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The time for fusion process is estimated by evaluating the time spent by the classical Coulomb
trajectory and Coulomb-nuclear trajectory within the fusion formation region r & RF. The parame-
ter RF is taken from the recent works of Udagawa et al. Our estimate of fusion time extends the re-

sults of Scalia to a larger number of pairs of nuclei and energies. We find that the fusion time above
the barrier obtained by using classical Coulomb-nuclear trajectories which is of the order of 10
to 10 ' s is about five times larger than the times obtained using Coulomb trajectories. We also see
that fusion times for different partial waves are of the same order and do not vary much with angu-

lar momentum. We further adopt the quantum-mechanical phase-shift method used by Munzinger
and Berkowitz to estimate the fusion time both below and above the barrier. In agreement with

their general conclusion, we find that fusion time is oscillatory above the barrier and decreases rap-
idly with decrease in energy below the barrier up to certain energy. However, at still lower energy it
starts increasing rapidly. The order of magnitude of oscillatory time above the barrier falls in be-
tween the times obtained using classical Coulomb trajectories and Coulomb-nuclear trajectories.
But the trend in the sub-barrier region is physically not well understood. We take an alternative ap-
proach to estimate the fusion formation time below the barrier by assuming fusion to be a reverse

decay process caused by the incident flux of projectiles on the target. This calculation of fusion time
is done within the framework of the WKB method. We find that fusion formation time just below
the barrier is of the order of 10 "s and starts increasing very rapidly with decrease in energy. In
this case, we find that fusion formation time is larger than the corresponding time for free transit
across the barrier. On the other hand, in the phase-shift method fusion time is found to be smaller
than the free time in some cases. It is observed that fusion time, in general, is larger for identical
nuclei than that for nonidentical pairs of nuclei ~

I. INTRODUCTION

An important aspect of heavy-ion fusion reactions is
the time scale involved in fusion process. There have
been a number of works estimating the time scale from
different viewpoints. Munzinger and Berkowitz ob-
tained this time scale by estimating the time delay within
the framework of a barrier penetration model. Bonasera
compared a time-dependent-Hartree-Fock (TDHF) based
classical model with the experimental data and estimated
the interaction time. Bertsch has obtained the fusion
time by calculating the time to reach local equilibrium
considering the equilibration of deformed Fermi sphere
within the Fermi-gas approximation. Scalia calculates
the fusion time by estimating the time spent by the sys-
tem within the interaction region using classical Ruther-
ford trajectory.

In this paper we present the results obtained for fusion
time for a variety of systems and energies both below and
above the Coulomb barrier. First we consider the follow-
ing simple picture of fusion to estimate fusion time. Re-
cent works have described the fusion process by
separating the heavy-ion interaction into two separate
rate regions: (i) r & RF= rF( A r' + A p ) within which
fusion process is assumed to take place, and (ii) r & RF
which describes peripheral processes. Therefore, it is
desirable that the fusion time is estimated by calculating
the time spent by the heavy-ion system in region r & RF.

Adopting the approach of Scalia one may evaluate the
interaction time spent by the system along the Coulomb
trajectory within r & RF. A more realistic way to do this
is to evaluate the time spent by the system in the region
r & RF using Coulomb-nuclear (CN) trajectory corre-
sponding to both the Coulomb and nuclear potentials. In
this connection it is to be noted that such a calculation
should be carried out for a number of partial waves to get
a meaningful picture of fusion time. Because, a priori, it
is not clear whether time spent within the region r & RF
by the system in diff'erent angular momentum (1) states
varies rapidly with I or not, even for partial waves which
are lower than the orbiting partial waves. The classical
estimation of time for an orbiting partial wave will be
infinitely large if the corresponding effective barrier is lo-
cated within the region r & RF. In this paper we present,
in a systematic manner, the fusion time for a variety of
nucleus-nucleus systems evaluated by using both
Coulomb trajectories and CN trajectories for a number of
partial waves and energies in order to get a comprehen-
sive idea of fusion time.

