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The radiative capture reactions 'H(p, y) He and 'He(n, y) He are studied within the framework
of a microscopic multichannel resonating group model. Employing a charge symmetric nuclear
force we find different thresholds for the mirror channels due to the Coulomb force. These
differences in term together with channel coupling effects lead to marked variations between observ-

ables of the two mirror reactions. We demonstrate that all types of experimental data can be repro-
duced by our calculation except for the controversial integrated (n, y) cross section data.

I. INTRODUCTION

In recent years the strict validity of the general symme-
try laws in the strong nuclear interaction became more
and more questionable. In particular, it has been suggest-
ed that charge independence of nuclear forces is violated.
This symmetry violation can be explored in a number of
different ways. Especially comparison of mirror reactions
have been used to investigate the existence of charge sym-
metry violation of nuclear forces. Naively the differential
cross sections and polarization observables of the mirror
reactions are expected to be identical. The Coulomb in-
teraction, however, breaks charge symmetry, hence, con-
clusions from such experiments may not be straightfor-
wardly drawn. In very light nuclei, Coulomb effects are
expected to be small and therefore few body reactions are
favorable processes.

In the mirror reactions H(d, p) H and H(d, n) He only
small charge symmetry violations were found' after
Coulomb effects have been approximately taken into ac-
count.

On the other hand, photonuclear reactions offer the
possibility of extracting a small but nonzero charge asym-
metry because of the extreme sensitivity of the cross sec-
tion to the degree of isospin mixing. 2 Especially in the
mirror reactions He(y, p) H and He(y, n) He large
differences in the total cross section were reported in the
giant dipole resonance region. ' This is in marked
disagreement with model calculations, therefore charge
symmetry breaking nuclear forces were introduced in or-
der to reproduce the data.

In the following we report on a microscopic calculation
in the framework of the resonating group method which
takes into account Coulomb effects exactly; especially the
different thresholds for the mirror channels are correctly
reproduced.

The calculation of the radiative capture reactions to
He is based on a detailed study of the He system. Re-

sults on the He(d, y) He reaction with emphasis on the
D-state admixture in the He ground state were reported
elsewhere. ' Here we concentrate on the reactions

He(y, p) H and He(y, n) He. For the convenience of
the reader we first give an overview on the method used.
After that we present results on differential cross sections
and polarizations and discuss the differences in both reac-
tions.

II. METHOD

Because of the weakness of the electromagnetic in-
teraction radiative processes can be treated in Born ap-
proxirnation. A process like H(p, y) He presupposes the
knowledge of the wave function of the 4He ground state
as well as a solution of the H+p scattering problem.
The wave function in the interaction region of the frag-
ments contributes to the radiative process, hence, proper
antisymmetrization of the nucleons has to be taken into
account, whereby the identity of the incoming particles is
destroyed. Therefore, the coupling to other channels has
to be treated consistently. In our case the strong chan-
nels consist of H+p, He+ n, and H+ d. The resonat-
ing group model is well suited to treat such multichannel
problems on the basis of a microscopic nucleon-nucleon
interaction. Furthermore, translational invariance which
is vital in light systems, is automatically guaranteed.

Starting from a semirealistic nucleon-nucleon force, '

which contains besides the Coulomb force central, spin-
orbit, and tensor components, we determined the scatter-
ing wave functions as consisting of H+p, He+n, and
d +d components from the variational principle

( 5$
~

H E~ lb ) =O . —

This part of the calculation parallels the work reported
earlier. All the internal wave functions are S states only,
the parameters are given in Ref. 7, and all the scattering
results, like phase shifts, etc., are identical to those found
previously. Angular momenta up to L =2 are allowed
in the relative motion of the fragments, because all other
phase shifts and corresponding matrix elements are small.
A detailed description of the method can be found in
Refs. 11 and 12.
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The wave function of the He ground state is deter-
mined by searching for the most strongly bound 0+ state
in the above function space. Since no internal orbital an-

gular momenta are taken into account, the 0+ ground-
state wave function is a linear combination of the follow-
ing form (for the notation see Ref. 12).

+[(p'"'p") '
Yo(R3„, )R3„',] +X3„(R3„)

+[(p p )
' Yo(Rdd)Rdd'] +Xdd(R&~)+[(p tI)") ' Y2(R„d)Rdd'] +Xdd(Rdd)] . (2)

In obvious notation the spins of the fragments are cou-
pled to the channel spin S, which is then coupled with
the relative orbital angular momentum L to the total an-
gular momentum J. The relative motion wave functions

depend on the radial distance R between the frag-
ments indicated.

