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Electron scattering cross sections have been measured for the 0+, 2+, 4+, and 6+ levels of the
ground state rotational band of "Sm for effective momentum transfers between 0.3 and 2.9 fm

The charge and transition charge densities for these states have been inferred from a combined
analysis of electron scattering, muonic atom, and Coulomb excitation data. These densities are
compared to the predictions of a mean field theory that describes this nucleus by a triaxial micro-
scopic calculation in the Hartree-Fock-Bogoliubov approximation using a density-dependent force.
The densities have been determined with a precision that is sufficient for the comparison of theoreti-
cal calculations with the measured densities to be sensitive to the pairing and surface properties of
the effective interaction.

I. INTRODUCTION II. EXPERIMENTAL PROCEDURES

The microscopic description of rotational nuclei can be
tested by a detailed study of the ground state rotational
band of ' Sm, which is considered to be a good example
of a simple rigid rotor. Electron scattering is well suited
for examining the spatial properties of nuclear wave func-
tions due to the purely electromagnetic character of the
reaction mechanism, and to the well-understood relation-
ship between the measured cross section and the nuclear
charge and current densities. The charge and transition
charge densities of the nucleus provide the meeting
ground between theory and experiment. We present here
the results of high momentum transfer electron scattering
experiments in which cross sections for the first four
states (0+, 2+, 4+, and 6+ ) of the ground state rotational
band of ' Sm were obtained. These measurements ex-
tended the q range of the existing data sufficiently to per-
mit the charge and transition charge densities to be deter-
mined precisely and unambiguously throughout the nu-
clear volume. These densities are compared with the re-
sults of a mean field theory that describes ' Sm using a
triaxial microscopic calculation. The potentials, collec-
tive masses, and moments of inertia used in the Bohr
Hamiltonian were calculated using the Hartree-Fock-
Bogoliubov (HFB) method with a density-dependent
force. The predictions of this theory for the transition
charge densities of the ground state rotational band in

Sm are particularly sensitive to the properties of the
effective interaction. The data are also interpreted in
terms of the often used, semiphenomenological rigid ro-
tor model.

A. Saclay data

The data were collected in the HE1 experimental hall
at the Saclay electron linac. Scattered electrons were an-
alyzed using the SP900 magnetic spectrometer. ' The fo-
cal plane detector of this spectrometer, which consists of
a vertical drift chamber, two plastic scintillator planes,
and a Cerenkov counter, is capable of measuring very
small cross sections (as low as 7)&10 cm /sr for the

Sm 6+ state) because of its excellent background rejec-
tion. The energy-loss system, STRADIVARIUS (Ref. 2)
was used to obtain high resolution at high beam current.
For optimum momentum resolution (typically Is.E/E
=1)&10 ) the scattering chamber was connected direct-
ly to the spectrometer without intervening vacuum win-
dows by the use of a sliding seal. The spectrometer ac-
ceptance solid angle ranged from 0.1 to 5.0 msr.

The beam current, which varied from 5 to 15 pA, was
measured to an accuracy of 1% by two ferrite-core toroid
monitors and a Faraday cup. The scattering of incident
electrons with energies, E, of 251 and 500 MeV was mea-
sured for a range of scattering angles, 0, corresponding to
effective momentum transfers 0.6 &q,z &2.9 fm '. Here
we define the effective momentum transfer in the usual
way,

q,s
——q ( 1+1. 16Ze /E ( r ) ' ~ ),

where q =2E sin(0/2), Ze is the nuclear charge, and
(r )' is the rms radius of the ground state charge den-
sity.
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The 20 and 52 mg/cm thick targets were enriched to
98.3% ' Sm. By continuously wobbling these targets
relative to the beam, errors due to the nonuniformity of
the target thickness were minimized, and excessive heat-
ing of the target was avoided. Additional cooling of the
target was provided by a supersonic jet of hydrogen gas
directed at the beam spot. The relative efficiencies of the
detector channels were checked by measurements of the
smooth quasi-elastic spectrum from ' C. The stability of
the detector system was examined periodically by mea-
surement of the ' Sm elastic scattering cross section at a
forward angle.

B. Mainz data

The Mainz data were obtained using the Mainz 350
MeV linac for energies between 80 and 300 MeV and
scattering angles between 45' and 107', corresponding to
effective momentum transfers 0.4(q,&(2.33 fm '. The
180', double focusing magnetic spectrometer of the
Mainz electron scattering facility was incorporated into
an energy-loss spectrometer system, resulting in an
overall momentum resolution of bp/p =4)&10 for
currents up to 50 pA on the target. The focal plane
detector of the spectrometer consisted of a 300 channel
overlapping plastic scintillator array in combination with
Cerenkov counters for background suppression.

All ' Sm cross sections were determined relative to
elastic scattering from ' C, a well-known reference cross
section. The relative thickness of the ' Sm and the ' C
reference targets were determined with a fixed scattering
angle (28') spectrometer, which was also used for beam
monitoring purposes. The targets used were enriched to
98.3% ' Sm and had thicknesses of 20 and 80 mg/cm .
To account for target inhomogeneity effects, the relative
thickness variations of the targets were measured by
scanning the Cu K x-ray absorption; the influence of the
target inhomogeneity was small due to the averaging
effect of the relatively large beam spot size of 5X8 mm
used for the energy-loss mode of operation. Beam
currents up to 15 pA could be used without additional
cooling of the target; the currents were determined with
an accuracy of better than 0.5% by a ferrite-core moni-

tor, whose calibration was checked repeatedly during
each measurement.