The classical approach discussed above is not adequate
for estimating the fusion time below the effective barrier
for any particular partial wave. In such cases the ap-
proach of Munzinger and Berkowitz' is of interest. In
their approach, they evaluated the time delay ' corre-
sponding to tunneling through the relevant interaction
barrier. One of the puzzling aspects of their results,
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which is observed by them, is the gradual decrease of the
fusion time as the center-of-mass energy (E) decreases
such that the difference ( V~ E—) between the barrier top
(V~) and E increases. In this paper we consider this
problem again and bring out some more aspects of their
model at very low energies.

In view of the puzzling aspects of the results in Ref. 1,
we consider an alternative picture of the fusion below the
barrier in order to estimate the fusion time. We treat
fusion as a sort of "inverse" of decay in which the system
approaches the barrier and tunnels through it and gets
fused. The probability of penetration through the barrier
will naturally depend on the incident flux and the interac-
tion region available to the incident flux to undergo
fusion. Just as in the simple alpha decay mode where one
evaluates the decay constant (A, ) and mean life (I, '), we
evaluate the "fusion formation constant" (A,p) by consid-
ering it as a tunneling problem from outside the barrier
to inside and then estimate the fusion time (Ap ') within
such model. It is interesting to note that orders of mag-
nitude of time obtained by this method and that from the
method of Munzinger and Berkowitz' are same in the vi-
cinity of the barrier but have entirely difrerent behavior
at lower energies.

Section II discusses the fusion time obtained using clas-
sical Coulomb trajectory and Coulomb-nuclear trajecto-
ry. In Sec. III, we deal with the evaluation of time using
the phase-shift method within the framework of barrier
penetration model. Section IV considers the fusion for-
mation constant and the corresponding lifetime using the
framework of barrier penetration model and the WBK
approximation. Section V deals with the discussions and
conclusion.

II. FUSION TIME ABOVE BARRIER
FROM CLASSICAL TRAJKCTORY

RF
T (2 )1/2 f

mmm[E —Vc(r) V—I(r)]
(2)

Here E denotes the center-of-mass energy, V~ is the
Coulomb potential, Vi is the centrifugal term, and p is
the reduced mass.

We assume Vc(r) of the form

ZTZp8
Vc(r)= (3 r IRc—), r (Rc

2Rc

ZTZp8
r &Rc,

where

R, =r, ( A,'"+A,'")
and

R2 l(l + I)
v, r=

2p p

The symbols ZT, Zp denote the proton number of the
target and the projectile, respectively, and rc denotes the
Coulomb radius parameter.

We get from Eq. (2)

time using classical Coulomb or Coulomb-nuclear trajec-
tories, we incorporate both these aspects.

The time spent by a classical trajectory within r &RF
can be formally expressed as

RFT=2f„' "" . (I)
min r

Here R;„is the distance of closest approach where radi-
al kinetic energy vanishes. In the case of Coulomb trajec-
tory the expression for time ( Tc ) is

Recently there have been several works which de-
scribe the fusion process by assuming an interaction pa-
rameter rF such that fusion reaction is confined to
r (Rp, where Rp rp(AT +Ap——) and AT Ap denote
the mass numbers of target and projectile, respectively.
On the other hand, the earlier approach to fusion (the
sharp cutoff model) assumed that the fusion is confined to
the orbital angular momentum I & l„,where l„ is close to
the grazing angular momentum. In evaluating the fusion

Rc
T (2 )1/2 f"min [E—Vc(r) —Vi(r)]'

RF dp+f„c [E—Vc(r) —VI(r)] 1/2 (3)

Equation (3) can be evaluated analytically to get the
Coulomb trajectory time Tc in 10 s as

TABLE I. Optical potential parameters (Ref. 6) and the corresponding barrier height V& and its po-
sition R~ for 1=0.