In case of a bound state calculation the X~ are linear
superpositions of Gaussian functions in the form

N

Xt,«„d(R)=R +' g a;exp( —P;R ) .

The width parameters P; and the coefficients a; are deter-
mined by a minimization routine. For each component
of the wave function, Eq. (2), three Gaussian functions
for the relative motion approximated well the ground
state. Since, for small energies, the radiative capture
takes place in the asymptotic region of the wave function
we added another Gaussian function with an appropriate
width parameter in order to reproduce the tail of the
Whittaker functions corresponding to the experimental
separation energies. In the radiative capture of He on
He it was shown' that this procedure yields reliable re-

sults down to about 50 keV.
In a scattering calculation the asymptotic form of the

wave function is accounted for by the ansatz

Xlkscatt(Rk ) ~1k~ (Rk )+alkG (Rk )

+X b(k Rk +'exp( 13 Rk), —

where FI and GL are regular and irregular Coulomb
functions and the Gaussians take distortions in the nu-
clear interaction region into account. The index k runs
over all possible channels and the index I indicates the
boundary condition, namely in which channel there are
regular waves. In the scattering calculation the expan-
sion coefficients bI& and the elements of the reactance
matrix aII, are linear variational parameters.

Since the physical process consists of incoming waves
in one particular channel and outgoing waves in all the
others, we have to proceed from the real scattering wave
function, Eq. (4), corresponding to standing waves, to
complex wave functions by multiplying the whole set XII,
with the matrix

C,l ——[(1—ia) '],l,
where a is again the reactance matrix of Eq. (4). Details

of the angular momentum coupling and phases are given
elsewhere. ' In passing we note that applying C results in
additional coupling of the channels and leads to complex
matrix elements [see Eq. (8)].

The calculation of the radiative capture matrix ele-
ments was performed as in Ref. 10. The electromagnetic
transition operators (electric orbital, electric spin, mag-
netic orbital, and magnetic spin) are taken in the long
wavelength limit. The electric orbital operator stems
from Siegert's theorem, ' hence, it includes the main part
of the meson exchange currents, whereas the other opera-
tors do not. ' Charges and g factors for free nucleons are
used.

The normalization and phase conventions of Seyler and
Weller were adopted. ' Since our scattering wave func-
tion contains p- H, n- He, and d- H components simul-

taneously, we can calculate the reactions H(d, y ) He,
H(p, y) He, and He(n, y) He by just varying the bound-

ary condition. Here we report on results of the
H(p, y ) He and He(n, y ) He reactions, the deuteron

capture was discussed elsewhere. '

IH. RESULTS

The main interest in the mirror reactions H(p, y) He
and 3He(n, y) He lies in the different magnitudes of the
integrated cross section. ' Therefore, we study in the
following the leading transition matrix elements for both
reactions. We characterize them by the incoming chan-
nels denoted by +'LJ, where S+L=J.

In Fig. 1 we display the moduli of the largest matrix
elements for all three fusion reactions. Matrix elements
not displayed are still smaller and furthermore they do
not interfere with the leading one, hence, they lead only
to minor corrections of the observables. As anticipated,
the 'P& —E1 matrix elements are the largest ones in both
reactions studied here, whereas the suppression of the
deuteron-deuteron capture becomes obvious. Therefore,
we need not consider the inAuence of this reaction fur-
ther on. Figure 1 shows that the leading H+p matrix
element is somewhat larger than the corresponding
He+ n matrix element.

In the following we analyze this difference in detail.
Classically, the electric dipole moment for H+p has the
same magnitude as the He+n dipole moment but the
opposite sign for analogous configurations. Therefore, we
anticipate the orbital matrix elements to be of equal size
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FIG. 1. The moduli of the largest radiative capture matrix
elements are shown as function of the center-of-mass energy
above the H+p threshold for the reactions 'H(p, y) He (full
lines). He(n, y) He (dashed lines), and 'H(d, y) He (dot-dashed
lines). For the first two reactions the matrix elements occur in
the order 'P

&

—E1 & 'P
&

—E1 y 'D2 —E2 and for the H(d, y ) He
reaction 'D, —E2 & 'P

&

—E1.

(8)= Ao 1+ g A„P„(cos8)dn

The coefficients Ao and AO. A„are given as bilinear

but opposite sign, too. The spin-Sip matrix element,
which is supposed to be small, originates solely from the
coupling to the P& channels in the interaction region.
The dominant part of this comes from the single nucleon.
Since the relation of the nuclear magnetic moment is

g = —1.46g„, the difference of the total matrix elements
should be less than a third of the proton spin matrix ele-
ments.