III. DATA REDUCTION AND ANALYSIS

Cross sections were extracted from the measured
scattering spectra by a line-shape fitting technique,
which corrected for straggling, bremsstrahlung, and
Schwinger radiative effects. A typical experimental spec-
trum and the associated line-shape fit for the high resolu-
tion (bp/p—= 1X10 ) Saclay data is shown in Fig. 1.
Accurate cross section extraction was more difficult for
the lower resolution (bp/p —=4)& 10 ) Mainz data. The
separation of the cross sections for the 2+ level and the
elastic scattering required a careful spectrum-fitting pro-
cedure in which the line-shape information was deter-
mined experimentally by the measurement of the well-
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FIG. l. A typical experimental spectrum with line-shape fit.

isolated elastic peak of ' Sm under identical kinematic
conditions. All data were also corrected for dead-time
effects, for folding over the spectrometer acceptance, and
for multiple scattering in the target. The resulting cross
sections were analyzed simultaneously with previous mea-
surements ' at low and medium momentum transfers.

Results of muonic x-ray experiments"' were also in-
cluded in the analysis of the 0+ and 2+ data. These re-
sults, in the form of Barrett moments for the ground state
and a generalized quadrupole moment for the first excited
state, were treated as additional data points in the fit.
The Barrett moment' ' is given by

(r"e ")= po(r)r e "r dr,4m.

Ze

where po(r) is the ground state charge density; and the
generalized multipole moment, ' ' 8'&, is given by

Wi ——&2A, +1f p&(r)r ( A +Br e ")r dr,
0

where pi(r) is the transition charge density for a transi-
tion of multipolarity A.. For the case of A, =2, this expres-
sion reduces to

Wz ——&5f p2(r)r ( A +Br e ")dr .
0

The constants A, B, m, and a in these equations are
chosen to minimize the model dependence of the pro-
cedure of extracting a moment from the muonic,
hyperfine-splitting, x-ray energies. In the case of the 4+
state, a value of B(E4)=(1.7+0.3)X 10 e fm, which
represents a weighted average of available Coulomb exci-
tation measurements, ' ' was included as a data point.
B(EA,1) depends on the transition charge density as fol-
lows:

B(EA,1)=(2k+1) f p&(r)r' +"'dr
0

=9 p&(r)r dr for A, =4 .
0

(3)

Inclusion of the Barrett moment, the generalized quadru-
pole moment, and the B(E4$ ) value in the fits reduces
the uncertainties in the ground state and transition
charge densities inferred from the measured electron
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scattering form factors. This is because these additional
data provide information on the behavior of the form fac-
tor at values of the momentum transfer that are too low
to be reached in a practical electron scattering experi-
ment. The Barrett moment essentially determines the
slope of the elastic scattering form factor at q =0. The
generalized quadrupole moment determines the value of
the A, =2 form factor at the photon point (q =co, where co

is the excitation energy of the state), while the Coulomb
excitation data provide the same information for the
k=4 form factor.

The normalization of each data set depends on the
measurement precision of the effective target thickness,
the solid angle, and the charge collection and detection
efficiencies, as well as on the method used to apply solid
angle and dead-time corrections and to extract the cross
sections from the experimental spectra. The absolute
normalizations of the data sets reported here were deter-
mined from a self-consistent fit to the elastic scattering
cross sections in which the normalizations of each data
set were free parameters. This procedure works well for
cases where the momentum transfer ranges of the data
sets overlap substantially, and the measurements extend
to low momentum transfers. The charge of the nucleus
and the precisely determined muonic atom transition en-
ergies essentially fix the value and the derivative of the
elastic scattering cross section at zero momentum
transfer. This normalization is then transferred from
data set to data set through the fitting procedure, which
forces the data sets to agree where they overlap. Normal-
ization factors for the data taken as part of this work
ranged from +0.1% to + 13.3%. In order to ensure
the consistency of the various data sets analyzed, the nor-
malizations of previously published data were also varied
during a fit of the measured elastic scattering cross sec-
tions in terms of the ground state charge density. Table I
lists the normalization factors used; we found it necessary
to increase both the NBS/MIT data7 and the Yale data
by 4%. The data from the earlier Saclay/Tel-Aviv exper-
iment'o were decreased by 1%.

TABLE I. Data set renormalizations and quadrature errors.
The cross sections and their uncertainties as listed in Table II
have been obtained from the measured or published cross sec-
tions by dividing them by the normalization factors listed here;
the uncertainties listed in Table II are to be increased by adding
the percentage uncertainties listed here in quadrature. An addi-
tional 10% uncertainty is to be added in quadrature to the 6
cross sections of this experiment to account for contribution
from the unresolved 0+ state at 0.6848 MeV.

The excited state cross sections measured at each labo-
ratory were corrected using the same normalization fac-
tor that was obtained from the fit to the elastic scattering
data. In the case of the present data, a further correction
was applied for the presence of isotopic impurities in the
target. Discrepancies reported earlier between the 4+
cross sections as measured in the Saclay/Tel-Aviv experi-
ment' and data from the NBS/MIT (Refs. 7 and 9) and
the present experiments have been resolved by a careful
reanalysis of the spectra from the Saclay/Tel-Aviv exper-
iment. The final cross sections obtained using these pro-
cedures are listed in Table II together with relevant ex-
perimental parameters. All cross sections except those
from Saclay have been corrected for the effects of multi-
ple scattering and the angular acceptance of the spec-
trometer; the relevant experimental parameters for the
Saclay data are listed in Table II and were accounted for
in the fitting procedure used to infer the ground state and
transition charge densities.