Systems

16Q +208Pb

16O+ 148Sm

Ca+ Ca
'

N1+ "N1

Nj+»4Sn
Ni+" Sn
Br+~zr

Vp

(MeV)

100.0
20.0
41.8
35.0
40.0
40.0
58.1

58.1

35.0

rp

(fm)

1.25
1.34
1.25
1.35
1.25
1.25
1.26
1.26
1.35

az
(fm)

0.50
0.57
0.51
0.43
0.55
0.55
0.294
0.294
0.43

(fm)

1.25
1.25
1.25
1.35
1.25
1.25
1.26
1.26
1.35

PF

(fm)

1.45
1.46
1.50
1.46
1.45
1.45
1.42
1.46
1.41

Vq

(MeV)

73.84
59.46

107.83
53.19

100.22
98.61

165.10
164.22
154.45

R~
(fm)

12.25
11.25
11.39
10.25
10.56
10.75
11.88
11.95
12.49
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ATApc=1 2
AT+ Ap

ATAp
+10.18 2

A, +A,

1/2 x =XC

x —X

b
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1

2( i
)
i/2
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1/2
(ax +bx+c)'~ x =RF

x =Rc

where

and

a'= 1.4398ZrZp/2Rc

b ' =[E—3( 1.4398ZTZ p /2R c )],
c'= —41.815(l +I)/2[Ar Ap/( Aq+ A(, )],
a=E,
b = —1.4398ZTZp,

c = —41.815(1 +I)/2[ATAp/(AT+ Ap)],

Xmin (R min )

ZTZpe
R~= 7

V~

k2 2pE

and

Xc =(Rc)

We evaluate Tc for different systems and energies choos-
ing different values of l up to I =IG, where lG is the graz-
ing partial wave. The approximate expression for lG is

la ——[kR (((kR q
—2rI )]'

where

ZTZpe p
/2k

Vz, Rz, and g denote s-wave barrier height, radius of the
barrier peak, and Rutherford parameter, respectively.

When the real part of nuclear potential is added to
Vc(r) and V((r), the corresponding expression for time
( TcN ) spent within the region R ';„&r & RF is given by

RF
TcN =(2(M)'J,zz,(i ';„[E—V„(r)—Vc(r) V((r)]—'

(4)

where V„(r) denotes the nuclear potential which is as-
sumed to be having the usual Woods-Saxon forms with
parameters Vp Tp and aR. R';„ in this case will be
different from R;„which occurs when only Coulomb
potential is considered. In Table I we summarize the
various nucleus-nucleus systems and potential parameters
taken from Ref. 6 and used in our calculations.

In Fig. 1 we show the variation of the Coulomb trajec-
tory time Tc elapsed within the region r &RF as a func-
tion of E/(AT+ Ap) for orbital angular momentum
I =IG. The time is of the order of 10 s. The results
shown in Fig. 1 supplement the fusion time data given in
Ref. 4 for several pairs of interacting nuclei not con-
sidered there. These confirm the fact that times involved
are of the order of 10 s if classical Coulomb trajec-
tories are used to evaluate the fusion time for 1 =lG. In
Fig. 2, we show the values of fusion time TCN obtained
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FIG. 1. Fusion time T& obtained using classical Coulomb
trajectory with l =IG for five pairs of nuclei at different ener-
gies.

FIG. 2. Fusion time TCN obtained using classical Coulomb-
nuclear trajectory with I =lz —5 for six pairs of nuclei at
different energies.
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FIG. 3. (a) Variation logtp(T/Tp) corresponding to T=TC
and T = TCN with I for classical Coulomb (C) and Coulomb-
nuclear (CN) trajectories, respectively, for Ca+ Ca and
' 0+' Sm at center-of-mass energy E=67.5 MeV. Tp ——1

fm/c =0.333)&10 ' s. Arrow indicates grazing partial wave

(l =IG) where orbiting mechanism occurs. (b) Same as (a) for
systems ~Ar+ ' Sn and ' 0+ Pb at E= 112 MeV.

using the Coulomb-nuclear trajectory for various systems
and for a particular 1 ~ lG. Comparison of Figs. I and 2
shows that effect of the attractive nuclear potential in-
creases the time spent by the system within r &RF by a
factor of about 5. One finds that fusion time from a
Coulomb-nuclear trajectory is of the order of 10 ' s.

