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We report microscopic calculations of the equation of state for dense nuclear and neutron matter.
The calculations are performed for five Hamiltonians: the Argonne u && and Urbana v &4 two-nucleon
potentials, both alone and with the Urbana VII three-nucleon potential, and the density-dependent
Urbana u&4 plus three-nucleon interaction model of Lagaris, Friedman, and Pandharipande. The
beta-stable equation of state and neutron star structure are also calculated for three of the models.
The models with the three-nucleon potential bracket the density-dependent model and are
significantly stiffer than those with an unmodified two-nucleon potential only. The Argonne u&4

plus Urbana VII Hamiltonian produces a softening in the neutron matter equation of state localized
around twice nuclear matter density which may indicate a neutral pion condensate.

I. INTRODUCTION

The dense nucleon matter equation of state (EOS} is of
significant interest in physics. It plays an important role
in high-energy heavy-ion collisions, supernovae, and neu-
tron star structure. Symmetric matter having N=Z at
temperatures T) 10 MeV and densities up to 4 p„,
where p„=0.16 nucleons fm is the empirical nuclear
matter saturation density, may be produced in heavy-ion
collisions. Supernovae collapse involves neutron rich
matter with N=2Z at moderate temperatures T=1-10
MeV and densities up to 4 p„. Neutron star structure
involves almost pure neutron matter with N ~)Z at T =0
and densities up to 8 p„.

In this paper we calculate the EOS for dense nuclear
and neutron matter at zero temperature for Hamiltonians
of the form:

H= g V+ guj+ g Vjk .
i ™i(j i(j(k

Here v; is a two-nucleon potential that fits nucleon-
nucleon (NN) scattering data and deuteron properties and
V; k is an explicit three-nucleon interaction. The energy
as a function of density E(p) is calculated using the vari-
ational method with correlation operators, and tables are
provided for interpolating to arbitrary proton fraction x.
The results should constitute the best microscopic EOS
for dense matter constrained by NN data.

The most recent attempt to calculate the EOS from a
variational framework is the work of Friedman and Pan-
dharipande' (FP}, based on the Urbana u, 4 plus three-
nucleon interaction (TNI) model of Lagaris and Pan-
dharipande. The Urbana v, 4 plus TNI model is a
density-dependent modification of the Urbana v&4 two-
nucleon potential. Like other comparable potentials
that fit two-nucleon data, the Urbana u &4 potential under-

binds the light nuclei H and He while overbinding nu-
clear matter. The density-dependent modification was
intended to represent the effects of three-nucleon interac-
tion, which is expected theoretically as a consequence of
suppressing non-nucleonic degrees of freedom [e.g. b,

(1232) isobar resonances] in the construction of any two-
nucleon potential. Parameters in the density-dependent
modification were adjusted so that variational calcula-
tions with the full model gave the correct binding energy
and density and a reasonable compression modulus for
symmetric nuclear matter.

Recent progress in nuclear many-body theory now al-
lows us to calculate the dense matter EOS for the more
general Hamiltonian of Eq. (1.1}. This paper is intended
as an updating of the work of FP that examines the
consequences of using explicit V, constrained by nuclear
data. Several technical improvements have been incor-
porated in the calculation of energy expectation values,
and a more thorough search for the best variational wave
functions has been performed. The Hamiltonians we
consider here combine either the Argonne v, 4 (AV14)
(Ref. 5) or Urbana u|& (UV14) two-nucleon potentials and
the Urbana VII (UVII) three-nucleon potential. For
comparison we also perform some calculations with the
AV14 and UV14 models alone, and for the UV14 plus
TNI model.

The plan of this paper is as follows. The Hamiltonians
are described in Sec. II. The variational method used for
calculating E(p) is brielly reviewed in Sec. III. We in-
clude a discussion of error estimates and the method of
searching for the best variational trial functions. Details
of the technical improvements in the expectation values
are relegated to Appendix A. The results of the method
for both nuclear matter and light nuclei are compared to
the results of other calculations in Sec. IV to demonstrate
the validity of the variational method and the quality of
the Hamiltonians. The E(p) results for dense nuclear
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and neutron matter are summarized in Sec. V, while the
explicit wave functions for models with three-nucleon in-
teraction are given in Appendix B. A method for inter-
polating to arbitrary proton fraction x is discussed in Sec.
VI and E(p, x ) for beta-stable matter is given there. The
results of neutron star calculations using the present EOS
are given in Sec. VII and compared to current observa-
tional data. One intriguing result of the present studies is
an observed softening in the neutron matter EOS for the
AV14 plus UVII model that may be due to neutral pion
condensation; some remarks on this effect are given in
Sec. VIII. A comparison to other recent work and our
conclusions are presented in Sec. IX.