The uncertainties listed in Table II include only the
effects of the identifiable sources of statistical errors. In
order to account for the statistical aspects of Auctuations
in the data arising from other sources (electronic drift in
the beam transport and detection electronics; nonrepro-
ducibility of the spectrometer, beam, and target align-
ment; and instabilities in the absolute efficiencies of the
detector and the beam current monitoring system), the
uncertainties listed in Table I have been added in quadra-
ture to the uncertainties quoted in Table II. The larger
(10%) error added in the case of the 6+ data accounts for
the inAuence of the small but non-negligible admixture of
the first excited 0+ state at 0.6848 MeV, which could not
be resolved in the present experiment. Estimates for the
cross section for this state, based on a vibrational model
and the strength of the related 2+ state at 0.8104 MeV
(which was resolved), indicate that the 6+ cross sections
will lie within the augmented error bars for q,s &0.75
fm '. A 1% uncertainty was added in quadrature to the
data from the Yale experiment in order to make these
data statistically compatible with the overall fit to all of
the data

The phase-shift code FITRAv (Ref. 23) (for the ground
state) and the DWBA code HADES (Refs. 24 —27) (for the
excited states) were employed to extract the charge and
transition charge densities. (The HADES code is discussed
briefly in an appendix to this paper. ) These densities
were parametrized using the Fourier-Bessel series:

(4)

Data set

Yale
NBS-MIT
Saclay/Tel-Aviv
Mainz
Saclay-79A
Saclay-79B
Saclay-81

0.9592
0.9640
1.0097

1.0
0.0
0.0
0.0
2.5
2.5
2.5

Re normalization Quadrature
factor error (%%uo) Ref.

8,52
7,9
10

This work
This work
This work
This work

where q& R& is the vth zero of the spherical Bessel func-
tion j&, and R & is a cutoff radius beyond which the densi-

ty is assumed to be zero. The densities have been normal-
ized so that

Ze =4m. po r r dr

for the ground state charge density, and 8 (EA, I ) is given
by Eq. (3) for the transition charge densities. The transi-
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tion currents associated with these charge densities have
been calculated assuming that only the convection
current is important. This current was calculated in the
irrotational flow model by applying the continuity equa-
tion to the transition charge densities. It should be em-
phasized that the model uncertainties in these currents do
no influence the evaluation of the present data; these
currents have been calculated ' to contribute less than
1% to the total cross section for low-lying collective lev-
els for scattering angles less than 160'.

An estimate was made of the incompleteness error in
the extracted densities associated with the lack of data
above the maximum momentum transfer q,„bydescrib-
ing the behavior of the form factor for q & q, „

following
the prescription Rothhaas et al. Pseudo-data, having a
value of zero and an error bar extending to an upper limit
given by the q dependence of the folded proton form fac-
tor, were placed at momentum transfers corresponding to
the q& between q,„andq&». The model dependence
introduced by these points was calculated by first making
a combined fit to both the experimental and the pseudo-
data to obtain a density error band. The parameters a&„
defined by momentum transfers beyond q,„,were then
fixed and a new, artificially smaller, error band was calcu-
lated. The difference between these two error bands was
taken to be the incompleteness error. This method has
been found to be reliable when q, „

is sufficiently high. '

In order to eliminate the unphysical oscillations in the
inferred transition charge densities for large radii that are
frequently obtained from Fourier-Bessel analyses, we
have constrained their asymptotic behavior by following
a procedure similar to that outlined by Heisenberg. '

The constraint assumes that the large-radius behavior of
the transition charge density is exponential:

where R &, is the radius beyond which we wish to impose
the exponential falloff. The constants C and y are deter-
mined by matching this tail function and its derivative to
the Fourier-Bessel density [Eq. (4)] at r =Rz, . The fits
obtained were found to be very insensitive to the choice
of the exponent P; we set P=2 for all final fits. The
desired large-radius behavior was achieved by including
pseudo-data, evenly spaced by AR from R &, to R &, in the
fitting procedure. Following Heisenberg, ' this was ac-
complished by augmenting the chi square of the fit to the
electron scattering, muonic atom, and/or Coulomb exci-
tation data by a pseudo chi square given by the sum

M p(r; ) —C exp( yr; )/r;—
X 2=

where the number of pseudo-data points M was deter-
mined by the choice of the spacing constant b R:
M=(Rz —Rz, )IAR; and r, =R&, +ihR The spac. ing
constant hR was chosen to be 0.2 fm; this value corre-
sponded to about one-fifth of the wavelength of the
highest frequency term in the Fourier-Bessel expansion of
the density. The constant w can be used to adjust the rel-
ative weight of the pseudo-data in the fit; it was set equal

'"s b
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FIG. 2. (a) The A, =2 transition density obtained with and
without an r-space constraint on the density in the tail range.
The sensitivity of the inferred density in the tail region (c), and
at the peak of the density (b) to the choice of the matching ra-
dius Rq, are also shown. The dashed curves in (b) and (c) corre-
spond to the case where no tail constraint was included; the oth-
er curves are for Rz, varying from 8.0 to 10.5 fm. The "error
bars" in (b) and (c) show the total uncertainty in the inferred
density at 6.0 fm and 10.5 fm, respectively.

to 1 for our final fits.
Figure 2 displays the sensitivity of a typical fit to the

choice of the constraint radius R&, . The density in the
tail region is strongly influenced by the inclusion of the
constraint, but only weakly influenced by the choice of
R &, . The transition density at the peak and in the interi-
or of the nucleus is relatively insensitive to the choice of
Rz„typical variations are modest compared with the
statistical and model-dependent uncertainties in the den-
sity for reasonable values of R&, [see Figs. 2(b) and 2(c)].
The increase in 7 due to the inclusion of this constraint
was found to be modest, indicating that the more physi-
cal, constrained density is statistically compatible with
the unconstrained density. The 8 (EA, f ) values, however,
showed a significant sensitivity to the inclusion of the tail
constraint except in the case of the A, =2 data, where the
muonic atom data essentially fix 8 (E2t'). This sensitivity
is due to the high weighting factor given the tail of the
density in the 8(EA. 't) integral [Eq. (3)]. Interestingly,
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IO for the A, =6 density the statistical uncertainty dominates
even in the region of the peak. As expected, the contri-
bution of the completeness uncertainty is largest for very
small radii.