In the above calculation we have used a particular par-
tial wave to evaluate the fusion time. It is of interest to
see the variation of the fusion time with orbital angular
momentum I. In this connection it is necessary to note
that if only Coulomb potential is taken, the effective po-
tential Vc(r)+ V, (r) does not have any potential pocket
or a barrier. On the other hand, the effective potential
V„(r)+ Vc(r)+ Vi(r) shows a barrier and a pocket for a
number of partial waves, which can cause classical orbit-
ing at particular energies. In Figs. 3(a) and 3(b), we show
the variation of fusion times T& and TCN with I. In the
case of Coulomb trajectories, one notices that the varia-
tion of Tc with 1 is, in general, quite small for 1 up to IG.
Hence, representing the typical order of fusion time as
that corresponding to trajectory having I =IG is reason-
able. Figures 3(a) and 3(b) also show the variation of

fusion time TcN with I corresponding to CN trajectories.
In this case it is also seen that for l & lG, the fusion time
has practically the same order of magnitude for different
values of l. However, as l approaches l& the time in-
creases rapidly due to the onset of orbiting phenomena.
This is a rather special case and occurs due to the purely
classical model. In actuality, due to quantum effects and
the imaginary part of the potential, the barrier top states
corresponding to orbiting have 6nite lifetime. In view of
these observations, we have used, for the calculation of
typical fusion time TCN, the partial wave l & IG. In con-
clusion, we find that the fusion times calculated for a
number of systems using classical Coulomb trajectories
are in the range 1X10 s to 5X10 s, wheres times
calculated using CN trajectories are in the range
6)& 10 s to 2g 10 ' s. One also observe the following
aspects from Fig. 3(a) and 3(b): (i) In Fig. 3(b), the
difference TcN —Tc is seen to be larger for Ar+ ' Sn
than the corresponding difference for the ' 0+ Pb sys-
tem. The main difference between these two, as far as
Fig. 3(b) is concerned, is that in the case of the

Ar+' Sn system E —Vz -5 MeV, whereas in the case
of the ' 0+ Pb system E —Vs-39 MeV. (ii) Figure
3(a) shows that the fusion time for an identical pair of nu-
clei is larger than the time for a nonidentical pair of nu-
clei. All of these calculations and the conclusion pertain
to the cases when the energy is above the effective bar-
rier. In the next two sections we estimate the fusion time
below the effective barrier using semiclassical methods.

III. FUSION TIME BELOW THE BARRIER
BY PHASE-SHIFT METHOD

In order to estimate the fusion time below the barrier
we now consider the approach to Munzinger and Ber-
kowitz' within the framework of barrier penetration
model. The method is briefly outlined as follows.
Let us consider a rectangular potential barrier of approxi-
mately chosen width a and height Vo, i.e.,

V(x)=0, x &0

= Vo, 0&x &a

=0, x~a .

Considering the case E & Vo, E being the total energy of
the incident particle of mass m, the solutions of the
Schrodinger equation in three regions can be written as

=We""+-ae-'", x &0

=Ce ' +De ', 0&x &a

=Fe' ", x ~a,

where k =(2mE/i' )'~, and ki ——[2m ( Vo —E)/A' ]'
Using the proper continuity conditions at the boundaries
we get"
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F/A =
—aa kl'

( —i )4kk i e '"'e
7

(k —ik, ) —(k+ik, ) e

ment of(I' /A) is

k —k,
a(k) =tan ' tanhk, a —ka,

2
which leads to the expression for transmission coefficient
T =

~

I' / A
~

. The phase shift obtained from the argu- which gives

da(k) 1

dk k)

(2m Vo/A' ) sinh(2k, a) —2ak k, (k —k, ) —a.
4k k, cosh kia+(k —k, ) sinh k,

(9)

The transmission time' (Tps} corresponding to the
penetration of barrier of width a is

m da(k)
kfi dk

(10)

Further we may write

kig =P(1—e)

where

P [2m V g 2 /iri2 ]l /2

and

Vo[e(1 —e)]'

Z [ 1 4Pe(2e 1)(( 1—— )el
2J—e 2P(1 —E) ]

e=E/VO .