Depending on the energy, however, the size of the spin
matrix element is only a few percent of the orbital matrix
element, leading to differences much smaller than those
displayed in Fig. 1. A detailed analysis of the matrix ele-
ments reveals that the differences found are due to
differences in the orbital matrix element.

Whereas the classical argument given above presup-

poses equal distances between the two fragments in both
cases, our calculated scattering wave functions exhibit
small differences between the He+p and He+n chan-

nels. This is due to the different kinetic energy in both
channels because of the different binding energy originat-

ing from the Coulomb force. If we consider orbital ma-

trix elements corresponding to equal kinetic energy in

both channels, we find no difference after eliminating

effects of the y energy. Therefore, we conclude that the
differences found are solely due to the Coulomb force.

Returning to Fig. 1 we find one matrix element dom-
inating all the others by more than one order of magni-
tude. Therefore, the differential cross section will depend
mainly on this matrix element and only those matrix ele-
ments interfering with the leading one have to be con-
sidered. The differential cross section can be expanded in
terms of Legendre polynomials
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FIG. 2. Calculated Legendre expansion coefficients of the
differential cross section, Eq. (6), are compared with data (Ref.
16) for the H(p, y) He reaction (full lines). To emphasize the
variations between the two mirror channels we also display the
calculated results for the 'He(n, y) He reaction (dashed lines),
but omit the data (Ref. 17) because of their large errors. Note
the different signs for A

&
and A 3 for the two mirror reactions at

low energy.

combinations of the contributing matrix elements by
some Racah algebra. Restricting to multipolarities 1 and
2, the 'P, E—l matrix element can only contribute to the
coefficients Ao through A3. In Ao and Ao ~ A2 it con-
tributes quadratically with a coefficient of equal size but
opposite sign. Because of the normalization in Eq. (6),
A2 has to be —1 as long as interference terms can be
neglected. This holds true up to 10 MeV kinetic energy
(see Fig. 2) for higher energies deviations from —1 of
about 15% occur.

In A, and A3 the El matrix element interferes solely
with the next larger matrix element 'D2 —E2, again with
coefficients of equal size and opposite sign. Thus A&

should be —A3, as can be seen in Fig. 2. Note that the
relevant coefficient in A

&
is about three times the

coefficient in Ao. As expected, the coefficient A4 is small
compared to all the others, therefore we do not show it
for the He+n case.

But there is a striking difference in the A& and A3
coefficient for the He+ n case and the H+p case. This
is similar to the results of a shell model calculation. As
discussed above, these coefficients are due to the interfer-
ence of the 'P& —E1 and the 'D2 —E2 matrix elements.
Since the magnitudes of these matrix elements differ only
slightly for the two reactions (see Fig. 1), the variations of
the coefficients A, and A3 originate from the phases in-

volved, occurring in the form

c so[5('P, ) —5('D2)],
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where the transition matrix element is written as
S= ~S

~

e.xpti5J. In Fig. 3 we display the relevant
phases. Both 'I', phases show little energy dependence
and so does the 'D2 H+p phase. The He+n 'D2
phase, however, decreases rapidly with energy, thus caus-
ing a sign change of the cosine in Eq. (7).

Whereas a classical consideration of both two-body
systems reveals equal size for both dipole moments the
same consideration yields a quadrupol moment for the
H+p system five times larger than that of He+n. For

the E1 transitions this classical argument fully agrees
with the results found, whereas for the E2 matrix element
the variations are below a factor 2 (see Fig. 1). Therefore
we have to analyze the contributions of the individual
channels (we will call this "immediate" contributions) in
contrast to the asymptotic mixing due to Eq. (5).

In fact, the immediate contribution of the H+p chan-
nel is a factor 3-4 larger than that of the He+n chan-
nel, almost independent of energy. Although in principle
all seven J =2+ channels are coupled, the strongest part
of the nuclear force conserves the spin, therefore the ma-
trix C, Eq. (5), connects dominantly the 'D2 channels and
we can concentrate our considerations onto these chan-
nels. The magnitude of these reactance matrix elements
is nearly the same for all channels except near and obvi-
ously below thresholds. Since the immediate contribu-
tion to the 'Dz dd channel never exceeds 10% of the
leading one, we are left with a two channel problem. The
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FIG. 4. Comparison of calculated angular distribution for
the reactions 'H(p, y) He (full line) at 9.8 MeV proton energy
with data Ref. 18 (full circles) and of the reaction 'He(n, y) He
(dashed line) at 10 MeV neutron energy with data Ref. 17 (open
squares). The unnormalized data are normalized to the calcu-
lated results at the data point nearest to 90'.