IO
IV. DISPERSIVE EFFECTS

~ lp'
b C',

b C',

io'

)
p- l2

(
p- I5

I 2

q„,(fm }

FIG. 3. Measured form factors for elastic (A. =O) and inelas-
tic (A, =2, 4, and 6) electron scattering from the ground state ro-
tational band of '"Sm. The solid curves are based on a fit to
these data using Fourier-Bessel expansions for the nuclear
charge densities.

both the 8 (E4f ) and B (E6f ) extracted from the fit were
relatively insensitive to the value of the matching radius

R&, , both varied by less than their uncertainty as R&,
was varied from 8.0 to 10.5 fm.

The results of the fits to the experimentally determined
form factors are shown in Fig. 3. For purposes of con-
venient presentation in this figure, the experimental cross
sections, which were measured at a variety of beam ener-

gies, have been normalized to a beam energy of 500 MeV
and plotted as a function of the effective momentum
transfer. The ground state and transition charge densi-
ties obtained from this analysis are shown in Fig. 4 to-
gether with the total uncertainty including the statistical
and systematic error in the measurements and the incom-
pleteness error. In Table III we list the fitted density pa-
rameters along with the values of R&, and R&. The de-
tails of the contributions of statistical, systematic, and
completeness uncertainties to the overall uncertainties in
the ground state and transition charge densities are also
shown in Fig. 4. For the ground state density, each of
these uncertainties makes roughly comparable contribu-
tions to the overa11 uncertainty. For the k=2 and 4 den-
sities, the statistical uncertainties dominate everywhere
but at the peak of the density; there the contribution
from the normalization uncertainty is largest. However,

Before comparing these densities with the predictions
of Hartree-Fock-Bogoliubov theory, it is worthwhile to
comment on the additional uncertainties in the densities
due to the neglect of possible two-step (or dispersive) pro-
cesses in our analysis of the electron scattering data.
Cardman et al. used the coupled-channel computer
code zENITH (Refs. 33—35} to examine the importance of
dispersive effects on the analysis of the data from the ear-
lier Saclay/Tel-Aviv and NBS/NIT studies of electron
scattering from the ground state rotational band in ' Sm.
They found that the dispersive corrections to the A, =O
and A. =2 scattering were small, of order 5 —10%, but the
corrections for the A, =4 and A, =6 scattering, where
sequential excitations of lower multipolarity can occur,
were considerably larger, as much as 20% and 50% in
the diffraction minimum of the A, =4 and A, =6 form fac-
tors, respectively (see Fig. 2 of Ref. 32). The application
of these corrections in the analysis of the data from the
Saclay/Tel-Aviv experiment resulted in changes in the in-
ferred transition charge densities that were well con-
tained within the error band describing the uncertainties
in those densities from other sources (statistical errors,
systematic errors, the incompleteness error due to the
finite q range, etc.}.

The quality of the data now available on electron
scattering from ' Sm has improved significantly; the
number of data points has increased, typical statistical
and systematic uncertainties have decreased, and the
maximum momentum transfer measured has increased.
All of these improvements have resulted in a reduction in
the uncertainties in the inferred charge densities; the data
now determine the shape of these densities throughout
the nuclear volume. (Compare, for example, Fig. 4 with
Fig. 4 of Ref. 32.) Because the charge densities inferred
from a complete analysis of all presently available data
are in reasonable agreement with the densities obtained
from the earlier Saclay/Tel-Aviv experiment, the disper-
sion corrections calculated following the procedure out-
lined in Ref. 32 would be essentially unchanged. Com-
paring these corrections with the density uncertainties
obtained in the analysis of the present data, we note that
the uncertainty due to dispersive effects can now be es-
timated as comparable to that due to all other sources of
experimental error, rather than well-contained within the
error band. On the other hand, the uncertainty due to
the neglect of dispersive effects is small compared with
the differences between the HFB transition densities cal-
culated using different effective forces (see Sec. IV}. As a
consequence one can still state with confidence that these
data provide a very sensitive and precise test of the
theory, but one should pay more attention to dispersive
effects if the quality of the experimental data improves
beyond its present high level of accuracy.
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V. COMPARISON WITH THEORY

A. Introduction

We have calculated the charge and transition charge
densities for ' Sm using a theoretical description of nu-
clear structure at low excitation energy that treats both
the internal and the collective aspects of nuclear motion
in a unified and consistent way. The intrinsic motion of
the nucleons within the nucleus is described using mean
field theory. In this approach, we begin by assum-
ing that we have an effective nuclear Hamiltonian that
characterizes the nucleus as an ensemble of independent
quasi-particles moving in the mean field generated by all
the nucleons. The ground state of this system is deter-

mined by solving the self-consistent HFB equations. We
use the constrained HFB method to include the collective
aspects of nuclear structure in the calculation. This
method permits the examination of the response of the
system to deformation including all effects coming from
the rearrangement of the average and pairing fields. The
collective coordinates are defined in a natural way as the
measure of the deformations generated by the various
constraints.