When k, a »1, using Eqs. (9) and (10) we get an approxi-
mation expression for Tps in the form

quite small with further decrease in energy. The time

Tps above the barrier obtained from Eq. (13) is shown in

Fig. 4. Here Vo corresponds to the barrier height
Vz( = 165 MeV) for 1=0 for the system Ni+ ' Sn and
the width of the barrier (a) is taken approximately as 6
fm. The time Tps decreases in an oscillatory way. The
oscillations are quite rapid near the barrier. It is also
seen that these oscillations are more rapid than the case
studied in Ref. 1 which corresponds to a light heavy-ion
system. Tps is found to lie, however, in between the
times T& and TCN obtained from classical trajectories.
As noted in Ref. 1, smaller values of fusion time below
the barrier as compared to the above barrier case is some-
what puzzling. We expect that as the difference ( Vs E}—
increases, fusion time should also increase indicating de-
crease in probability of fusion. In order to explain this
point further, we explore Tps in the energy region close
to zero. From our expression (11) it is clear that the vari-
ation of time 7 ps should show a rapid increase as E ap-
proaches zero. This is shown in Fig. 5. It is clear that

fhe condition k, a »1 is valid for typical heavy-ion sys-
tems and energies. For the case E & Vo, the analysis is

very similar, except that, in the region 0 & x (a, instead
+k x Wik2x

of the solutions e ' we will have solution e ' where

ki ——[2m(E —V )/fi ]'
Taking this into account we get the phase shift of

transmitted wave in the form

3.0-

2.5-

58N + (2~S

(k +kz)tan(akz)
y(k) =tan

2kk2
—ak,

and the expression for time 'Tps above the barrier is

m dy(k)
haik dk

J

2ak ki(k +ki) —(2mVo/A' ) sin(2akz)

irikki 4kik22cosi(akim)+(k +ki) sin (akim)

(12) OI-

O

O

2.0-
)

}.5
l65 175 l85 195

F (MeV)

205 2 l5 225

(13}

The calculation in Ref. 1 using the above approach shows
that the fusion time is of the order of 10 s. As a func-
tion of E, it has a sharp peak corresponding to the barrier
top, decreases in an oscillatory way above the barrier, de-
creases rapidly without any oscillation below the barrier
up to certain energy and then rate of decrease becomes

FIG. 4. Oscillatory variation of logip(T/Tp) corresponds to
fusion time T = T'ps above barrier obtained using the phase-shift
method. OPen circles and triangles denote loglp(Tg/Tp) for
1=1G and loglp(TCN/Tp) for I =IG —5, respectively, corre-
sponding to ' Ni+ ' Sn. The height of the rectangular barrier
used to calculate %ps corresponds to the s-wave height of the
Coulomb barrier of the same system (i.e., Vp ——Vz ——165 MeV).
The width of the barrier taken is 6 fm.
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culation of decay constant in the barrier penetration
model of alpha decay. The inverse of the formation con-
stant A,F can be taken to represent the fusion formation
time ( V'F ) below the barrier. One recalls that in the cal-
culation of decay constant in alpha decay, one has to in-
corporate the frequency of collision of the alpha particle
with the potential barrier. The analogous situation here
is the frequency with which the two nuclei come together
to fuse in the interaction region as a result of the in-
cidence of flux of projectile nuclei over the target nuclei.

Let us consider that at the center-of-mass energy E the
effective potential has turning points r3, r2, and r„such
that r3) r2) r, and r3 —r2 specifies the barrier region.
Within semiclassical picture, r3 denotes the radius of the
interaction region, the penetration into which by the two
nuclei can cause fusion. With this physical picture we
can write the fusion formation constant A, F as

FIG. 5. Variation (dashed line) of log&0(T/To) corresponding
to T ='Tps obtained by the phase-shift method below the bar-
rier in the case of rectangular barrier specified in Fig. 4. The
solid line shows the variation log&0(T/To) corresponding to
T =7F obtained using the fusion formation time method. The
numbers in the figure indicate the angular momentum quantum
number l. The arrow indicates the barrier height.

A,F ——T,F„, (14)

where T, denotes the transmission coefficient and F„ is
the frequency with which the two nuclei come to a dis-
tance R =r3, which is the outermost turning point, to
fuse. Using the WKB approximation" the transmission
coefficient T„can be expressed as

T.= 1

( I /&+ &/4)
(15)

%ps decreases rapidly with decrease in energy when one
goes down the barrier until (e=E/Vo)=0. 5 and starts
gradually increasing again with further decrease in ener-

gy. This shows that fusion tirrie estimated by the above
approach is quite sensitive to energy and significance of
this pattern is not clear. In view of this, in the next sec-
tion we give a somewhat different approach for estima-
tion of fusion time within the barrier penetration model.
This gives a rapid increase of fusion time with decrease in

energy below the barrier.

