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We perform a semiclassical analysis of the SO(3,1) S matrix. In particular, we discuss the near-far
components of the amplitude and describe the nuclear rainbow scattering. We use the semiclassical
inverse scattering theory to obtain the underlying potential, which is found to behave as r ' e
at large separations.

During the last few years an algebraic approach to
quantal scattering problems has been developed by one of
us together with Alhassid, Gursey, and others. In this
approach, S matrices are derived from general group-
theoretic considerations. One of these, based on the alge-
bra of SO(3, 1), has the general form

1 (z) =(2n )' e '(z)'

z=l+lkiv(l, k) .
This gives
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and promises to provide a useful tool in the analysis of
experimental data. For each particular problem, one
chooses a function u (I, k), computes St(k) and from it the
differential cross section, do /dQ. The function v(l, k),
called the "algebraic potential" is taken to be real for
nonabsorptive scattering and complex for absorptive
scattering. Since the algebraic approach is formulated at
the level of S matrices, it is not clear what is the underly-
ing physics in a Schrodinger picture. In order to find a
potential that, inserted in the Schrodinger equation, pro-
duces the same S matrix, one needs to solve the inverse
scattering problem. This is, in general, rather complicat-
ed. The solution is much simpler when a semiclassical
approximation is taken. In this paper we perform a semi-
classical analysis of the scattering matrix, Eq. (1).

We consider the case of an absorption-free S matrix.
The key ingredient is the classical deflection function
8(1):—2d5tldl, where St=exp(2i5t). Since, for u(l, k)
real, an explicit form exists for 5I in terms of 1, the clas-
sical deflection function can be calculated exactly in nu-
merical form. However, since we are interested in gen-
eral properties, we consider an approximate form (very
accurate for large I} obtained by using the following
asymptotic form of the I functions appearing in (1),

+[I+1+iu (I,k)] in[I +1+iu (l, k)]
—[I +1 iu (I,—k)] in[1 +1—iv(l, k)]—2iu(l, k) .

(3)

The classical deflection function is obtained immediately
from (3) by taking the derivative with respect to I,
neglecting —,

' compared with I, and introducing
A, =1+1/2:

8(A, ) =2 arctan
u (I(,, k)

jib

+ '
in[A, +u(h, , k) ] . (4)

For. pure Coulomb scattering, v(l, k)=ri=Z, Zze It/trt k
and the second term in (4} vanishes identically, leaving

One can see from (4) that a parametrization of u (I,k) pro-
vides a simple parametrization of the classical deflection
function 6(A, ) which can, in turn, be used to analyze the
data. We consider now in particular the form of v(l, k)
used to analyze heavy-ion scattering:

u(l, k)=u, (l, k)+u, (l, k)

Z]Z2e p vo(k)

1+exp[[1—Io(k)]/b(k) l
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the famous Rutherford deflection function. The presence
of nuclear scattering changes the first term in (4) slightly,
but gives rise to a sharply localized second term, which is

negative for positive vo. We show in Fig. 1 a typical
deflection function. This deflection function exhibits
sever a1 interesting features. The nuclear rainbow
[minimum in 8(A, )] comes directly from the second term
(du/dA, ). The first term in 8(A, ) is a modified Coulomb
deflection function, which, at small impact parameters
(A, ~O) behaves as n [D—./(ri+vo)]. This behavior,
however, is appropriate to the approximate deflection
function and is different from the exact result.

Another interesting feature is that the parametrization
(5) does not exhibit exact orbiting, i.e., the deflection
function never goes to —(x). However, for large vo or
small 4, the deflection function becomes more and more
negative. Exact orbiting can be obtained only by using a
parametrization of v(l, k) which is a discontinuous func-
tion of l.

We now turn to a discussion of the scattering ampli-
tude. This can be obtained from

f(8)=f'"(8)+f' '(8-)

1 [I(8) iI—( —8)],
&sin0

(6)

u, (i,, k) = uv(k),
X~O

du, (k, k ) = 0,
dA, x~o

+ ~d& &~yp I [A, + 1/2+iv (A, , k)];gg
k V 2m o I'[A, + I/2 iv—(A, , k)]

where f'+'(8) and f' '8 represent the near- and far-side
components off (8}. It is clear from the structure of the
deflection function (Fig. 1) that f'+'(8) is purely
Coulomb at very small angles and very close to Coulomb
at angles close to m. At intermediate angles it is affected
strongly by the nuclear interaction. The interesting
feature of f'+'(8) is its back-angle behavior. With the
aid of the stationary-phase method, we are able to evalu-
ate the amplitude in this angle region. If we assume that
10(k)/b, (k) »1 in (5) (a condition usually met in heavy-
ion scattering), then
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g+uv(k)
8(A, ) = 2arctan
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Use of Eq. (6}gives f '+'(8) and the cross section

[ri+vo(k)]&(+)(8)
4k sin (8/2)

which reduces to the Rutherford formula when vo ——0.
As far as the far-side amplitude is concerned, the struc-

ture of 8(A, ) clearly indicates that it will be predominant-
ly composed of nuclear rainbow scattering. In fact, one
can see that the second term in 8(A, ), Eq. (4), dominates
f' '(8). As an example of the behavior of

~

f' '(8)
~

we show, in the lower part of Fig. 1, results obtained
which the parametrization of the upper part. The nu-
clear rainbow here is structureless due to the narrow na-
ture of 8(A, ). We have repeated the calculation for
different values of the parameters, as shown in Fig. 2.
The far-side cross section shows clearly in this case well-
developed Airy's oscillations, owing to the broad nature
of 8(A. ).