II. HAMILTONIANS

The AV14 and UV14 models have an identical struc-
ture, but differ significantly in the strength of the short-
range tensor force and consequently in their predicted
equations of state. They are called v, 4 models because
they can be written as a sum of 14 operator components:

14

v;, = g [u~ (r,, )+ vf(r,, )+up(r, , )]Of~,
p=1

(2.1)

where the seven odd-numbered operators O~ are 1,
a; o, , S;, L S, L, L (cr; cr ), and (L S), and the seven
even-numbered operators are each of these times ~;.r .
(For convenience we will sometimes use abbreviations c,
r, 0, err, t, and tr for p =1,6.) The three radial com-
ponents of Eq. (2.1) include: the long-range one-pion ex-
change part u~ (r), which has only caw and tr terms:

ponents, i.e., S'=S"=0, which results in a weak tensor
force that vanishes at the origin. The Argonne tensor
force is finite at the origin and at intermediate distances
looks very much like the Paris potential (which, howev-
er, has a sharp cutoff at short distances that makes it van-
ish at the origin also). The corresponding deuteron D
state is 6.1% for AV14 and 5.2% for UV14, which brack-
et the Paris value of 5.8%. The behavior of the tensor
potentials is illustrated in Fig. 1.

The v, 4 operator format used in the AV14 and UV14
models is very convenient for configuration-space varia-
tional calculations. A number of other modern potentials
can be written in a similar form. The parametrized Paris
potential and the coordinate space version of the new
Bonn potential also have 14 components, but use p
terms instead of L . Unfortunately the p terms of the
Paris potential are very large, and the present variational
method cannot calculate their contribution in matter
with acceptable accuracy. The L terms of the AV14 and
UV14 models are much weaker and the probable errors
in their evaluation are small. The NN data is adequately
fit with either kind of model.

Many-nucleon interactions that cannot be represented
by iterating a two-nucleon potential can occur in nature.
Some examples are shown in Fig. 2. Many-body poten-
tials can be used to represent these interactions. We ex-
pect that three-body potentials will be the most impor-
tant and hope that four-body interactions can be neglect-
ed. Lagaris and Pandharipande argued that a reasonable
procedure for constructing a three-body potential is to
make an expansion of the form:

V J&
——g g U&u&(rj )u&(r;k )P&(cos8; ),

I cyc

(2.6)

where the U& are strength parameters, u&(r) are functions
of interparticle distance, 0, is the angle between vectors(2.2)
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vf(r)=I~T (r); (2.4)

and a short-range part, coming from the exchange of
heavier mesons or overlap of composite quark systems,
which is given a Wood-Saxon shape:

an intermediate-range part vJ(r) that comes from two-
pion exchange processes and whose shape is represented
by the square of the one-pion exchange tensor function
T(r):

PARI

UV

40
,'I
', I

I

50T
l

I

~ Zo~
I

I

I
I

I0r'
I

)

pl I

0

vg(r) =S~W(r) —=S~ 1+exp r —R
(2.5)

r (fm)

The parameters IP and SP were determined by fitting NN
scattering data and deuteron properties.

The chief difference between the AV14 and UV14 mod-
els is that the latter has no short=range tensor com-

FIG. 1. The tensor-isospin component v "(r) of the two-body
potential is shown for Argonne v&4 (solid line), parametrized
Paris (short-dashed line), Urbana v&4 (dash-dotted line), and for
one-pion exchange with a A =7m „monopole form factor
(long-dashed line).
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FIG. 2. Representative diagrams that can contribute to
many-body potentials.

r; and r;k, and g,„, represents a sum of three terms
given by a cyclic permutation of the indices i, j, and k.
At high densities the l =0 term will dominate, and
empirically it must be repulsive. The I&0 terms can be
attractive through correlation terms, but these should
saturate at high density.

