*

ki—q’+ie
X f(q, kg (r)),

f(q,q’) is the spin-averaged amplitude for pion-nucleon
charge exchange. The right-hand distorted wave ¢'*’
represents the incident 7+ wave, the central distorted
waves (and accompanying denominator) represent the 7°
propagator, and the left-hand distorted wave represents
the outgoing 7~ wave. In the DWIA the pion wave
functions and propagator are distorted by Coulomb and
optical potentials. The overall factor of 2 accounts for
the process in which the first charge exchange is on the
neutron at position r,.

The optical potential used for the low-energy distorted
waves employed medium corrections (Pauli blocking, nu-
cleon binding energy, Fermi motion, pion annihilation,
finite pion-nucleon interaction range, and nucleon recoil)
based upon a nonrelativistic model, but with relativistic
kinematics. The calculations of DCX at 292 MeV, given
in the next section, use free pion-nucleon amplitudes, but
do include the effects of pion annihilation and of the finite
range of the pion-nucleon interaction.

The multipole components of the double charge ex-
change amplitude corresponding to this operator are'®
given in (2.3) and are repeated here

F (k' k)=GL [ dr,dr,

(6.1)

X3 YT )YZM(fz)Wilj(rl)
M

X Whi(r))F (r,15,k 'k) 6.2)

where we have neglected the double-spin flip contribu-
tion. These multipole components are used in conjunc-
tion with a complete shell-model treatment in Sec. VII.
In the seniority model, assuming a spin-independent
operator, A is F, and B is the sum of the higher mul-
tipoles. The radial wave function ¥,; is a solution to
Schrédinger’s equation for a Woods-Saxon potential of



38 PION-NUCLEUS DOUBLE CHARGE EXCHANGE AND THE . ..

radius 1.34'/% fm and skin thickness 0.5 fm. The well
depth is adjusted to reproduce the experimental neutron
separation energy for *’Ca. In the simplest calculations
we have ignored the variation of the separation energy of
the valence neutrons for the different Ca isotopes and for
the final double analog state. We will correct for this
difference below.

For the plane-wave case the r; and r, integrations in
Eg. (6.2) yield the multipole nuclear form factors

Hy(p)= [ rrdr j (pr[¥,,(n] 6.3)
in terms of which F; is
—202L + )G (—2"—:);&@)
o HUk=a])f (k@ (@KIHL(|q=K'])
ki—q*+ie ’
(6.4)

where o is the cosine of the angle between the vectors
k—q and q—k’. The three-dimensional integral over the
intermediate momentum q was performed numerically.

We have used a pion-nucleon charge exchange ampli-
tude of the form

F(@5q)=vo(g"Ag(k vg(g)
+v,(g"A Tk, v,(g)q"-q . (6.5)

If the momenta q,q are specified in the m-nucleus
center-of-mass frame the A”’s are given by

MU= | Aofk)

c

_ A=l |4 g2
y . k22 (k)
— 4 Ao(kc)—kfﬁkl(kc) ,

(6.6a)
AT(k,)=A,(k,) .

k; and k, are the pion momenta in the laboratory and
the m-nucleon center-of-mass frames, and u is the pion
mass, and m is the nucleon mass. The large- 4 limit was
used for the calcium isotopes, in which case we have
g =k;. The scattering length A, and volume A, for
charge exchange are taken from Ref. 25 for energies
below 80 MeV and from Ref. 26 above this energy.
Equation (6.6a) also includes, in an approximate fashion,
recoil corrections for the struck nucleon. The v’s are
defined by

k*+a?

2

- i=0,1,
q t+a;

where «; is the range of the pion-nucleon interaction.
We have chosen ay=1.5 fm~' and a;=1.5 fm~"' to be

consistent with previous multiple-scattering calculations.
The absolute values and the relative phase of 4 and B
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may be determined directly from the experimental values
of the cross sections of the double isobaric analog transi-
tion (DIAT) on the calcium isotopes (*>**8Ca). These
were found® to be | 4 | =0.34 (ub/sr)!/?, |B | =1.45
(ub/sr)!/2, =59 at 35 MeV. It is clearly of interest also
to determine the cross sections for as many other f;,,
isotopes (both analog and ground-state transitions) as is
possible to further constrain the strengths of the mul-
tipole amplitudes.

The absolute magnitudes of A4 and B are plotted in Fig.
1. Of note are the following.

(1) The higher multipole contribution B is dominant in
the low-energy region 30-60 MeV.

(2) The PWIA and DWIA are qualitatively somewhat
similar, but show significant differences. Distortions of
the pion wave function are necessary for realistic compar-
isons with data.

(3) The nuclear medium magnifies 4 and B in the
30-60 MeV energy range, probably due to the reflection
of the 7° from core since the optical potential is almost
real at these energies. At higher and lower energies the
distortions are absorptive; the DWIA amplitude is
depressed over the PWIA. The effects of pion annihila-
tion and of nuclear excitation become increasingly impor-
tant at higher energies.

The forward DCX cross sections for ***¥Ca targets are
plotted in Fig. 2(a) (PWIA) and 2(b) (DWIA). From
Table II the DCX amplitudes for the transitions from the
42.48Ca targets to the DIAS and from the **Ca target to
the **Ti ground state (GS) are

V1(A4 +B) for “*Ca (DIAS and GS transition) ,

(6.7a)
V6(A +B/9) for *¥Ca (DIAS transition) , (6.7b)
V28(A4 —B/7) for ¥*Ca (DIAS transition) . (6.7¢)

The square of the first factor represents the number of

1.2 T T T

]

-l

|Aland [B|[(ub / sr)

20 30 40 50 60 70
T (MeV)

FIG. 1. Absolute value of 4 and B at 0° for PWIA (dashed)
and DWIA (solid) calculations.



