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Shape transitions in hot rotating '58Yb nuclei
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The finite-temperature Hartree-Fock-Bogoliubov cranking equation predicts the most probable
shape for ' Yb nuclei. At a spin-dependent critical temperature, there is a transition from pro-
late collective rotation to oblate noncollective rotation. For spins above 39k, there is oblate non-

collective rotation at all temperatures. Ho~ever, inclusion of thermal shape fiuctuations produces
an average shape which is prolate collective at spins 40 and 50k and thermal excitation energy
E = 10 MeV.
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The FTHFBC equation determines the shape and pair
gaps as self-consistent microscopic functions of spin and
temperature.

The pairing-plus-quadrupole (PPQ) interaction of Ku-
mar and Baranger (KB) is used. ' ' KB fit the interac-
tion strengths to the ground-state shapes and pair gaps of
rare-earth nuclei. We have not introduced any additional
parameters to fit the thermal or rotational properties of
nuclei, and we are using the same Hamiltonian for ' sYb
as we have employed for other rare-earth nuclei. ' '

The transitional nucleus '5sYb has an yrast line which
displays a shape transition. ' 3 For low spins, this nucleus
has a prolate shape which rotates collectively (the rotation
axis is perpendicular to the symmetry axis). At high spins
the shape is oblate and the rotation is noncollective (the
rotation axis coincides with the symmetry axis). Recent
experiments at Oak Ridge National Laboratory, Oak
Ridge, Tennessee suggest that for spins 38-515, the non-
collective yrast states give way to collective structures
with increasing temperature. 45 The purpose of this arti-
cle is to calculate the shape of '5sYb nuclei as a function
of spin and temperature, and to search for an explanation
of this Oak Ridge experiment.

Mean-field theories such as the microscopic finite-tem-
perature Hartree-Fock-Bogoliubov cranking (FTHFBC)
theorys s and the macroscopic Landau theory9' have
been used to study the shapes of hot rotating nuclei.
These articles have concentrated on the strongly deformed
nuclei Is4's6Er, although the Landau theory9'0 has also
been used to determine the universal features of shape
transitions.

Consider the FTHFBC equation"
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where the Hartree-Fock Hamiltonian S includes the
cranking term —coJ„and 6 is the pair field. The quasi-
particle operators are defined by the eigenvectors (Ui, V;),
and the quasiparticle energies are given by the eigenvalues
E;. At finite temperature, the quasiparticles are thermally
excited, in accordance with the Fermi-Dirac occupation
probability

The FTHFBC phase diagram for ' Yb is shown in Fig.
1. The ground state is prolate (P 0.173) and axially
symmetric. At spin zero, raising the excitation energy to
E 23.3 MeV (T 1.04 MeV) causes the deformation
to collapse, and the equilibrium shape becomes spherical.
For rotating nuclei there are two phases. If the spin is
below 395, and if the thermal excitation energy (tempera-
ture) is below a critical value, then the shape is approxi-
mately prolate and the rotation is collective. However, if
the spin is above 39II1, or if the thermal excitation energy
exceeds a critical value, then there is oblate noncollective
rotation. The critical temperature goes to zero at spin
395. Even though nuclei are finite systems, the mean-
field approximation creates a shape transition which
occurs rapidly when the excitation energy crosses the
phase-transition line. The response of this transitional nu-
cleus can be contrasted with the strongly deformed nu-
cleus ' sEr, which retains its prolate collective structure at
spin 60II1 for all temperatures up to 1.4 MeV.

In the Oak Ridge experiment, the noncollective yrast
states at spins 38-51h, give way to collective structures
when the thermal excitation energy is increased from 0 to
= 10 MeV. For spins 40-505, the FTHFBC equilibrium
phase is oblate noncollective at all temperatures. There-
fore, the FTHFBC mean-field description does not pro-
vide an explanation for the Oak Ridge experiment. How-
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FIG. 1. Phase diagram for ' Yb. The dots at spins 40 and
50h correspond to temperatures of 0, 0.6, and 0.8 MeV.
Thermal shape Nuctuations are not included.

1092 1988 The American Physical Society



SHAPE TRANSITIONS IN HOT ROTATINg &5sYb NUCLEI

ever, it must be emphasized that the FTHFBC equation is
derived by a variational principle, which minimizes the
free energy

(3)
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where S is the entropy. Consequently the FTHFBC self-
consistent shape is the most probable shape, i.e., the shape
which minimizes F(p, y;I, T) for given spin and tempera-
ture.

For finite temperatures, there are thermal fluctuations
which create shapes different from the most probable
shape. These shape fluctuations can significantly alter the
properties of hot rotating nuclei. ' 23 The probability for
a given shape to occur is
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P(P, y;I, T) ceexp[ —F(P, y;I, T)/TJ . (4) FIQ. 3. The quadrupole deformation P vs the temperature T
at spin 40k.

For given spin and temperature, consider an ensemble of
nuclei with this deformation distribution. The ensemble
average of p is
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Averages are also calculated with the volume element
Ps

~ sin3y ~ dPdy. The fluctuation in P is

(~p)'-&p') -&p&'. (6)

There are similar definitions for y and Ay. Equation (4)
shows that when the temperature is zero, there are no
thermal shape fluctuations. Then the average shape is
identical to the most probable shape. However at finite
temperature, the average shape may be different from the
most probable shape.