The UVII three-nucleon potential combines a long-
range two-pion exchange part and an intermediate-range
repulsive part:

2m R
;jk = VJI + Vjk (2.7)

with

+ —,
' [x;,,x;k ][r; r, , r, rk ]}, (2.8)

x~) ——Y(r, )o; cr +T(r, )S,", " (2.9)

where Y(r) and T(r) are the same one-pion exchange
Yukawa and tensor functions of the two-nucleon poten-
tial defined in Eqs. (2.2) and (2.3). The repulsive part is
taken as

V,",k
——g UT (r, )T (r;k ) .

cyc

(2.10)

Such a term could come from separable diagrams with
intermediate-isobar states, as illustrated in Fig. 2(b),
which appear in variational calculations of nuclear
matter with explicit isobars.

The constants A and U were chosen to give the best
overall fit to the binding energies of the light nuclei H
and He and to the saturation density and binding energy
of nuclear matter in variational calculations. More so-
phisticated two-pion-exchange three-nucleon potentials
have been proposed by the Tucson-Melbourne' and Bra-

The attractive two-pion exchange part contains terms
with an I =2 character and dominates at low density; it
provides the extra binding that is required in light nuclei.
The repulsive part has an l =0 character and dominates
at high density; it gives the extra saturation required in
nuclear matter.

The two-pion exchange part has the structure expected
from intermediate-state P-wave AN scattering, as illus-
trated in Fig. 2(a).

V;,„=g A(Ix;, ,xk I Ir; ~), r; r„I
cyc

zil" groups, which add S-wave m.¹cattering terms, as il-
lustrated in Fig. 2(c). In Faddeev calculations' of H
these potentials and the V; k of Eq. (2.8) give very similar
contributions. The contribution of V;".k in H is compara-
ble to the dispersion correction for intermediate states
with isobars estimated by the Hannover group. ' Thus
the strengths A and U of the VVII potential are reason-
able. The structure is also consistent with the AV14 and
UV14 two-nucleon potentials because the same Y(r} and
T(r) functions are used.

The UV14 plus TNI model approximates the effect of
V~k by adding two density-dependent terms to the UV14
two-body potential: a three-nucleon repulsion (TNR)
term designed to represent the effect of the I =0 part of
Eq. (2.6) and a three-nucleon attraction (TNA) term for
the I&0 parts. The TNR term is taken as the product of
an exponential of the density with the intermediate-range
part of v;. , such that

14

U )4+TNR = g [u J' (r; )+ v f( .r," )exp( —y &p)
p=1

+ Ug(r, , )]0(', (2.11)

with y, =0.15 fm . The primary effect of this term is the
reduction of the intermediate-range attraction of the
two-nucleon potential, with three-body interactions
effectively contributing y&pvf. T—he use of an exponen-
tial approximates higher-order (four-body and up) in-
teractions as a series of terms with alternating signs. This
is expected for a separable diagram series, a four-body
term of which is shown in Fig. 2(d). This approximation
also assumes that V; k has a more complicated spin and
isospin dependence than the simple central force of Eq.
(2.10).

The attractive Vjk interaction is not treated micro-
scopically by FP. They assume that its contribution to
matter has the form

TNA=y~ exp( —y~)(3 —2P ), (2.12)

where P=(p„—p )/p and y2 ———700 MeV fm and

y 3
——13.6 fm . The values of y „y2, and y 3 were obtained

by fitting nuclear matter saturation properties in varia-
tional calculations. The very large value of y3 guarantees
that the TNA term is negligible at higher densities. The
effect of the attractive V; k on the wave function is also
neglected by FP.

III. VARIATIONAL METHOD

The present many-body calculations use the variational
method with operator correlations and Fermi hypernet-
ted chain —single-operator chain (FHNC —SOC) integral
equations. ' ' * A variational trial function 4„ is con-
structed and used to evaluate the Rayleigh-Ritz upper
bound to the ground-state energy:

(q, (0 [e„)
(q ~q )

(3.1)

Parameters in 4, are varied to minimize E„and the best
%', can then be used to evaluate other operators of in-
terest. For the method to be effective, the trial function
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must give a good representation of the full many-body
wave function and the expectation value of the Hamil-
tonian must be accurately evaluated.