1286
WEX—T | | | 3
AN () ]
RN i
i \ A
\
1 \ /
: v £.-3
- \ .f"./ .
— - -
B /./‘ /
—_ | .~ \ / i
b L~ \ /
5 /
s 1 ® 3
- R .
r—\ —
-\ _
. N\ -
N
1“
E \ °~.
- /', \ PR
- /. \——/ -1
- /. —
—-. —
v
o1 1 | 1 |
20 30 40 50 60 70
Tr (MeV)

FIG. 2. Forward DCX cross sections for *?Ca (solid) and
*Ca (dashed) transition to the DIAS and the **Ca—“Ti (g.s.)
transition (dash-dot). (a) plane wave; (b) distorted wave.
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FIG. 3. Absolute values of 4 and B at 0° and 50 MeV as a
function of r.. The contribution to the PWIA has been omitted
for n-n separation less than r.. The relatively short range of B
compared with A is evident.
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pairs of valence neutrons. When | 4 | >> | B | the cross
section for the more neutron-rich isotopes would scale as
the pairs factor, but as we have seen |B | is actually
several times larger than | 4 | at low pion energies. The
smooth cross section for “*Ca as a function of incident
pion energy mirrors |B |2 The numerical factors
reduce the role of B in the other isotopes. At 50 MeV,
B /7 and A tend to cancel producing the decrease in the
48Ca DCX cross section compared to “?Ca, which is con-
sistent with the experimental upper limit of DCX in *3Ca
at this energy.?’

The transition from “®Ca to the ground state of “*Ti is
predicted to be larger than that to the DIAS for an in-
cident pion energy in the range 45-55 MeV. The PWIA
and DWIA results are qualitatively similar, but the
overall magnitude is a strong function of distortions.
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FIG. 4. (a) The effect of hard-core repulsion. Forward DCX
cross sections for Ca isotopes [**Ca—solid, **Ca—dashed,
*8Ca—*®Ti (g.s.)—dashed-dot] calculated in PWIA. A short-
range hard-core repulsion prevents valence neutron pairs from
approaching closer than r.,=0.6 fm. Compare with Fig. 2,
which corresponds to r.=0 fm. Note particularly that the
short-range repulsion reduced the DCX cross section of “*Ca
and “®Ca (to the ground state of **Ti). (b) The effect of inter-
mediate range attraction. Forward DCX cross sections for Ca
isotopes [see 4(a)] calculated in PWIA. The greater probability
of close n-n pairs increased the cross section by roughly a factor
of 2. Compare with Fig. 2.
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To examine the sensitivity of DCX to the two-neutron
separation we have included a step function in the in-
tegrand of Eq. (2.3) which vanishes for two-neutron sepa-
ration of less than r,, a “hard-sphere” radius. The factor
excludes the contribution to DCX from neutron pairs
closer than r,. (The method of calculation is more com-
plicated than presented above and is described in Appen-
dix C.) The results for an incident pion energy of 50
MeV are shown in Fig. 3. The amplitude B falls very
rapidly with ., which implies that B is determined by the
portion of the nuclear wave function for which the “ac-
tive” neutron pairs are very close (r <1-2 fm). Inter-
preted as a true neutron-neutron hard-sphere repulsion,
we conclude that B is sensitive to the short-range portion
of the two neutron wave function. In contrast to B, the
monopole amplitude A4 has contributions from »n-n sepa-
rations out to distances comparable to the nuclear radius.

Note that the existence of an additional short-range
correlation would also alter the cross section. We use the
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same formalism as above (Appendix C) to estimate these
effects. At this point we go outside the results of the rest
of the paper since the introduction of short-range correc-
tions of a Jastrow type is not really done in a manner
consistent with shell-model results or at least requires ad-
ditional assumptions. Figure 4 shows the result of in-
cluding a repulsive hard core 0.6 fm [Fig. 4(a)] and that
of a correlation with intermediate range attraction [Fig.
4(b)]. The point to be made here is that the sensitivity is
on the order of a factor of 2.

B. DCX by interaction with the pion cloud

Another possible correction to the results to be
presented in the next section is due to the fact that the in-
cident pion may exchange its charge directly with the
pion cloud within the nucleus (meson exchange current
or MEC). The lowest-order contribution to DCX in
plane wave was given in Ref. 28:

F(g)=(1/2m) [ d’p/2n)} [f\lf,';,,-(rl)a,-pe“""‘*vqu)\ll,,,,.(r,)arr1 ]

1 W 2f2
X— 78(pp)=5 ,21 2
P +m3 my, p' “+m;

where we have taken

g (x)=32m(—1.369)—>—
m

2
P

1-1.423—2—"—
—mﬂ’
p’=p—q, q=k'—k, f2/47=0.08 .

2 ’
m,—mzy }

(6.9)

Single-particle states are coupled to give the angular
momentum states J,M. F(q) is a function only of the
momentum transfer q. The function g derives from a
Veneziano-Lovelace representation of the 7-7 scattering
amplitude with a static exchanged pion. We have includ-
ed form factors v (p)=a?/(p>+a?) for the 7-N vertex.

The multipole projections of this operator are, for the
nlj shell,

6(2L +1) | f2 d3
F,="t1 |\ | 4P ,
t 7’ 47 f (217)3HL(p)HL(p)
Xg(p-p )P (P-D'),  (6.10a)
where
(p)
Hy(p)=3 DyypH, (p)—-2
A p +m
XV (2A+1) Al (—1)*2 (6.10b)
+Dlo 0 o , .

and H,(p) is defined by Eq. (6.3), and D, ; is defined in
(2.4b). The azimuthal integral is trivial; the two remain-
ing integrals were performed numerically. [The substitu-
tion s=p—q/2, which implies p=s-+q/2, p'=s—q/2
and p-p'=s’—(q/2)? is convenient.] From (2.4a) we see
that amplitudes with L odd only contribute to the spin-
dependent part of the pion-nucleon interaction.