IV. FUSION FORMATION TIME
SELOW THE BARRIER

with

8=exp —f [2@[V(r) —E]/A' j2' /dr

Here

V(r) = V„(r)+V&(r)+ Vt(r) .

V„(r), Vc(r), and Vi(r) denote nuclear, Coulomb, and
centrifugal terms of the effective potential V(r), respec-
tively. In the case of incident normalized plane wave, fre-
quency F„can be expressed as

F=CmR v, (16)
The problem of fusion of two interacting nuclei can be

treated as due to absorption of the incident wave corre-
sponding to the equivalent one-body problem after it tun-
nels through the barrier. Hence, the problem is to calcu-
late the "fusion formation constant" (A,F ) akin to the cal-

where

and

(2~)—3/2( fm)
—3/2

TABLE II. Fusion formation time VF and free transit time Vf, at sub-barrier energies.

Systems

Ca+ Ca

Vq

(MeV)

53.19

165.1

E
(MeV)

49.69
50.44
51.94
52.69

155.1

162.1

163.1
164.1

a
(fm)

1.95
1.7
1.1
0.7
1.7
0.85
0.70
0.45

+F
(fm/c)

1854
557
60
24

3 && 10'
121
44
18

+fr
(fm/c)

26
23
15
9

18
9
7
5
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TABLE III. Phase-shift time 'TPs and free transit time Tf, at sub-barrier energies with reference to
the system ' Ni+' Sn where Vz ——165 MeV.

(MeV)

161.0
162.0
163.0
164.0
164.5
165.0

+PS
(fm/c)

7.43
8.29
9.47

11.17
12.32
13.79

a=1 frn

+fr
(fm/c)

10.70
10.67
10.63
10.60
10.59
10.57

+PS
(fm/c)

7.69
8.81

10.64
14.28
18.02
25.67

a=2 fm

+fr
(fm/c)

21.40
21.34
21.26
21.20
21.18
21.14

+PS
(fm/c)

7.69
8.82

10.69
14.72
19.9
46.42

a=6 frn

+fr
(fm/c)

64.20
64.02
63.78
63.60
63.55
63.42

Then the time of fusion formation ('TF ) is taken as

1

kF

In Fig. 5 we show VF as a function of energy for the sys-

tem Ni+' Sn for typical partial waves. It is clear that
7F increases very rapidly with decrease in energy as one
goes below the barrier. This is consistent with the fact
that fusion formation probability should decrease with
decrease in energy. However, it is interesting to note that
the formation time just below the barrier is ~10 s.
On the other hand, we have seen that time spent by the
interacting systems within the interaction region r &RF
above the barrier, calculated using classical trajectories,
is of the order of 10 to 10 ' s. Thus the time just
below the barrier peak is found to be smaller than the
time above the barrier. This particular aspect may be re-
lated to the enhancement of fusion below the barrier.
For comparison purpose, in Fig. 5, we depict the results
obtained by the phase-shift method below the barrier ex-
pressed by Eq. (11). It is seen that Tps decreases until

E/Vs -0.5 and then it starts increasing with further de-
crease of energy. It is clear from the expression (11) that
it would be infinitely large at energy near zero and also at
the barrier top energy Vz. On the other hand, the forma-
tion time 'TF is finite near the barrier and then increases
exponentially with decrease in energy as seen from the
approximate linear dependence of logip('TF /Tp) with E

For a particle of mass p and speed v the time required
to traverse a distance a is given by

5 ( o ) 58Ni +, 58 Ni

(b) Ca+ Co

3
O

O
CP0

plies that it is easier (takes less time) to penetrate a bar-
rier than transmit the same distance when barrier is ab-
sent. Therefore, we consider this point in some detail to
see whether the result Tps('Tr, is generally true within
the framework of phase-shift method. In Table III, we
list 7'ps and V'r, for several barriers of different widths at
different energies. It is seen from this table that near the
barrier and for small a (=1 fm), Tps) Vr ~ Hence, in

general, the statement 5'ps (Vr& is not correct. However,
as stated earlier, T~ is found to be greater than the corre-
sponding 7&, in all the cases that we have considered.