For our studies of ' Sm, the constrained HFB pro-
cedure has been performed using a triaxial oscillator basis
including eleven major shells. Initial calculations, which
included only nine major shells, displayed poor conver-
gence for the high multipole moments of the HFB wave
functions. As a consequence, the strengths of the 4+ and
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6+ transition densities increased by 20% and 40%, re-
spectively, when the calculation was repeated using an
eleven major shell basis. ' The calculation had essen-
tially converged with this basis. A thirteen-shell calcula-
tion was performed for the values of P and y correspond-
ing to the minimum of the potential energy surface
shown in Fig. S; the 4+ and 6+ strengths increased by
only 4% and 10%, respectively, relative to the eleven-
shell calculation. It was felt that the eleven-shell calcula-
tion represented the best compromise between accuracy
and computing time (this calculation required about ten
hours on a Cray-1 to map out the potential energy sur-
face shown in Fig. 5).

At low excitation energy, the collective motion can be
described by a few parameters, namely, the quadrupole
deformations. The potential energy and the collective in-
ertia parameters are then deduced from the cranking for-
mulae and used for solving a Schrodinger-like equation.
The solution of this equation provides us with the excita-
tion energies and the collective wave functions of the sys-
tem; it also provides an approximate technique for pro-
jecting states of good angular momentum. The transi-
tion charge and current densities can then be obtained by
averaging the appropriate transition operator with the
collective wave functions describing the initial and final
states. This approach to the collective motion of the nu-
cleus is completely microscopic; the only adjustable pa-
rameters in the theory are those of the effective nucleon-
nucleon force. The description of the nuclear dynamics is
obtained without the introduction of additional phenom-
enological parameters to permit the adjustment of shell
effects, pairing correlations, the inertia tensor, or the po-
tential energy surface.
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B. The constrained HFB method

In the constrained HFB method, we solve for a wave
function

I p~ & that satisfies the variational equation'o

fi(&y, ~B xA' I,Q, —I,Q, —y, &)=—0, (7)

with the conditions that

&4, I Qo I 0, & =qo, (8)

&~, iQ, i~, &=q,

Here, 8 is the effective nuclear Hamiltonian, and A, , po,
and p2 are Lagrange multipliers. The first condition en-
sures the conservation of the number of particles, and the
last two conditions imply triaxial deformations:

Qo
——&16m./15r Y~o ——2z —x —y

and

Q2 &16m./15r ——( Yq2+ Y2 ~ ) =x —y

The mean values of the operators Qo and Qz, labeled qo
and q2, respectively, are collective coordinates that are
related to the traditional Bohr parameters ' P and y

P=v m/5(qo+3qz)' /A &r
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and

tan( y ) =&3q2/q0,

where

& r2& =x2+y2+z2 .

Solution of the variational equation (7} for a variety of
constraint conditions [Eqs. (8)] permits us to determine
self-consistently the potential energy of the nucleus as a

function of its deformation. This surface can be present-
ed as a function E (q0, q2) of the collective coordinates, or
alternately, as a function E (P, y ) of the more traditional
Bohr parameters. The lower half of Fig. 5 displays the
potential energy surface V(P, y ) of the ' Sm in the (P, y )

plane. The calculated potential has an axial minimum
near P=0.3. This minimum is rather soft in both the P
and the y directions, implying that ' Sm cannot be de-
scribed well using only the HFB wave function corre-
sponding to the minimum of the potential energy. There-
fore, we have employed a dynamical treatment to define
the total wave function of the nucleus as a superposition
of deformed HFB wave functions within the framework
of a collective model.

C. Nuclear dynamics

In order to treat the dynamical deformations in ' Sm
we have used an approximate treatment that leads to a
Bohr-like Hamiltonian rather than attempting to solve
the more exact GriSn-Hill-Wheeler equation. We write
the nuclear Hamiltonian as

V(1 0&P2)+ 2(~001 0+ ~02POP2+~221 2}

&I,'&
(9)

l
Ji
ri
j ~

p.O
p. l

v(p, )(Mev)

where V(p0, p2) is the collective potential42 deduced by
subtracting the zero point energy from the HFB energy
E(p0, p2}. The other terms in Eq. (9) represent the collec-
tive kinetic energy, which is governed by the vibrational
mass parameters 8 „(rn,n =0,2) and by the rotational
moments of inertia 2„,2, and 2, . The collective vari-
ables p0 and p2 are related to the Bohr parameters p and

y by p0= p cos(y ) and p2 ——p sin(y ). The inertia parame-
ters have been calculated in the cranking approximation
starting from the HFB quasi-particle wave functions.

(0
D. Transition charge densities

In p0)r)2 collective space the total wave function has the
explicit form

I
Ini~&= J g rzIK~ IK(&0»2)

K=0

X [D~K(Q)+( —1) DIjr «(Q)]

XR (Q)pit (x;)dp0dp2dQ, (10)

P((ye'

FIG. 5. (a) The collective wave function amplitudes gooo for
the ground state of ' Sm; and (b) the potential energy surface of
the ground state of" Sm as a function of the deformation pa-
rameters P and y.

where I is the total angular momentum, E is its projec-
tion on the intrinsic z axis, and n is an index used to label
the nuclear state (n =0 is the ground state, n =1 the first
excited state, etc.). D~~« is the Wigner D matrix and R is
the rotation operator, which depends on the three Euler
angles between laboratory and the intrinsic axes.
represents a purely collective wave function that depends
only on the shape variables; it includes the metric

[(a~a22 —a022)S„S,S,]'" .