[f V5o, ple Pz, (p")Y,;(r))dr, ] ,

(6.8)

f

shell with T =n /2 and amplitudes with L odd only is
given by (4.3) and (4.5) and reduces to:

do n

S (S 2, (6.11)
dQ  2(n-—1)

The term proportional to the “pairs factor,” n(n —1)/2,
is not present. For the isotopes **Ca, **Ca, *°Ca, *®Ca the
coefficients in Eq. (6.11) are 1, 0.666, 0.600, 0.571.

10 3 I I 3
h\ 7
- ~
SGe=30m"
1 N ]
3 \ 3
. \ 3
- r ]
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= 1
o) a=15fm
2 0.1 -
> F RN ]
S I NG ]
- \ / N 1
0.01 v/ —
3 V! E
- 1 ! ]
- l ' __
i | I 1
0.001 i |

0.0 04 0.8 1.2 1.6
MOMENTUM TRANSFER ( fm 1)

FIG. 5. Meson exchange current contribution to DCX at
“2Ca. Cross sections for the other isotopes may be obtained by
scaling from Eq. (C9). The two-step process is assumed negligi-
ble for this figure.
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The strong sensitivity of the MEC contribution to
DCX on “’Ca as a function of the range a of the vertex
function is shown in Fig. 5 for two values of a. The con-
tribution is comparable to the sequential process for in-
termediate values of the range (3.0 fm~'), which corre-
sponds to an rms nucleon radius of 0.8 fm. In principle
one should add this (real for the case of plane waves) am-
plitude to that of the sequential process. However, the
two contributions are not computed within a single
unified theory, and so it is possible that there might be
some double counting, especially if the nucleons are very
close. The effect of pion distortions on the MEC ampli-
tude is presently under study.

VII. DCX CROSS SECTIONS

Since the DCX operator (2.1) is a two-nucleon opera-
tor, once the DCX reaction is known for two nucleons
coupled to angular momentum J =0,2,..., 2j—1lina
shell-model orbit j, then it can be determined for many

nucleons in that orbit. For the seniority-model Egs. (4.3),
(4.4), and (4.6) determine the dependence on the many-
valence nucleons. For a more realistic model, (5.2) and
(5.3) plus Tables IV and V determine this dependence. In
order to get an estimate of the difference between the two
models, we have used the DCX scattering model of the
last section. In this model the DCX proceeds through
two successive pion single charge exchanges with closure
over the intermediate nuclear states and with pion distor-
tions taken into account. The F; have been calculated in
this model and the nuclear-structure results of the
preceding sections have been used to calculate the
differential cross sections. We have included neither the
effect of a short-range repulsion nor charge exchange
from the pion cloud in the following comparisons with
data. The final excitation energy E* was taken as the
value appropriate for a given nucleus and the “closure”
energy was taken as zero; i.e., the intermediate #° has the
same energy as the initial 7.

The measured cross section®3°

at pion energy of 292

TABLE VI. DCX cross sections at =5° and T,=292 MeV. When two numbers are given in brack-
ets the upper value is for the seniority model and the lower is with the wave functions of Ref. 20. For
the other cases the two results are the same. For **Ti the seniority model is not the same as the full
model but no values are given in Ref. 20 for the **Cr ground-state wave function. The theoretical
values were calculated with distorted waves. The data and fit were taken from Refs. 29 and 30. The fits
were only to the analog values with no variation in distortion across the shell assumed.

do

do do

9=>5° 6=5° — (8=5°
0, =) a0, ' aq, 0=

Transition (ub/sr) (ub/sr) (ub/sr)

Analog transitions
2Ca—*Ti 0.404+0.061 0.404 0.352
“Ca—MTi 0.600+0.096 0.562 0.784
%6Ca—**Ti 1.345
o 46 0.350
Ti— *°Cr 0.224
BCa_>4Tj 1.746+0.290 1.714 1.925
a8 0.586
Ti—*Cr 0.590£0. 103 0.540
50T . 50Cy 0.968+0.201 1.025 0.947
52Cr— 52Fe 0.574%0.111 0.562 0.388
4Fe—»%Ni 0.127

Ground-state transitions

» o 0.077
Ca—*Ti 0.014+0.014 0.306 0.036
46 46 0.079
Ca—"Ti 0.025
#Ca—*Ti <0.045 0.262 oo
sU . 0.014
0.081

BT{—*Cr
sog;_, % 0.057
i—0Cr <0.066 0.367 0.018
. . 0.041
Cr—52Fe <0.028 0.306 0.019
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MeV and scattering angle 6=5° are reproduced in
column two of Table VI. In the third column is a fit*° to
the seniority model treating A and B as parameters in the
DIAS formula given in Eq. (4.5). In the last column are
the calculated results in both the seniority model and the
more realistic model. For the DIAS transition the two
models are the same for these isotopes which all have
T=n/2or T=n/2, where 7 is the number of holes. For
transitions to the ground states, which do not have maxi-
mal isospin, the seniority-model result is given on the top,
the more realistic model on the bottom. For the
“Ti—*Cr (ground-state) transition the realistic calcula-
tion has not been done yet, as discussed in Sec. V.

The seniority-model fit to the DIAS (third column)
predicts too large a cross section to the non-DIAS
ground-state transition, which is consistent with the fact
that seniority is not a good quantum number.

On the other hand, the calculated results show good
agreement with the double analog transitions (DIAS). In
particular the experimental cross sections do not increase
as the number of pairs n(n —1)/2, as indicated in the In-
troduction, and the calculated cross sections reproduce

|
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NUCLEAR MASS NUMBER

FIG. 6. Variation of | 4 |, | B |, and cos$ with the nuclear
mass number at 292 MeV.

TABLE VII. DCX cross sections at low energy. The data are from Refs. 6 and 27.

