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Nonlocal separable potential in the one-dimensional Dirac equation
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The one-dimensional Dirac equation is solved for a separable potential of the form of Lorentz
scalar plus vector, (Pg +h) v (x)v (x'). Exact analytic solutions are obtained for bound and scatter-
ing states for arbitrary U {x). For a particular combination of the values of g and h, degeneracy of
the bound state occurs, and total re6ection also takes place for a certain incident energy. The limit-

ing case, in which U (x) becomes a delta function, is discussed in detail.

Recently, McKellar and Stephenson examined the
Dirac equation with a local delta-function potential in the
context of quarks in one-dimensional periodic structure.
They showed that, when the delta function acts at x =0,
the use of the usual formula

f 5(x)p(x)dx =p(0)= ,'[li(0—+)+g(0 )]

is incorrect. In particular, they pointed out that when
the potential is a Lorentz scalar, Eq. (1} leads to an ap-
parently unphysical result. The connection formula in
this case reads

where tt=(m E)' —. For E &rn, we replace iit by
k=(E2 —m }'~~. For the bound state (if any}, P(x} is
given by

g(x) = —f dx'G(x, x')v(x')(Pg+h )X,

where

X=f dx v(x)f(x) .

Equations (6) and (7) require

Det 1+ x x'G x,x' v x U x' g+ =0 . 8

or

g(0+ }= exp[ —2iaP tanh '(g /2)]g(0 )

g(0+ ) = —exp[ —2iaP coth '(g/2)]g(0 ),

(2a)
Using Eq. (5), we can reduce Eq. (8) to

[2 +tc(m +E )(g+ h )cit][2tc+ (m E)(g —h)a—t]=0, (9)
(2b)

where

(ap +Pm E)G(x,x') =5(x ——x') .

For E (m, we have

(4)

for
~ g ~

& 2 and
~ g ~

& 2, respectively. This suggests
that, when g =+2, an infinite phase factor occurs in the
wave function from x =0 to x =0+.

While we have also proved that the use of Eq. (1) for a
local delta-function potential is improper, we have point-
ed out that Eq. (1) is correct for the delta-function limit
of a nonlocal separable potential. The purpose of this
paper is to solve the Dirac equation '

(ap+Pm )f(x)+(Pg+h )u(x) f dx'v(x')g(x')=Eg(x)

(3)
for any reasonable form of v(x), with u(x)=v( —x ), and
then examine the limit u(x)~5(x). We shall confirm the
validity of Eq. (1) in this case and point out that the
difficulty related to Eqs. (2a) and (2b) with g =+2 is only
an apparent one.

The Green's function for Eq. (3) satisfies

d"= Jt dx f dx'e "'" " ~u(x)v(x') .

If (g +h ) & 0, there is a bound state with energy

4—(g+h) ow'

4+(g +h)'ot'

(10)

(1 la)

Similarly, if (g —h }& 0, there is a bound state with ener-

4—(g —h)'8'
4+ (g —h )2otz

(1 lb)

(g —h )8 =4, (12)

the E's of Eq. (1 la) and (lib) coincide; the two states be-
come degenerate. This is a rare occurrence of degeneracy
for a one-dimensional problem.

For E )m, the transmission coefficient T and the
reAection coefficient R can be explicitly determined. The
results are

G(x,x')= e " " " [iatcsgn(x —x')+Pm+E],
2K T=[k[4—(g —h )

~

J
~ ]—4(gm+hE)ImJ] /D (13)

(5) and
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g =[4(gE+hm) ReJ] /D,
where

J=f dx J dx'e'"'" "~v(x)v(x')

(14)

(15)

and

[2+ia(pg + h )]g(0+ ) =0

[2—ia(Pg+h )]g(0 ) =0 .

(20)

(21)

and

D=
~
k[4+(g —h )J ]+4i(gm+hE)J

~

. (16)

In the limit v (x)~5(x), we find 8~1 and J~1. On
the other hand, if one sets v (x)=5(x) and uses Eq. (1)
from the outset, one obtains exactly the same results:
The bound state energy, the transmission and reflection
coefficients are those of Eqs. (11), (13), and (14), with
8=J= I.

Let us now examine the relation between g(0+) and
P(0 ) in the limit v(x)~5(x). Equations (3) and (1) lead
to

ia—[g(0+) g(—0 )]+—,'(pg+h )[f(0+)+p(0 )]=0,
(17)

which can be rearranged as

(4—g'+h )1((0+)=[4+g' h' —4ia—(pg+h )]lt(0 ),
(18)

or as

[4+g —h +4ia(pg+h)]g(0+)=(4 —g +h )p(0 ) .

(19)

If g &4 and h =0, either Eq. (18) or Eq. (19) can be
rewritten in the form of Eq. (2). On the other hand, if
g =4 and h =0, or more generally, if g —h =4, f(0+)
and P(0 }become unrelated. Instead, they satisfy

That is, the upper and lower components on a given side
of x =0 are related. When g —h =4 and (g+h) &0,
there are two degenerate bound states. One of them has
even parity and the other odd parity. Since an arbitrary
linear combination of the two degenerate solutions is also
an eigenfunction with the same eigenvalue, the relative
phase between the wave functions for x &0 and x ~0 is
arbitrary. When g —h =4, there is no transmission.
When a wave is incident from the left of x =0, there is no
wave transmitted to the right of x =0. In other words,
the two regions x & 0 and x & 0 are completely separated.

As we noted earlier, the degeneracy of the bound states
with E occurs for any v (x) if (g —h )8 =4. In this situ-
ation, the phases of the asymptotic wave functions,
g(+ ~ ) and P( —00 ), become unrelated. However, the
complete disappearance of transmission for any incident
energy E is peculiar to the delta-function case. For an ar-
bitrary v (x},J of Eq. (15}depends on k, and hence, T of
Eq. (13) can vanish only for a certain value of k.

In summary, unlike the case of a local delta-function
potential, Eq. (1) is correct for a separable delta-function
potential. When g —h =4 and (g+h}&0, the bound
state becomes degenerate, and when g —h =4 the
transmission vanishes. This is related to the indetermina-
cy of the relative phase between f(0+} and f(0 ), but
there is nothing unphysical about this. A similar situa-
tion also arises for an arbitrary form factor v (x) of the
potential.
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