In Fig. 6, we show the variations of 'TF as a function of
(Vs E) fo—r systems of identical nuclei Ca+ Ca and

Ni+ Ni, and compare them with TF obtained in the

Let us call this time in the field free region as the free
transit time V'«. Considering a to be the width of the
barrier at certain sub-barrier energy E, we estimate the
time Tf, in the field free region. This time Tf, is com-
pared with the corresponding time 'TF which is the
fusion formation time in the presence of the potential
barrier. These times TF and Yf, are listed in Table II. It
is seen that TF is always greater than the corresponding
Yf,. On the other hand, in Ref. 1 it is stated that in the
sub-barrier region %ps is less than the corresponding Tf,.
This is physically difficult to comprehend because it im-

2 3
(VB E ) ( MeV)

FIG. 6. Variation of loglo(T/To) with ( Vz —E) correspond-
ing to T = 7 F for two pairs of identical nuclei and two pairs of
nonidentical nuclei.
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case of pairs of nonidentical nuclei ' 0+ Pb and
Ni+ ' Sn. As in the case of TcN and Tc above barrier

[see Fig. 3(a)], we find that TF corresponding to identical
nuclei is larger than that in the case of nonidentical pairs
of nuclei.

V. DISCUSSION AND CONCLUSION

In this paper we have estimated the fusion time for a
number of nucleus-nucleus systems above the barrier by
assuming that fusion reaction takes place within interac-
tion region r & RF. For the calculation of the fusion time
above the barrier, we have used classical Coulomb trajec-
tories and Coulomb-nuclear trajectories. It is found that
if one uses CN trajectory, estimated fusion time
( —6 X 10 to 2 X 10 '

s) is larger than the correspond-
ing time ( -5)& 10 s) calculated using Coulomb trajec-
tory. In general, variation of fusion time obtained for
different fusing partial waves is small. The calculation of
TCN using classical Coulomb-nuclear trajectories gives
infinitely large value when one approaches the orbiting
partial wave as it should. However, considering the fact
that effective potential has imaginary part and the system
is essentially quantum mechanical, classical time corre-
sponding to orbital partial wave is not physical. The
fusion times obtained in this paper using Coulomb trajec-
tories supplement those given in Ref. 4. Following the
phase-shift method used in Ref. 1, we have estimated the
time above the barrier within the framework of barrier
penetration model and this is found to decrease in an os-
cillatory way with energy, giving rapid oscillations near
the top of the effective barrier. From the result of Ref. 1

and our result it is clear that the oscillations critically de-
pend on the barrier parameters and energy. The fusion
times from classical trajectories, however, are found to be
of same order of magnitude as that found in this ap-
proach above the barrier.

Coming to the energy region below the effective bar-
rier, the time estimated by the same-phase shift method is
large near the barrier and goes on decreasing when one
goes down the barrier. However, the time again increases
with the energy approaching zero. Thus the time is
minimum at certain energy in between zero and the top
of the barrier. The relevance of this behavior of time
with energy is not clear so far as the fusion process is
concerned. On the other hand, as an alternative pro-
cedure, we estimate the fusion formation time in sub-
barrier region by considering fusion as a reversal decay
process. In this approach we have shown that the fusion
formation time (10 s) is small near the barrier and
keeps on increasing exponentially with the decrease of en-

ergy from the top of the barrier. This sort of variation of
fusion time with sub-barrier energy is quite consistent
with the process of fusion below the threshold: fusion is
more probable near the barrier and decreases with the de-
crease in energy. However, the orders of magnitude of
times from this approach and the phase-shift method are
same near the barrier. We also find that fusion time, in
general, for a nonidentical pair of nuclei is smaller than
that for two identical nuclei. It is also found that fusion
time obtained by the phase-shift method is not always
smaller than the time for the free transit of the same re-
gion. On the other hand, 'TF obtained using fusion for-
mation time approach is found to be larger than the cor-
responding free time in all the cases considered by us.
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