0=5°
T.=35 MeV 0=40° T,=35 MeV T,=45 MeV

do do do do
dﬂ-exp dﬂth dﬂth dnth
Transition (ub/sr) (ub/sr) (ub/sr) (ub/sr)

Analog transitions
2Ca—*Ti 2.0£0.5 0.719 1.534 1.485
#Ca ., Tj 1.1£0.3 0.545 0.867 0.740
46Ca—*°Ti 0.526 0.607 0.409
1.394 3.801 2.902

46; 46
Ti—>"Cr lo.705] [1.591] {l.667]
BCa > Tj 2.440.7 1.464 1.321 0.443
a4 1.053 1.645 1.081
i-"Cr 0.914 1.290 0.858
0T —%°Cr 1.164 1.279 0.611
2Cr—52Fe 0.768 1.239 0.700
S4Fe— %Ni 0.833 1.894 1.449
Ground-state transitions

0.659 1.610 1.583

44, 44
a=s i 0.338 0.873 0.954
0.791 1.932 1.890

46 46
Ca—"Ti 0.299 0.810 0.972
" . 0.608 1.373 1.414
Ca—"Ti 0.221 0.552 0.761
. 1.030 2.269 2.395
0.472 1.875 1.980

501 50,

Ti—"Cr 0.315 0.762 0.981
e 0.624 1.719 1.490
r—-—te 0.324 0.943 0.954
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the trend with atomic mass. The transitions to the
ground state have large experimental errors, in fact the
measured cross sections are primarily upper limits. For
two targets, “*Ca and *2Cr, which are particle-hole conju-
gates of each other, the seniority results are larger than
the upper limits, while for the remaining ground-state
transitions the seniority results are within the upper
bounds. However, the realistic wave-function results are
all within the upper limits. The change in the cross sec-
tions with the realistic wave functions is quite large, in all
cases the cross sections are reduced by a factor of 2-4
from the seniority model. In Fig. 6 the calculated values
of A and B are given as a function of mass number.
These amplitudes follow an 4 ~!%3 behavior similar to
that predicted in an eikonal model.*!

In Table VII the measured cross sections®?’ (column
two) for a lower energy, 7, =35 MeV, but a larger angle,
6=40°, are compared to the calculated cross sections in
both the seniority and the realistic (f;,,)"” model. At the
lower energy the DIAS cross sections are larger than at
T,=292 MeV, and the trend with atomic mass is
different. The calculated values are about a factor of 2
smaller than the measured values, but are much better
than the results taking the monopole alone.

However, as noted in the Introduction, the experimen-
tal cross sections do not increase with atomic mass, and
this trend is given correctly by the calculated cross sec-
tions. This mass dependence reflects the importance of
the short-range correlations at this pion energy, i.e., the
importance of B in (4.5). The fact that the calculated
values at this energy do not agree as well indicates that
other configurations may play a role, other sources of
correlations may also be involved, or the MEC contribu-
tion should be included (Sec. VI).

4.0

E* =12 MeV

o (6)(ub/sr)

oo | L

0 30 60 90 120 150 180
8cm.(deg)

FIG. 7. Angular distribution of DCX on “®Ca at 35 MeV.
The solid curves are calculated with distorted wave, and the
dashed curve is a plane-wave calculation. The distortions raise
the cross section at the back angles. The kinematic effect of the
excitation energy E* of the final product nucleus is shown for
three cases.
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The differential cross section for the DIAS on *8Ca is
shown in Fig. 7. Distortion of the pion wave function has
the effect of raising the large-angle and lowering the
forward-angle cross section. The kinematical effect of the
excitation energy E* of the residual nucleus **Ti is in-
cluded in the calculation of the pion-nucleon amplitudes
and in the energy used in calculating the pion wave func-
tions. The net effect is to increase the differential cross
section without greatly changing its shape.

The angular dependence of DCX on the different iso-
topes of Ca is very different as may be seen from Fig. 8.
These sharp differences are due to the different contribu-
tions of the short-range part B to the DCX cross sections
as seen in (6.7). The inversion of the double analog tran-
sitions in **Ca and “8Ca noted in Fig. 2 is seen to occur
only for smaller angles in this model. The measured an-
gular distribution?’ of “*Ca shows a flat angular distribu-
tion similar to the calculated DCX angular distribution,
although the calculated values disagree in magnitude.
Measurement of the angular distributions of the other
isotopes will determine the role of short-range correla-
tions.

The calculations also indicate that the ground-state
transitions will be comparable to the DIAS rather than
an order of magnitude smaller as at 7, =292 MeV. We
see in Table VII that this is particularly true at the small-
er angles (column four) and at T, =45 MeV (column five)
for which the ground-state transition is predicted to be
larger than the DIAS. This means that the DCX can
probe the change of the ground states of nuclei as a pair
of neutrons are converted into a pair of protons. Recent
models of nuclear collective motion?' =2 suggest that
low-lying collective states of nuclei are composed pri-
marily of coherent pairs of neutrons and protons coupled
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FIG. 8. Angular distribution of several calcium isotopes at
35 MeV. The analog transitions are *Ca (solid), **Ca (dashed),
and *“Ca (long dash) and the ground-state transition in “Ca is
the dash-dot curve. The data (Ref. 27) are for “*Ca. Despite the
influence of the “pairs” factor the **Ca cross section is larger at
small angles than that of other Ca isotopes.
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to angular momentum J"=0%,2%. This DCX reaction
could test these models.

VIII. SINGLE CHARGE EXCHANGE

In certain cases the seniority scheme could be of use in
providing relations among cross sections of a single
charge exchange reaction. For a (#*,7°) transition in a
Jj" configuration we must distinguish among several situa-
tions. We will first discuss an analog transition, i.e., a
transition in which the final state is the isobaric analog of
the ground state of the target.