We construct +, from a symmetrized product of two-

body correlation operators acting on an unperturbed
ground-state:

0.8

04

NUCLEAR
——-NEUTRON

SQF; (3.2}

where for nuclear matter 4 is the antisymmetrized
Fermi-gas wave function:

0

4= A g exp(ik, . r, ) . (3.3)
-0.04 —',

The correlation operator F," represents the correlations
induced by the complicated two-nucleon potential, so in
nuclear matter it is written as

-0.08 l

2
f (fm)

8

F,J ——g f~(r;J.;d, a )1'"0/~,
p=1

(3 4)

where the Oi' are the first eight operators used in Eq.
(2.1} and di', ai', and P' are variational parameters. In
neutron matter, because isospin-dependent forces are not
distinguishable from their isospin-independent partners,
only the four odd-numbered correlations are necessary.
The radial functions f~(r} are generated by solving a set
of eight (or four) coupled differential equations that mini-
mize the two-body cluster contribution of a quenched po-
tential v;J = gatv~(r, , ) subject to the boundary condi-
tion

(3.5)

Eq. (3.4) suggests up to 30 variational parameters might
be used (eight each for d and p' and 14 for a&) but in
practice this number is reduced to three or five, as dis-
cussed below. A representative picture of the most im-
portant correlations is shown in Fig. 3: f', f ', and f"
in nuclear matter and f ', f, and f ' in neutron matter.

Expectation values of the full Hamiltonian for this
correlation operator trial function are evaluated in a di-
agrammatic cluster expansion with the aid of
FHNC- SOC integral equations. The details of this
method for central, spin, tensor, and isospin two-body
potentials and correlations (p = 1 —6) are reviewed in Ref.
14 and extended to spin-orbit terms (p =7—8) in Ref. 15
and to l. and (l. g potentials (p=9 —14) in Ref. 2. The
evaluation of three-body potentials is discussed in Ref. 4.
The kinetic energy is evaluated with both the
Pandharipande-Bethe (PB) and Jackson-Feenburg (JF)
forms. ' The energies reported here are the average of
PB and JF evaluations.

In the diagrammatic cluster expansion, use is made of
the feature that the correlations are short ranged ( & d")
and that the noncentral correlations f~~' are all small
(typically & 0.05). All two-body cluster contributions are
evaluated exactly. The effect of central correlations be-
tween an interacting pair and other particles is summed
by the Fermi hypernetted chains, ' which include three-
body clusters exactly and higher contributions of infinite

FIG. 3. Correlations in nucleon matter: the solid lines corre-
spond to f', f ', and f" in nuclear matter, while the dashed
lines give f', f, and f' in neutron matter. Both sets are for
AV14 plus UVII at p =0.15 fm

order in particle number. The effect of noncentral corre-
lations is more difficult to compute because of the non-
commuting nature of the O~. The leading contributions
of the spin, tensor, and isospin correlations to any many-
body cluster can be evaluated, however, with single-
operator chains and careful attention to "separable" dia-
grams. ' A total of 29 (14) coupled nonlinear integral
equations are solved iteratively in nuclear (neutron)
matter with the FHNC-SOC method. Spin-orbit corre-
lations cannot be chained and are evaluated at the three-
body cluster level. '

The accuracy and convergence of the diagrammatic
cluster expansion has been studied' by evaluating several
classes of higher-order terms. The convergence is good
enough at normal nuclear densities (p= 1 —2 p„) that the
higher-order terms (which require significant computa-
tional effort) have generally been neglected. However, re-
cent studies of the proton-proton structure function in
nuclear matter for application to inelastic electron
scattering, ' combined with the higher densities studied
in this work, suggest the necessity of incorporating
several classes of higher-order terms. These include
multiple-operator chains and rings, double single-
operator chains, chain-ring diagrams, and separable dia-
grams and vertex corrections in exponential form. By
careful selection of the most important terms, the added
computation has been kept to a minimum. The technical
details of these added terms are given in Appendix A.

We have four areas of concern regarding the accuracy
of the expectation values. The first involves the adequacy
of the FHNC approximation for many-body contribu-
tions from central correlations. One measure of the error
in this approximation is the difference between PB and JF
evaluations of the kinetic energy. At p„ this difference
is 1 (0.1) MeV for nuclear (neutron) matter with the
AV14 plus UVII model, while at 4 p„ it is g (3) MeV.
We expect the correct result to be between the PB and JF
values, so the average of PB and JF evaluations reported
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in the present work should be in error by less than half
the difference. The difference between PB and JF evalua-
tions is given for some of the calculations in Appendix B.