The HFB wave function P depends on the nuclear vari-
able x; (i =1,A), as well as on the shape parameters p0
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and P2. Note that P does not depend explicitly on I and

K (in the adiabatic approximation). The integration over
0 in Eq. (10) projects states of good angular momentum,
while the integration over Pp and Pz incorporates the dy-

namics of the vibrational degree of freedom.
The Bohr Hamiltonian of Eq. (9) is determined com-

pletely by the seven functions of Pp and P2 that can be
calculated from the self-consistent HFB approach. The
resolution of the Borh Hamiltonian has been performed
using Kumar's code. The resulting collective wave
function Xpoo(Po, P2) describing the ground state of ' Sin
is shown as a function of the Bohr parameters P and y in
the upper half of Fig. 5. The validity of the force used in
the HFB calculation can be tested by comparing the ex-
cited state spectrum obtained from the diagonalization of
the solution to Eq. (9) with experimental spectra. More

I

detailed tests are provided by a comparison of the transi-
tion charge densities obtained from these collective wave
functions with experimentally determined transition
charge densities.

The transition charge density is defined as

( n 'I'M'
~
p(r) [ nIM ),

where

p(r)= +5(r —x;)

is the point proton charge operator. Specializing to the
case of even-even rotational nuclei, transitions may take
place between the ground state (I =K =0) and the rota-
tional states I =2,4,6 and E even.

In this case the transition density can be written as

YrM( 1) + pIK (r)+pI —K(r)M ttoti2 ~oti2

(nIM p(r)
~

000) = g Xtx(Pp P2) &pop(13o 132) &o &22I + 1 ir p +1+5xo
(12)

with pttt (r) = fptt& (r) Ytx(Q)dQ, where p&& (r) is the spatial HFB charge density folded with the finite size of the

proton and neutron and corrected for center-of-mass effects.
Some approximations were invoked at this point to avoid the complete and very difficult calculation of this expres-

sion. The first approximation was the assumption of a sharp angular overlap between the HFB wave functions. This
approximation has been justified by Zaringhalam and Negele for well-deformed nuclei. The second approximation is
similar to the first, but concerns the vibrations; we assume that the overlap between P and P&. is sharp. However, we

partially account for the finite size of the overlap by including a second-order correction to the nonlocality.
The results presented here are based on the Gogny D1 effective force. Its parametrization includes two finite-range

central components and a density-dependent term. This force is suitable for a correct and simultaneous treatment of
both the mean field and the pairing field in the HFB framework. Mean field and dynamical calculations based on the
HF, HF-RPA, and HFB approximations have been performed using this force over the last few years. The functional
form of the force is given by

2 —(r —r ) /
V;; (r, —r, )= g (W„+B„P~HkP, M„P—~P, )e —' ' "+tp(1+xpP )p 5(r, —r, )

k=1

+iWLs(o, +tr, )(V, —V, )5(r, —r, )(V; —V, ), (13)

where P and P, are the spin and isospin exchange
operators, and the values of the adjustable parameters in
the force are given in Table IV.

We have been able to improve the pairing and surface
properties of the D1 force by comparisons between calcu-
lations using this force and the results of a variety of ex-
periments. The nuclear matter properties of the earlier
and newly obtained parametrizations (labeled Dl and
D1SA, respectively, in Table V) show relatively small
differences. Briefly the new D1SA parametrization leads
to smaller pairing correlations than the Dl force [see Fig.
6(a)] and it exhibits a smaller surface energy coefficient.
This fine-tuning of the surface energy coefficient has led
to the prediction of fission barrier heights with correct
magnitudes in the actinide nuclei. In addition, the
D1SA force reproduces more accurately the experimental
odd-even mass differences for the tin isotopes; the D1
force leads to a binding energy difference that is 300 keV
too large. This overestimates was initially thought to be

desirable because one expects the quasi-particle vibration
coupling to lower the binding energy difference. One
may consider that the effect of this coupling has been tak-
en into account in a phenomenological manner by the ad-
justments of the parameters in the D1SA force. We find
that collective inertia parameters calculated using the
D1SA force for ' Sm are larger than those calculated
with the Dl force [see Figs. 6(b) and (c)]. This surprising-
ly large modification of the inertia parameters is due
mainly to the adjustment of the pairing correlations of
the effective two-body force.

Using the formalism developed above, we have calcu-
lated the wave functions and transition densities for the
ground state and low-lying excited states of ' Sm using
both the D1 and D1SA forces. The results for the ener-
gies of these states are shown in Fig. 7 and compared
with the experimental values. The improvement when
passing from D1 to D1SA force is clear. The lowering of
the energies of the rotational states is due to the increase
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TABLE IV. Effective force parameters. See Eq. (13) and Ref.
44 for the definition of the effective force.

Force

~-'. Ep (MeV)

OSA
OI

Term

Central

Parameter

pl (fm)

p2 (fm)
8')
8'2
Bi
B2
Hi
Hg
M& (MeV)
M (M V)

Dl

0.7
1.2

—402.40
—21.30

—100.00
—11.77

—496.2
37.27

—23.56
—68.81

D1SA

0.7
1.2

—1728.5
106.14

1300.0
164.6

—1834.1
167.95

1405.8
—226.43

I I I

~QIi Bpp

Density dependent
to (MeV)
Xp

a

1350
1

1390.5
1

of the moments of inertia as well as the increase of the
mass parameters between the Dl and DlSA forces. This
result confirms the importance of rotation-vibration cou-
pling in ' Sm, as would be expected from the relative
softness of the potential energy surface for P and y defor-
mations. Figure 8 displays the calculated transition
charge densities for the ground state rotational band to-
gether with the densities determined by the present ex-
perirnent. Results for the ground state charge density are
shown in greater detail in Fig. 9. Again the improvement
obtained by the use of the D1SA force is evident. The
level of improvement is surprising considering the small
adjustment between these two forces, and provides clear
evidence for the sensitivity of these data to the pairing
correlations. Nevertheless, some disagreements remain
between experiment and theory for the 6+ state, where
there is a lack of strength in the surface.