A. Analog transition; n-even seniority v =0

Let us consider states with maximum isospin in the j”"
configuration. In this case the initial and final states of
the nucleus have J =0* and the only transition operator
£ that will contribute is a scalar in the spatial and spin
coordinates (i.e., k =0) and therefore only the monopole
term will enter the calculation. In this case the ampli-
tude for the transition will involve the matrix element

<j",v =0,J =0 ’Ef‘o’(i) j"hv =0,J=O>

=n{j|fO0j). &1

The cross section is obtained by taking the square of this
matrix element and dividing it by the normalization
squared for the isobaric analog state (IAS), i.e., by n.
Thus

o=26(j%v=0) (8.2)

2
where o(j% v =0) is the single charge exchange cross sec-
tion for the case of T =1. This is, of course, a familiar
result, telling as that for even-even nuclei the single
charge exchange reaction is proportional to (N —Z).

B. Analog transition; n-odd seniority v =1
The case of j"(v =1,J =j) is more complicated and so
far not fully explored experimentally. The matrix ele-

ment contributing to the cross sections can be written in
general, in terms of irreducible tensors’ of rank k as

ARG v =1,0 =j)

=<j",v=1,J=j}Ef”"(i) i =I,J=j> .

(8.3)

Note that now not only kK =0 may contribute but in prin-
ciple all k that satisfy | j+k| =|j|. Following seniori-
ty relationships’ one can write simple expressions for this
matrix element if one distinguishes between the cases
k =0, k odd and &k > 0 even.

For the monopole case (k =0) one has the simple rela-
tion

A9 =1,0=D=n{j | fVj), (8.4)

where (j| ¥ j) denotes a matrix element for n =1 (in
this case k =0). For k >0 and even one finds’ the ex-
pression:

ARGy 1,7 =)= 2= ph gy (8.5)
-1
Finally for k£ odd one obtains
ARGy =1,0 =)= | f*1j). (8.6)

In principle for any angle and any energy of the incoming
pion the charge exchange scattering amplitude will con-
tain all three kinds of amplitudes with a number of
different k contributing. After taking into account again
the normalization of the IAS one can write

na+9‘~—nﬁ+7’ , (8.7)

1
."’ —17 =j)=—
o(jhv= J——])——n a_1

where the coefficients a, 3, and y are complex and are
functions of scattering angle and incident energy of the
pion. Their values, of course, depend on the particular
properties of the wave functions of the bound nucleon in
the j orbit. The coefficients a, B, and y, however, are in-
dependent of n. Therefore, one can relate the cross sec-
tions for various isotopes (or isotones) for nuclei which
are well described by a single configuration j". Applying
this formula to the ground-state analog transitions in the
odd-n Ca isotopes one gets the formulas for the cross sec-
tions as shown in Table VIII.

The coefficients in these expressions are complex and
therefore we deal a priori with a five-parameter problem
(three absolute values and two relative phases), and the
data for the odd-n Ca isotopes will not be sufficient to
check this relation. One should, however, note that for a
certain choice of angles and energies one can minimize
the contributions of one of the parameters. For example,
the parameter y is due to the contribution of odd-rank
spherical tensors and it involves the spin degree of free-
dom of the nucleon. By choosing a forward-scattering
angle one may possibly neglect this term. For pion ener-
gies around the (3,3) resonance the spin-dependent
(mr+,7°) transition is more than an order of magnitude
smaller than the spin-independent one.23

In the past only very few charge exchange reactions on
an odd-even nucleus were studied. The case of 'Li was
considered and the L =2 in addition to the L =0 transfer
was calculated.’”** The case of *C(gs)— !*N(gs) requires
only L =0 (k =0 and k =1) transfer and was studied ex-
tensively in the past.’?> Of course the application of Eq.
(8.7) is probably limited because there are not many series
of nuclei in which the ground states can be described as
j"(v =1) configurations.

TABLE VIII. Single charge exchange cross sections for odd
calcium isotopes.

Nucleus Cross section
“Ca (a+B+y)
“Ca 1Ba+1B+7y)?
Ca H(S5a—1B+y)?
4ICa L(Ta—B+7v)
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C. Nonanalog transition in the j" configuration

It is clear from the study of pion double charge ex-
change that transitions to nonanalog states are very im-
portant intermediate steps in the excitation of double iso-
baric analog resonances (especially for low-pion energies).
It is, therefore, of considerable interest to study single
charge exchange to nonanalog states.

(n—v+2)2Q0+2—n —v)

We will now write relations among charge exchange
cross sections for nonanalog transitions between the
ground states of a j" configuration (with isospin
T =T,,,) and states of the same j" configuration but
differing in total spin and seniority (but not total isospin).

For an amplitude of a transition between a state with
seniority v —2 to a state with seniority v and maximum
isospin the relevant matrix element can be expressed’ as

1/2
v

é f(k)(l-)

<j"vJ' j™ —2J>=
i=1

2(2Q+42-2v)

where k even >0. The meaning of the expression is that
the one-body matrix element of n particles in a j orbit
and defined seniority can be expressed in terms of a ma-
trix element of v particles in the orbit j. This is usually
referred to as the reduction formula. The corresponding
cross section can be written as

(n —v42)2Q42—n —vh
2(2Q+2—2v)n

Xo(jv —2J—j]') .

o(j =20 —j"]' )=

(8.9)

The extra factor v /n that appears here results from the
fact that when we normalize the analog states in the n-
body system we need a factor 1/V'n and in the v-body
system a factor 1/V'v.

For the case of v =2 (n even) we obtain

oy gy (20=n)
o(j"0J —j 2J)—2(Q_1)

and for n odd v =3 we obtain

3n—1(020—1-n)
4 n (Q-2)

Xo(j31J—j337") .

o(j20J—j22J')  (8.10)

("I —j"3J") =

(8.11)

We can, therefore, for a given J and J' relate a transition
in the j" system to the j? (or j*®) system. For example, in
the calcium isotopes one obtains (for given J —J' transi-
tions) the following relations:

o(*Ca—*Sc)=210(**Ca—*Sc) ,

o(*Ca—*Sc)=10(*Ca—*Sc) , (8.12)

o(¥Ca—*Sc)=20(*Ca—*Sc) .