Having discussed briefly the semiclassical limit of the
SO(3, 1) S matrix, we turn now to the question of deter-
mining the underlying potential in r space. This can be
done by using the semiclassical inverse scattering
method. Knowing the deflection function 8(A. ), one can
obtain the potential V(r) by computing the integral

T(s, k)= —' f "(X'—k's')-'"8(z}dz .
ks

FIG. 1. {a) The classical deAection function and {b) the far-
side contribution to the elastic-scattering cross section for the
case g=12.58, E =20.0 MeV, k =3.12 fm ', Up=4 Pp=14,
and b, =2.

The potential V (r) is given by

V (r) =E [ 1 —exp[ 2T(s, k)]I—
with s obtained by inverting

(IO}
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r (s) =s exp[ T(s, k)] (11) asymptotic form of 1(.o and expT=1+T, yields

and E =k fi /2p F. rom the above equations one can ob-
tain numerically the potential V(r). For large r, the
equations can be solved approximately. Large r corre-
sponds semiclassically to large A, . In this region,

V(r)=
kr

1/2
2

Evp(k) ln(k s +rl )
n.b,(k)

v, (X,k) vp-(k)e '-"(k),
g~ (X)

eX-
—( ks —A,o) /5( k)

&ks
(14)

dv (A,, k) vo(k) ko(k)/a(k) —k/a(k)
dA, k- b,(k)

Vp ko(k)/a(k)

b(k)

/ e
—A, /a( k) ln( $2+ g2 )

(12)
with s=r F.rom Eq. (14) one can see that the potential
V(r) consists of the Coulomb potential, 2rIE/kr, and a
nuclear potential which varies with r, for large r, as
ln(kr) exp( kr/b—)/&kr. A Woods-Saxon well in r,

where A,o=lo+ —,'. One then obtains Vws= Vo/t 1+exp[(r pp}—/5]I (15)

vo(k)
T(s, k)= — ln(k s +r) )

ks nb, k

A 0
/5( k ) k$

b,(k}
(13)
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FIG. 2. Same as Fig. 1 with g=18.22, E =100.0 MeV,
k =7.63 fm ', Uo ——12, A.o——30, and 6=8.

where Ko is the modified Bessel function. Using the

would produce a behavior as exp( r/5}, ver—y similar to
that obtained in Eq. (14). One notes that if the surface
diffuseness 5 is constant in r space, Eq. (14) implies that
the surface diffuseness b, in I space should increase with
k. We have also checked the accuracy of Eq. (14) by
direct numerical evaluation of the integrals. We note
that, if we neglect the slowly varying logarithm term, the
SO(3, 1) S matrix with the parametrization (5) produces a
potential, r ' e ",which is different from that ob-
tained using the eikonal approximation for an SO(3,2) S
matrix with the same parametrization r / e
This is due to the different form of the S matrix. The
eikonal analysis of Amado and Sparrow would produce
the same result as our analysis if applied to the SO(3,1)
amplitude.

In conclusion, we have performed a semiclassical
analysis of the SO(3, 1) amplitude with the parametriza-
tion (5) which exposes the correct physical behavior of
the model when applied to heavy-ion scattering. Our
analysis has been limited to absorption-free scattering
and should be repeated for absorptive scattering. In the
latter case one could use the method recently developed
by two of us in order to relate the absorption-modified
amplitude to the absorption-free amplitude. Conversely,
one could directly construct absorption-modified ampli-
tudes by making the "algebraic potential" v (1,k) complex
as discussed in Ref. 2.

Apart from elucidating the physical nature of the
SO(3,1) amplitude, the analysis presented here could be of
practical interest in those situations where the semiclassi-
cal approximation is a good one. In particular we have in
mind here molecular scattering data. In this case the po-
tential v (I, k) can be taken to be real and an appropriate
parametrization of it would produce a parametrization of
the deflection function e(A, ), which is of practical impor-
tance. Results of the analysis of atom-atom, atom-
molecule, and molecule-molecule collisions using this
method will be presented elsewhere.

This work was supported in part by the Conselho Na-
cional de Pesquisas, Brazil, by the U.S. Department of
Energy under Contract No. DE-AC02-76 ER 03074, and

by a J. S. Guggenheim Fellowship.



38 BRIEF REPORTS 1075

'Y. Alhassid, F. Gursey, and. F. Iachello, Ann. Phys. (N.Y.)
148, 356 (1983);A. Frank and K. B. Wolf, J. Math. Phys. 26,
1973 (1985); Y. Alhassid, F. Gursey, and F. Iachello, Ann.
Phys. (N.Y.) 167, 181 (1986);J. Wu, F. Iachello and Y. Alhas-
sid, &'bid. $73, 68 (1987).

F. Iachello, Rev. Bras. Fis. 18, No. 2 (1988); Y. Alhassid, F.
Iachello and B.Shao, Phys. Lett. B 201, 183 (1988).

3M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1970), p. 257.
4M. S. Hussein and M. W. McVoy, Prog. Part. Nucl. Phys. 12,

103 (1984).
5U. Buck, Rev. Mod. Phys. 46, 369 (1974).
R. D. Amado and D. A. Sparrow, Phys. Rev. C 34, 1997

(1986).
7M. S. Hussein and M. P. Pato (unpublished).