The link between the transition charge densities and
the effective force used in the HFB equation is nontrivial;
it is achieved only through the use of several approxima-
tions including the mean field approximation and an ap-
proximation to the Griffin-Hill-Wheeler equation as well

-0.50 0
2

0.50

FIG. 6. (a) The total pairing energy E~; (b) the collective
mass Boo,' and (c) the inertial moment 'T„calculated for ' Sm
using the D1 and D1SA forces, as functions of the deformation
parameter P.

TABLE V. Nuclear-matter properties of the effective force. See Eq. (13) and Ref. 44 for the
definition of the effective force.

Force
Property

Spin orbit
Volume energy
Saturation momentum
Effective mass
Compressibility
Surface coefficient

Parameter

~Ls (MeV)
a, (MeV)

kf (fm ')
M /M

K„(MeV)
a, (MeV)

D1

—130
—16.3

1.35
0.67

228
20.2

D1SA

—130
—16.0

1.35
0.70

209
19.0
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VI. CONCLUSION

OO~

0
X

QJ

0—
DI DISA exp.

as the use of the cranking approximation for the calcula-
tion of the inertial masses. However, these results display
the sensitivity of the dynamical response of the nucleus to
a small change in the effective force and the crucial im-

portance of a careful treatment of the pairing correlations
and surface properties for a precise description of rota-
tional nuclei.

FIG. 7. Energy levels for "Sm calculated using the D1 and

D1SA forces together with the experimentally determined spec-
trum.

We have measured electron scattering cross sections
for the 0+, 2+, 4+, and 6+ levels of the ground state ro-
tational band of ' Sm. The experimental data cover a
momentum transfer range up to q,„=2.9 fm ', and
complement data available from previous measurements;
the number of cross sections measured at low and inter-
mediate momentum transfer has increased, and the ex-
perimental uncertainties have been decreased. A new re-
gion at high momentum transfer has been explored, per-
mitting the accurate determination of the charge and
transition charge densities throughout the nuclear
volume. These densities have been inferred from a com-
bined analysis of our data and data from previous elec-
tron scattering, muonic x-ray, and Coulomb excitation
experiments. Our estimate of the uncertainties associated
with these densities includes both the experimental errors
and the model dependence due to the finite q,„.

These experimentally determined densities have been
used as a testing ground for the Hartree-Fock-
Bogoliubov approach to the microscopic description of
nuclear deformations. Due to the relative softness of

Sm against P and y deformation, it is not possible to
describe the intrinsic structure of this nucleus with a sin-
gle Slater determinant. Therefore, the effects of nuclear
dynamics have been incorporated through a diagonaliza-
tion of the Bohr Hamiltonian for quadrupole excitations.
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FIG. 8. The experimentally determined ground state and transition charge densities for the first four states of the ground state ro-

tational band. Also shown are the theoretical predictions obtained using the D1 ( ———) and D1SA ( ——.—) effective interac-
tions.
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FIG. 9. The experimentally determined ground state charge
density for '"Sm and its uncertainty compared with the densi-
ties calculated using the D1 and D1SA effective interactions (a).
Also shown are the differences between the experimental and
theoretical densities (b).
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same density-dependent force that has proven to be suc-
cessful in describing spherical nuclei.
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APPENDIX A: THE DWBA CODE HADEs

The DWBA code HADES (high-accuracy distorted-
wave electron scattering) calculates the electric and mag-
netic transition amplitudes for elastic and inelastic elec-
tron scattering. For the calculation of the small cross
sections typical of high electron energies or large momen-
turn transfers, the numerical accuracy of distorted-wave
calculations must be optimized carefully because of the
slow convergence of the partial wave summations for the
long-range electromagnetic interaction. The commonly
used reduction technique requires very high numerical
accuracy for the calculation of each partial wave contri-
bution to the transition amplitudes. HADES improves
on this approach by the repeated application of conver-
gence enhancement techniques. Using the standard
calculation parameter set included in HADES, cross sec-
tions can be calculated for multipoles A. (10 with a nu-
merical accuracy of better than 1% for momentum
transfers up to 7 fm ' (the code has been tested for beam
energies up to 800 MeV in combination with a backward
scattering angle of 120 ). The HADES code can be operat-
ed with or without consideration of the mass of the elec-
tron; with the inclusion of the electron mass the calcula-
tions are slower, but the code can be used for low beam
energies and/or for backward scattering angles as large
as 180'. The accuracy of HADES calculations can be im-
proved well beyond the value quoted above at the expense
of computational time by optimizing the accuracy param-
eters for the particular problem under consideration.
The cross section accuracy can be checked by running
HADES in a mode with Z =0; for this mode Coulomb dis-
tortion vanishes, and the results can be compared with
those obtained from an analytically formulated plane-
wave Born approximation (PWBA) calculation. The
code can also analyze the convergence of its partial wave
summations for each of the relevant transition ampli-
tudes.