IX. THE SINGLE AND DOUBLE CHARGE EXCHANGE
REACTIONS IN THE GENERALIZED SENIORITY
SCHEME

Very often in nuclei the various j, orbits are nondegen-
erate, and one is faced with the problem of configuration
mixing involving several shell-model nondegenerate or-
bits. The introduction of a seniority quantum number in
this case is more complicated,'®**3 and its validity is not
always clear. However, in some cases the introduction of

<j”vJ’ DA ) j”v—2J> , (8.8)
i=1

the generalized seniority scheme may be of use.
The way one proceeds is to generalize the operators in
Eq. (2.1) by introducing'®

t s
si=3¢;sl) 9.1
where now C;#1. These S;r operators are then used to
generate generalized seniority U states. A state of an
even-even nucleus with n identical nucleons of seniority ¥

outside the closed shells is given in this scheme by

|78y == S =02 ) ©-2)

where j denotes symbolically a generalized orbit given by
ji=Q-1, szja (jo+71) is half the size of the single-
nucleon space, and 7! is a normalization constant. In
particular a 7 =0, J =0 state is obtained by
| 7%o=0,0 =0)=n"Ys)"2|0) , 9.3)
where |0) is the ground state of the closed shell nucleus.
The above scheme of generalized seniority with the
operators given in Eq. (9.1) does not have the simple alge-
braic properties that the operators (3.1) have and of
course much of the simplicity is lost. Under certain ap-
proximations relations among matrix elements that are
valid in the degenerate j case remain true also in the gen-
eralized seniority scheme.!®3%3" In particular a reduc-
tion formula analogous to the one in Eq. (4.5) is valid if
the two-nucleon operator has similar properties as the
effective interaction. In that case, the two-nucleon opera-
tor can be written as a sum of two terms, one that is
linear in n and the second term quadratic. Thus

nin—1)

(7"0=0,J=0|F |j"5=0,J=0)= 5

n
a+ > B.
9.4)

The generalized seniority scheme, when valid, de-
scribes only even-even nuclei in which the active nucleons
are of the same kind, i.e., either neutrons only or protons
only. In our application of this scheme to the charge ex-
change reactions we will refer to such kinds of nuclei
only.



38 PION-NUCLEUS DOUBLE CHARGE EXCHANGE AND THE . . .

A. The single charge exchange reaction
in the generalized seniority case

The relations in Sec. VIII apply also for the case of
many degenerate orbits (i.e., the quasispin limit of the
generalized seniority C; =1). The case of nondegenerate

j, orbits is more complicated and there is no such a sim-
ple reduction formula as above.

B. The double charge exchange reaction

The application of the generalized seniority scheme to
double charge exchange is richer in its content and more
interesting than its application to the single charge ex-
change discussed above.

First of all Eq. (4.5) holds in the degenerate case and to
a good approximation also in the nondegenerate general-
ized seniority case if the DCX operator has similar prop-
erties as the effective interaction operator:

opex(f T =0,J =0)

_nln=1) 15 (Q+1—n) B

2 Q-1 (n—-1)

(9.5)

The coefficients 4 and B cannot be related in a simple
way to the kinds of coefficients 4 and B as in the case of
a pure j" configuration. Again, however, as in the pure
j" configuration case, the DCX cross section is given in
terms of three parameters, the two absolute values of A
and B and the relative phase between the two. One can,
therefore, write Eq. (9.5) for n =2,4,6 and express the
higher n (n =8,10. . ., etc.) cross sections in terms of the
cross sections for n =2,4,6. For example, one can derive
for n =8 the relation:

40,—120,+200
7 b

where we used the notation 0(7",5—-:0,] =0)=o0,.

08 = (9.6)

C. The Ni isotopes; an application of a generalized
seniority scheme

Among the many nuclei studied, the Ni isotopes are
probably the best example of the use of the generalized
seniority scheme. In several theoretical papers!®3*3° it
was pointed out that one can successfully describe the
spectra, of these isotopes in terms of some kind of gen-
eralized definition of seniority. In the early papers'® the
degenerate orbit quasispin formalism was introduced for
the purpose of studying the energy levels of these iso-
topes. The ps3,,, p, 2, and f5,, orbits of the active shell-
model space are, however, not really degenerate, and the
use of a generalized seniority scheme which takes into ac-
count this fact is necessary. In an exact shell-model cal-
culation®® which included all configurations made of
Ja=P3,2> P12, and fs,, orbits, it was demonstrated that
the ground states and the first excited J =27* states in the
even Ni isotopes are extremely well described by the =0
and U =2 states!® given by Eq. (9.2).

The coefficients C; /5, C, /5, and Cs, of the S, opera-
tor are defined by the >®Ni ground-state wave function
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and the |j%,5=2,J =2%) basic state by the first excited
J =27 in *®Ni. The ground-state energies of the even-Ni
isotopes are very well described'®?*** by the formula in
Eq. (9.4).

Both the experimental and theoretical results®® for the
(p,t) cross section show a behavior, as a function n,
characteristic of a generalized seniority j " configuration.
The (p,t) cross sections for gs to gs transitions should, in
the case of a single j peak, in the middle of the shell, i.e.,
n =(. In fact in the Ni isotopes the maximum in these
(p,t) cross sections occurs for ®2Ni, ie., n =Q. It is,
therefore, reasonable to apply the formalism of single and
double charge exchange reactions developed in previous
subsections to the Ni isotopes.