The second concern is the adequacy of the SOC ap-
proximation for spin, isospin, and tensor correlation con-
tributions. One measure of its accuracy is the size of the
newly added terms discussed in Appendix A. At p„
these give less than 1 MeV total contribution in either nu-
clear or neutron matter, but at 4 p„ they give about 8

MeV. If the next set of higher-order terms has a similar
rate of convergence, we expect errors of less than 4 MeV
at 4 p„. Another measure of the accuracy for the
FHNC-SOC approximation is how well the integral con-
dition on the operator components of the pair distribu-
tion function g (r) is satisfied

p f d r[g'(r) —1]=—,'p f d rg'(r)= —1 .
0 0

(3.6)

The values of these integrals are also tabulated with the
results in Appendix B. In the search for optimal varia-
tional parameters, these integrals are satisfied within 10%
for nuclear matter up to 3 p„. At higher densities the
integral condition may be violated by more than 10%, so
a constraint is added to the search procedure to keep the
integral within 10% of their required values.

The third concern is the treatment of spin-orbit corre-
lations. Here the accuracy is more difficult to estimate
and the best test is probably an indirect one: the compar-
ison between Brueckner-Bethe and variational calcula-
tions in nuclear matter, discussed in more detail in Sec.
IV. The difference between Brueckner-Bethe and varia-
tional calculations does not change when progressing
from a v 6 model problem without spin-orbit potentials to
the full v, 4 models, which suggests the spin-orbit correla-
tions are being adequately treated. ' Unfortunately this
comparison has not been made in neutron matter, or
above 2 p„ in nuclear matter, where the spin-orbit terms
may be expected to become relatively more important.

Our fourth concern is the evaluation of the three-body
potential. To estimate its uncertainty we have calculated
the contribution of terms with three noncentral correla-
tions (one between each pair) to the expectation value of
VJI, in nuclear matter. These are expected to be the larg-
est terms not calculated in previous work. Their contri-
bution is 0.1 MeV at p„but can be as big as 7 MeV at 4
p„or about 10% of V, k. If neglected higher-order
terms are smaller by the ratio of these three-correlation
terms to the lower-order terms, they would be =1 MeV
at4 p„.

We have tried to estimate our total uncertainty in the
expectation values by several different methods, which in-
volve a detailed analysis of the different diagram contri-
butions in the cluster expansion. The error estimates are
0.5 MeV at p„, 2.5 MeV at 3 p„, and 5 MeV at 6 p„.
We have tried to minimize the possibility of program-
ming errors by computing most of the terms with two in-
dependently written codes, and carefully comparing re-
sults to search for and repair discrepancies.

The search for the best variational trial function is
greatly simplified by reducing the 30 possible parameters
d, a, and P' of Eq. (3.4) to a more manageable three to

five parameters. We make the approximation that the
tensor correlations, p =5—6, have a range d' and all other
correlations, p=1 —4, 7—8, have a range d, with d (d'.
We also approximate the quenching factor a~ with two
values: either 1 or a. In nuclear matter we take a1'=1
for central, L, and quadratic spin-orbit forces,
p = 1,9, 13—14, and a for all others, p =2 —8, 10—12. In
neutron matter, since isospin dependence disappears, this
changes to u~= 1 for p = 1-2,9—10,13—14 and a, for the
remaining ones, @=3—8, 11—12. For cases with two-
body potentials only, all P' are set to unity. 20

When three-body potentials are present, we introduce
two values for fY~" P for @=2—4, 7—8 and P' for
p =5—6; normalization requires that P'=1. This extra
flexibility allows for the fact that the best trial function
for the full Hamiltonian can differ moderately from that
for the two-body potential alone and can give a
significant lowering of the energy. This is particularly
true in neutron matter. If we restrict ourselves to the
three parameters d, d', and u for AV14 plus UVII in nu-
clear (neutron) matter, the energy at p=0. 15 fm is 0.1

(1.9) MeV higher, while at p=0. 50 fm it is 8.4 (25.5)
MeV higher. The addition of these parameters to the
two-body potential case makes only a marginal improve-
ment: for AV14 in nuclear (neutron) matter at p=0. 15
fm the energy is reduced by only 0.01 (0.04) MeV,
while at p=0. 50 fm the energy is reduced by 0.2 (0.6)
MeV.