In HADES the electromagnetic interaction is treated in
the Coulomb gauge. This has numerical advantages, and
allows the identification of the numerically calculated
DWBA amplitudes with the (retarded) magnetic or trans-
verse electric and the (unretarded) charge transition am-
plitudes of the conventional analytic PWBA formulation.
HADES includes most of the models used conventionally
for the parametrization of the nuclear charge and current
densities. It is particularly suited for "model-indepen-
dent" evaluations of electron scattering data via Fourier-
Bessel or oscillator function expansions of the nuclear
charge distribution and of the transverse electric and/or
the magnetic distributions. Model-independent evalua-
tions can be performed conveniently with HADES by first
calculating all relevant transition amplitudes for each
term in the density expansion separately. These ampli-
tudes are then used in a separate parameter-fitting rou-
tine to obtain the density expansion coefficients that pro-
vide a best fit to the experimental cross sections. This ap-
proach drastically reduces the total computing time re-
quired to fit typical electron scattering data.
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APPENDIX B: DATA ANAYLSIS
USING THE RIGID ROTOR MODEL

The low-lying level structure of ' Sm is well described
by a classical rotational model in which it is assumed that
(1) the nuclear Hamiltonian can be separated into a rota-
tional Hamiltonian and an intrinsic Hamiltonian that de-
scribes all other degrees of freedom; and (2) the nucleus
has axial symmetry and reflection symmetry. Within the
context of that model, the shape of the nuclear charge
density in its intrinsic frame, p(r), can be expanded in
terms of spherical harmonics

p(r) = g &2A, + lp&, (r) Ygp(Q) . (Bl)

By inverting this equation, one obtains the (angular-
averaged) ground state and transition charge densities:

p&, (r)= fp(r)Ygp(Q)dQ .1

2A, +1 (B2)

The transition charge densities pz, (r) for A, =2,4, 6, . . . ,
in Eq. (B2) are identical to the pz(r) defined in Eqs.
(2)-(5), but the monopole term pp, (r) is normalized such
that

4n po, rr r= 4mZe. (B3)

This normalization is a factor of &4n greater than the
normalization traditionally used for the (angular-
averaged) ground state charge density.

Two other conventions have been used in the analysis
of electron scattering data from deformed nuclei at terms
of the rigid rotor model. They both begin with the same
assumptions outlined above. Bertozzi et al. expand the
density as

) (r)= Xu~b(")Y~p(Q) (B4)

Inverting this equation, they obtain a ground state and
transition charge densities

e.b(r)= fn(r)Y.p(»dQ . (B5)

With this convention the excitation probabilities are
given by

density, but the transition charge densities are normal-
ized such that

B(EA.'t)=4m fp&, (r)r + dr (B9)

which differs by a factor of (2A, +1)/4m. from the tradi-
tional normalization.

As is evident from the discussion above, it is not possi-
ble to arrive at a convention for the density expansion in
the rigid rotor model that is consistent with the normali-
zations traditionally used in electron scattering for both
the ground state and the transition charge densities. This
(trivial) problem is a consequence of the normalizations
of the spherical harmonic functions. For the present
work, we have chosen to include the factor &2A. +1 in
the expansion [see Eq. (Bl)] so that the rigid rotor excited
state densities have the normalization that is most com-
monly used for transition charge densities in electron
scattering.

Early approaches ' to the application of this model to
electron scattering data involved the parametrization of
the intrinsic shape of the charge distribution (for exam-
ple, by employing a deformed Fermi distribution in
which the half-density radius was expanded using a
Legendre series) and determining the parameter values by
simultaneously fitting the scattering data from the
ground state rotational band. This simple model is ade-
quate for the analysis of low momentum transfer electron
scattering data, and has been used often to interpret data
from Coulomb excitation and alpha-scattering experi-
ments. However, this model has been shown ' to be
inadequate for the interpretation of electron scattering
data for momentum transfers extending beyond 2 fm

Alternately, the transition charge densities inferred
from "model-independent" fits to the scattering from
each level may be combined to infer the shape of the
nuclear charge distribution in its intrinsic frame by sub-
stitution in Eq. (Bl). This approach has the advantage
that no bias on the intrinsic shape is introduced by the
choice of a particular functional form for the charge dis-
tribution in the intrinsic frame. It must be mentioned,

B(EA.'t)= fP&b(r)r"+ dr (B6) (o)

which differs by a factor of (2A. +1) from the normaliza-
tion commonly used in inelastic electron scattering [see
Eq. (3) and Ref. 31]. The monopole term in this density
exPansion, Ppb(r), is normalized identically to the Pp, (r)
in Eq. (B3).

A different expansion was used by Cardman et al. ,

p(r)=&4m gp&, (r)Ygp(Q), (B7)
Sm )ntrinsic Shape

Fair -Bessel Analyss

implying

pq, (r)= fp(r)Ygp(Q)dQ .1

&4~
(B8)

With this convention the monopole term in the expansion
is identical to the (angular-averaged) ground state charge

FIG. 10. The intrinsic shape of the "Sm charge density as
inferred from the measured transition charge densities assuming
rigid rotation: (a) a perspective view; and (b) constant charge
density contours. The numbers on the contours are the density
in units of the central density; the numbers on the axis are the
distance from the origin in fm.
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however, that the signs of the transition charge densities
cannot be determined directly from inclusive electron
scattering data. For the A, =2 density the sign is available
from measurements of the hyper6ne splitting in muonic
atom spectra. "' Measurements of the reorientation
effect in Coulomb excitation' ' provide the sign of both
the A, =2 and A, =4 densities. Unfortunately, the sign of
the A, =6 density has not been determined experimentally.
We have chosen a positive sign based on the theoretical
description of the potential energy surface for ' Sm dis-

cussed in Sec. IV. Figure 10 displays the intrinsic shape
of the ' Sm charge density obtained by inserting the
measured A, =O, 2, 4, and 6 densities in Eq. (Bl). The
strong quadrupole and hexadecapole deformations of the

Sm ground state are clearly visible in the 6gure. The
lobes observed in the density at +4 fm along the symme-

try axis are a real feature of ' Sm; they can be seen clear-
ly in both the perspective view [Fig. 10(a)] and the con-
tour map [Fig. 10(b)] of the density, and are not con-
tained within the error band for the density.
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