The even isotopes of Ni are stable targets, and the ex-
perimental and theoretical implications could be verified
in (7+,77) experiments. One could measure, for exam-
ple, the nonanalog single charge exchange transitions be-
tween the J =07 ground states and the analog of the first
excited J =27 states which are 1.3-1.5 MeV above the
ground states in the various Ni isotopes. A decreasing
linear n dependence is expected in accordance with Eq.
(8.10). As for the double charge exchange reaction, it is
of interest to test Eq. (9.5) or equivalently the relation Eq.
(9.6) among the DIAS cross sections for **Ni, *Ni, ¢2Ni,
and ®Ni.

Such experiments we believe will not only tell us more
above the reaction mechanism but also open new possibil-
ities of studying nuclear structure with the particular em-
phasis on the nuclear correlations.

X. SUMMARY AND CONCLUSIONS

In this paper we have calculated the lowest-order pion
double charge reaction mechanism using shell-model
wave functions of medium weight nuclei. We have used
the sequential reaction mechanism in which the pion un-
dergoes two single charge exchange scatterings on the
valence neutrons. The distortions of the incoming, inter-
mediate, and outgoing pion are included. The closure ap-
proximation is made for the intermediate states with an
average excitation energy used in the pion propagator.
The double charge exchange is assumed to take place on
the valence nucleons which are assumed to be in one
spherical shell-model orbital.

The distortion of the intermediate 7° is important. At
low energies (30—60 MeV) this distortion enhances the
DCX cross section over the plane-wave approximation
for the 7° propagation. This enhancement is probably
due to reflection from the core, since the optical potential
is almost real.’®

Within certain assumptions it is shown that in the
seniority model the DCX for all the isotopes is given in
terms of two complex amplitudes. One amplitude is pri-
marily sensitive to the short-range correlation of the
valence nucleons and spin dependence of the DCX ampli-
tude; the other amplitude to the long-range behavior as
seen from Fig. 3. Furthermore, the relative importance
of these two amplitudes depends very much on the pion
energy (Fig. 1). In particular at pion energies between
30-60 MeV the DCX seems to be dominated by the be-
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havior of the nucleons about 1-2 fm apart. Experimen-
tally this feature is demonstrated for pion DCX on the
calcium isotopes>%2"2%3 by the observation that these
cross sections do not increase by the number of valence
neutron pairs. The angular distributions will also be sen-
sitive to the short-range correlations. The calculations in
this paper are able to reproduce the observed cross sec-
tions and their trend with atomic mass for the higher
pion energy (292 MeV) as seen in Table VI. For the
lower pion energies the trend with atomic mass and angu-
lar distribution are reproduced but the magnitudes are
underestimated (Table VII and Fig. 8). These results sug-
gest that the spin dependence of the pion-nucleon scatter-
ing amplitude or additional correlations due to
configuration admixing or extra-nuclear effects such as
the pion cloud (Fig. 5) or quarks®® may be important.

For pion energies for which the short-range correla-
tions are important, the excitation of the ground state is
comparable to the DIAS (Figs. 2, 8, and Table VII). This
means that the DCX can probe the change in nuclear
structure as pairs of neutrons are changed into pairs of
protons. Recent models of nuclear collective motion are
based on the assumption that J"=0%,2" pairs of neu-
trons and protons are the most important degrees of free-
dom in the ground states of nuclei.! ~** In these models
J

(j"Tyv =J =0{ | j"~B,T;j*T,J,) =V 2T, +1(—1)
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nuclei which have only valence neutrons are predom-
inantly spherical. As protons are added the nuclear sys-
tem tends to a deformed structure. Hence the DCX will
be probing this change in structure since it changes pairs
of neutrons into protons.

In this paper we discussed only yA(7",77);,,4
DCX. Historically the reason for the emphasis on this
reaction is because the DIAS transition was assumed to
dominant. However, at low-pion energy (30-60 MeV) we
have found in this paper that the transition to the ground
state may be as large as to the double analog. This means
that the , ,, 4 (7~ ,7); A to the ground state may be
large since it is the same as the ; A (7%,77 ), A DCX to
the ground state. Hence for the purposes of studying the
relationship between the ground states of ;4 and ; ,,4
either reaction will do, and in some cases (7~ ,71) may
be preferable.

This work was supported by the U.S. Department of
Energy.

APPENDIX A

The two-nucleon cfp’s can be generated from one-
nucleon cfp’s (Ref. 7) by the recursion relation

T +1+T

X3 (G "T,o=J=0{|;j"~'Ty)

Ty

X TITS "3BT ,)

1

1
7 I

27 —_—
T, T 1,[V2T:+D, (A1)

where for the n —1 system v; =1 and J; =}, and so these labels are omitted. The first cfp in the sum in (A1) is known
analytically. The second is known analytically for the cases for which B, does not matter. For the cases in which B,
does matter, the square root of the sum over the additional quantum number B, of the squared cfp is known analytical-
ly. In those cases we can determine analytically the square of the two-nucleon cfp summed over ;. For the double
analog transition T'=T this does not matter because the cfp’s come in exactly this combination as seen in (3.9). For the
transition to the ground state 7' =T —2, one needs to know a different product of cfp’s. However, we can get around
this by a sum rule. We know the matrix element of the isotensor operator T_T_ must vanish for such a transition.
From this we derive that

S ("o =J =0{ | j" B T;j*L,I)j"T'=T =2, v=J =0{ | j" "B, T;j*1,J,)
J, even +#0
By

=—{(j"T,v=J =0{ | j" 2T;j*1,J,=0) (j"T'=T —2,0 =J =0{ | j" °T;j*1,J,=0) . (A2)

Since there is no need for B, for seniority-zero states, the right-hand side of (A2) is well determined and is given in Table
I