Consider nuclei with spin 40k and a temperature of 0.8
MeV. The most probable shape has a thermal excitation
energy E 10.4 MeV, as shown in Fig. 1. The probabili-
ty distribution P(p, y) is given in Fig. 2. The dot indicates
the most probable phase, i.e., oblate noncollective rota-

tion, which is assigned a relative probability equal to 1.
The contours map the relative probabilities for other
shapes. Observe that there are prolate collective states
(y 0') which have a high relative probability of 0.7.
Even oblate collective states (y 60') and prolate noncol-
lective states (y 120') are populated by the thermal
fluctuations. This demonstrates that even though the
most probable phase is oblate noncollective rotation, a
considerable fraction of the members of the ensemble pop-
ulate collective states.

The ensemble average shape is compared to the most
probable (HFB) shape in Figs. 3 and 4 for I 40. For
T 0.8 MeV, the average p is considerably larger than

pHFa, and the magnitude of the fluctuation in p indicates a
broad distribution of shapes. Although yHFa

—60' (ob-
late noncollective), the average y

—4' (nearly prolate
collective). If the volume element p ( sin3 y ( dpdy is used,
then y

—7'. The large fluctuation in y again indicates
a wide distribution of shapes. Since the average shape is
essentially prolate collective, one may conclude that the
ensemble contains a signi6cant proportion of nuclei which
display collective structures.

The shape fluctuations are also calculated for I 40 and
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FIG. 2. Contour map of the shape probability distribution in

the P, y plane. The lines have constant values of relative proba-
bility. The spin is 40k and the temperature is 0.8 MeV.
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FIG. 4. The quadrupole deformation y vs the temperature T
at spin 405.
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T 0.6 MeV (see Figs. 3 and 4). Then the most probable
shape has E* 6.5 MeV, as shown in Fig. 1. Figure 4
shows that the importance of collective structures in-
creases with the temperature.

The fluctuations are also determined for I 50 and
T 0.6, 0.8 MeV. The results for I 50 are very similar
to those for I 40. For I 50 and T 0.8 MeV (E 9.7
MeV), the average y

—7'.
In conclusion, for spins 40 and 50k and thermal excita-

tion energies of approximately 10 MeV, there is a
significant probability that statistical shape fluctuations
will populate prolate collective structures. This mecha-
nism may provide a possible explanation for the Oak
Ridge experiment.

This work was supported in part by the National Sci-
ence Foundation.

~C. Baktash et al. , Phys. Rev. Lett. 54, 978 (1985).
I. Ragnarsson, T. Bengtsson, W. Nazarewicz, J. Dudek, and

G. Leander, Phys. Rev. Lett. 54, 982 (1985).
3J. Dudek and W. Nazarewicz, Phys. Rev. C 31, 298 (1985).
4C. Baktash, in Proceedings of the Workshop on Nuclear Struc

ture at Moderate and High Spin, Berkeley, 1986, edited by
M. A. Deleplanque, R. M. Diamond, and F. S. Stephens
(Lawrence Berkeley Laboratory, Berkeley, 1986), p. 74.

5C. Baktash, in The Variety of Nuclear Shapes, Proceedings of
the International Conference on Nuclear Shapes, Aghia
Pelaghai, Crete, 1987, edited by J. Garrett, C. Kalfas, G.
Anagnostatos, E. Kossionides, and R. Vlastou (World
Scientific, Singapore, 1988), p. 345.

6K. Sugawara-Tanabe, K. Tanabe, and H. Mang, Nucl. Phys.
A357, 45 (1981).

7J. L. Egido, P. Ring, and H. Mang, Nucl. Phys. A451, 77
(1986).

sA. L. Goodman, Phys. Rev. C 35, 2338 (1987).
Y. Alhassid, S. Levit, and J. Zingman, Phys. Rev. Lett. 57, 539

(1986).

Y. Alhassid, J. Zingman, and S. Levit, Nucl. Phys. A469, 205
(1987).

"A. L. Goodman, Nucl. Phys. A352, 30 (1981).
' K. Tanabe, K. Sugawara-Tagabe, and H. J. Mang, Nucl.

Phys. A357, 20 (1981).
13M. Sano and M. Wakai, Prog. Theor. Phys. 4$, 160 (1972).
'4M. Baranger and K. Kumar, Nucl. Phys. A110, 490 (1968).
'SK. Kumar and M. Baranger, Nucl. Phys. A110, 529 (1968).
'SA. L. Goodman, Phys. Rev. C 33, 2212 (1986).
'7A. L. Goodman, Phys. Rev. C 34, 1942 (1986).
'sK. A. Snover, Annu. Rev. Nucl. Part. Sci. 36, 545 (1986).
' M. Gallardo, M. Diebel, T. Dossing, and R. A. Broglia, Nucl.

Phys. A443, 415 (1985).
M. Gallardo, F. J. Luis, and R. A. Broglia, Phys. Lett. B 191,
222 (1987).
J. L. Egido, C. Dorso, J. O. Rasmussen, and P. Ring, Phys.
Lett. B 17$, 139 (1986).

2zA. L. Goodman, Phys. Rev. C 37, 2162 (1988).
2SS. Levit and Y. Alhassid, Nucl. Phys. A413, 439 (1984).