corresponding reactance matrix elements vary from
a =0.1 at low energies to about a =0.5 at higher ener-
gies. Let us normalize the immediate contribution of the
'Dz H+p channel to 1, then the He+n channel con-
tributes by b =0.3. Applying Eq. (5), schematically for
small a, we find for the final matrix elements

~ ] r

1 —ia —ia 1 1+ia
—ia 1 —ia b b +ia

I

The resulting matrix element for the H+p channel is
of order 1 and the energy dependence is in the small part
I'a This e.xplains the small phase of the resultant H+p
matrix element throughout the energy range considered.
In order to comply with the phase convention of Ref. 15
we have to use the complex conjugate of Eq. (8).

For the He+ n channel, however, the immediate con-
tribution b and the contribution due to coupling Ia are of
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10FIG. 3. The phases of the interfering E1 and E2 matrix ele-
ments are given as function of the center-of-mass energy above
the lowest threshold for the reactions H(p, y) He (full lines) and
'He(n, y) He (dashed lines).

FIG. 5. Comparison of calculated Bz coefficients, Eq. (9),
with data Ref. 19 (full squares) and Ref. 20 (full circles).
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channels gives rise to the different energy dependence of
the A

&
and A3 coefficients. The opposite signs of the A,

and A3 coefficients is perfectly found in the different an-
gular distribution for the proton and neutron capture re-
actions (see Fig. 4}. The differences originate from the
Coulomb force without any isospin violating nucleon-
nucleon force.

In analogy to the differential cross section we expand
the vector analyzing power in terms of associated Legen-
dre polynomials according to
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FIG. 6. (a) Comparison of calculated (y,p) integrated photo
breakup cross sections for 2.2% D-state admixture (full line)
and 12% D-state admixture (dot-dashed line) with data Ref. 21
(full squares) and Ref. 22 (full circles). (b) Calculated (y, n) in-
tegrated cross section for 2.2% D-state admixture (dashed line)
and 12% D state (dotted line). The data are from Ref. 17 (full
circles), Ref. 3 (pluses), and Ref. 23 (squares).

similar size, with b & a at low ener ies and b & a above 10
MeV. Therefore, the phase of the He+ n matrix element
changes considerably because of the energy dependence
of the imaginary part.

The different sign of the E1 matrix element is in accor-
dance with the classical argument (see Fig. 3). This yields
opposite signs for the A& and A3 coefficients for the
H+p and He+n capture reactions at low energies (see

Fig. 2). Furthermore, the mixing of the corresponding

(8)A (8)= g B„P„(cos8).
n=1

It turns out that all coefficients B„are small except for
B2. In Fig. 5 we compare the B2 coefficient for H+p
and He+n with data for the proton capture. ' ' Unfor-
tunately the large error bars do not allow any conclusion.
All calculated coefficients agree in size and energy depen-
dence with those of Ref. 5.

Originally, the possible isospin violation in electromag-
netic transitions in He was discussed for the total photo
breakup cross sections. For the ratio R of o(y,p) to
o(y, n) values up to 1.8 were reported, whereas we find
R below 1.1 in the energy range discussed. In Fig. 6 we
compare the calculated cross section with data for both
reaction channels. In these figures we demonstrate the
effect of the D-state admixture in the He ground state
(see Ref. 8). Whereas all previously shown results were
calculated for 2.2% D-state admixture, we give here also
the results for 12% D state. The only effect is a reduction
by 10% as could be anticipated.

For He(y, p) H we reproduce the data within a few
percent. For He(y, n) He however, we agree with part
of the data' ' but disagree with others. Thus our calcu-
lation yields results similar to those of the shell model cal-
culation, the main problem lies in the contradicting
data, see the discussion on the data in Ref. 3.

In order to resolve the discrepancies of the data,
Knoepfle et al. performed (e, e'x) reactions where all
charged particles were detected simultaneously. Prelimi-
nary results agree well with our calculations. There-
fore, we conclude from our calculations that there are
differences in the reactions H(p, y} He and He(n, y) He
due to the Coulomb force and the different thresholds,
however not due to any isospin violating nuclear force.
The differences in the data call for new detailed experi-
ments especially for the neutron branch which are
planned at Karlsruhe.
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