APPENDIX B

In this appendix we shall derive the DCX amplitude in the neutron-proton basis of Ref. 20. The titanium eigenfunc-
tions in this basis are given by (5.1). The calcium isotopes have only valence neutrons and hence have v =J =0 for the
ground state. Since the DCX operator given in (2.2) changes two neutrons into two protons, we remove two neutrons
from the calcium isotopes using the T =n /2 cfp’s given in Table I, suppressing the unnecessary isospin and B labels:

nin—1)
2

/2 .
. n_ . jJjL n— .
F > (" =0{]j" 2vJ;12J){j j JlFL]] I 2, (B1)

vJL

j”T:T,:%,J=o>=—2Q
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where we have used (2.5) and the two nucleons coupled to angular momentum J are two protons. The factor under the
square root counts the number of neutrons that can be converted into protons; the square root appears because an am-
plitude is involved. Taking the matrix element with (5.1) gives

. n . n jJj Ly 2y
<J"T=Tz=5—2,J=OIF|1"T=Tz=—2—,J=o>=—2QUJ§i [J. f J](j v=0{|j""2J;j W aln;v,J)F, . (B2)
Comparing with (5.2a) this gives
jiL -n on —2 22
BL(n)=—-2Q3,,; i (" =0{|j"2J;j Y Yaln;v,J) . (B3)

Getting the T =n /2, T, =n/2—1 cfp’s from Table I finally gives (5.2b). The negative sign of the J > 0 cfp’s is deter-
mined by requiring that the ground state have definite isospin, i.e., T_ operating on the ground state vanishes.

In Ref. 20 the eigenfunctions of *Cr were not calculated. However, the eigenfunction of the double analog of the
ground state of “*Ti, which occurs in *®Cr, can be generated from the ground-state eigenfunction of **Ti by operating on
this eigenfunction with [4T (2T —1)]7!/ 2 _T_. By removing two neutrons via cfp’s as described above, this opera-
tion can be carried out and leads to the wave function for the double analog in the neutron-proton basis given by

j"T=%—2, T,=T-2,J =0>=ZU-UJa’(n so'ud) | G g i ') (B4)
where
6tn —2)(n—3) |
— —_ J, +J,+J
a'(n;v'v])= (—:Wn—sf S (=) TR g ] G T G Yatn e )
(BS)

Using this result, the DCX amplitude can be calculated in a similar manner as described above for the calcium isotopes
yielding (5.3).

APPENDIX C

To test the effect on DCX of different models of the short-range behavior of the n-n system we insert a correlation
factor

N[l1—g(rP=N[1—h(r)] (C1)
into the initial n-n and final p-p density, i.e., N is determined numerically by the normalization condition

N [ [r,r) [ [1—g(n]dr dr,=1. (C2)

Strictly speaking, the correlated wave function is no longer of the form of the independent particle shell model (IPSM),
but we will continue to use the coefficients of Table II as an approximation. Two forms of g (r) have been chosen:

hard sphere: 1if r<r,and 0 ifr>r., (C3a)
Siegel: 1—[1—exp(—2.83r%)(1—8r%)]"2. (C3b)

Correlation function (C3b) simulates short-range repulsion combined with intermediate-range attraction.

The correlation factor is included in the expression for F; [Eq. (2.3)]. The term corresponding to “1” in the correla-
tion factor is identical to the previous IPSM result. The term corresponding to 4 ( | r;—r, | ) is more difficult to evalu-
ate because then r, and r, integrals no longer separate. The integral in Eq. (2.3) is nine-dimensional. We first trans-
form h (| F, —F, | ) to momentum space to get

[dr, [dr, [dq [dq Sk, kqle ™ Ve e TNy (0 y L RO YR GOV W) /21 (Cc4)
where

S(k,k',q)=f(k',q)f (q,k) /(g3 —k*+ie) . (C5)
The integrals over r, lead to

fdrl T2 )Y (R =47TiijL( |k—q—q' | r)¢?(r)ridry You(F) (C6)

where T=(k—q—q')/ | k—q—q'|. The integral over r, is similar. Summing on M and setting
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s=—q+(k+k')/2—q=—-q'+u and K=(k'—k)/2,

we find

(2L +1
212

where @ is the cosine of the angle between K+s and
K —s. It is convenient to define B, (K,s,K8)=H H, P, .
Note that B, is independent of angle if K =0 or if either
s <<K or s >>K. Thus we expect (and confirm in prac-
tice) that a Legendre expansion of the form

B, =3, bHK,s)Y} (K)Y,,(3) (C8)

will be rapidly convergent. The symmetry of B under
§— —5 implies that all odd-/ terms in the expansion will
vanish. Similarly we may expand

g(lu—s|)=%2,,8(us)Yt(8)Y, (1) . (C9)

The angular integration over 5 is then trivial, but the ra-
dial integration must be done numerically. If the axis of
the q integration is taken along (k +k’)/2 the integration
about the axis can be done analytically, but the two
remaining components of q must be integrated numeri-
cally. The principal value portion of the integral is evalu-

) fdq[dsH, (|K—s|)H (| K+s|)h(|u—s| )P («)S(K'kq), (C7)

ated by a subtraction procedure.

Cross sections for calcium isotopes calculated with a
hard-sphere radius r.=0.6 fm are given in Fig. 4(a).
These results may be compared directly with those shown
in Fig. 2, for which r,=0 fm. Of particular note is the
suppression of the **Ca (DIAS) and the *®Ca (g.s.) transi-
tions by roughly a factor of 2. In both of these processes
the cross section is dominated by B, which we have seen
(Fig. 3) is in turn largely dominated by the DCX on close
neutron pairs. The analog transition on “8Ca is less
affected (especially at lower energy) because the B is
suppressed by the factor 1, and A4 is less sensitive to
short-range correlations. Figure 4(b) shows the effect of
intermediate-range  attractive interactions between
valence neutrons. The correlation function is taken from
the thesis of Siegel.*® The **Ca (DIAS) and “’Ca (g.s.)
transitions are seen to be increased by roughly a factor of
2.

*Permanent address: Tel Aviv University, Tel Aviv, Israel.
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