An automated search for the best variational parame-
ters has been made in the present work. The procedure
uses a modified simplex ' search in the parameter space
to find an approximate minimum, followed by a quadratic
fit to refine the minimum. Due to technical reasons in-
volving grid spacings, the ratio d/d' is varied in fixed
steps while the values of d', a, P, and P' are searched in
a continuous fashion with the simplex-quadratic method.
As mentioned above, a constraint is added at higher den-
sities to keep the integral conditions of Eq. (3.6) for g'
and g' reasonably well satisfied. This constraint involves
simply adding to the energy a constant times the sum of
the squares of the deviations from unity in Eq. (3.6), i.e.,
we minimize the quantity:

P

2

E+C 1+p d r g' r —1 + 1+'p rg'r
0 0

Here C may range from 500 MeV at 3 p„ to 2500 MeV
at 10 p„. This constraint helps ensure that the expecta-
tion values are reasonably accurate, but may artificially
increase the upper bounds to the energy. Despite the
constraint, we find upper bounds for the UV14 plus TNI
model that are below those reported by FP at higher den-
sities.

On average about 40 function evaluations per density
are made for the three-parameter searches, and about 90
function evaluations per density for the five-parameter
searches. Final runs are made at the minimum point
with extra iterations of the FHNC —SOC equations and
integration grids that are twice as fine. The search plus
final run requires 1.5 (6) min CPU time on one processor
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of a Cray X-MP for neutron matter with two-body poten-
tials (nuclear matter with three-body potentials) per den-
sity point near p„. Higher densities require more itera-
tions of the FHNC —SOC equations to achieve a stable re-
sult.

Interesting differences occur in the search for the best
0, in nuclear and neutron matter. When three-body po-
tentials are added to the Hamiltonian in nuclear matter,
the best 4„ is only slightly different from that for two-
body potentials. Quite good energies can be obtained by
keeping the same d, d', and a values and letting P and P'
vary from unity, with p typically increasing to 1.2—1.4 in
the range from p„ to 2 p„. In neutron matter the effect
of adding three-body potentials is far more dramatic,
with the best 4'„having a p' that is up to eight times
larger than the two-body potential alone would require.
(See the wave functions tabulated in Appendix B.) This
difference is attributable to the tensor correlations in-
duced by Vjk. In nuclear matter there are sizable tensor
correlations coming from the strong isospin singlet two-
body tensor potentials, so a relatively small change in %'„

is induced when V&k is added. However, neutron matter
has weak tensor correlations from the isospin triplet
two-body tensor potential, and the addition of V; k in-
creases then by a large factor.

IV. LIGHT NUCLEI AND
NUCLEAR MATTER SATURATION

Variational calculations with the AV14 and UV14 po-
tentials, with and without UVII, have been made for the
light nuclei H and He as well as for the saturation prop-
erties of nuclear matter. ' The light nuclei calculations
use a trial function similar to Eq. (3.2) containing central,
spin, and tensor-isospin (p =1,3,6) two-body correlation
functions, and also a three-body correlation. Expectation
values are evaluated with Monte Carlo sampling.

The variational results for H and He and for the satu-

ration properties of nuclear matter are compared to the
experimental binding energies and empirical saturation

properties and to a variety of other calculations in Table
I. (We take the empirical nuclear matter properties to be
volume binding energy per particle Eo = 16 MeV at satu-
ration density po ——0.16 frn, as derived from a number
of semiempirical mass formulas, and compression
modulus Eo ——220 MeV, as observed both in isoscalar
breathing modes and in isotopic differences in interior
charge densities in large nuclei. ) The variational results
show the well-known features that the two-body poten-
tials alone tend to underbind the light nuclei while sa-
turating nuclear matter at too high density. The three-
body potentials were adjusted to improve the variational
results as much as possible, and are seen to give correct
energies for the light nuclei and improved nuclear matter
properties.

Other results shown in Table I include 34-channel Fad-
deev calculations' for AV14 and AV14 plus UVII in H,
an estimate for AV14 in "He based on a Green's function
Monte Carlo (GFMC} calculation for a simplified v6
model problem, a Brueckner-Bethe calculation' for
AV14 in nuclear matter, and a correlated basis function
(CBF) calculation for UV14 plus TNI in nuclear matter.
The 34-channel Faddeev results are essentially exact, and
show that the variational calculations underestimate the
binding energy of H by =0.6 MeV. A GFMC calcula-
tion for He has been made with a truncated u6 version of
AV14 (operator components p= 1 —6) yielding —24. 8
MeV, which compares to a variational result of —22. 8
MeV for the same model. We therefore estimate that the
true energy for AV14 in He will be 2 MeV below our
variational result of —22 MeV, and have entered —24
MeV in Table I with the label "estimate (GFMC)." The
Brueckner-Bethe calculation includes three- and four-
hole-line contributions; its E (p} falls below the variation-
al result by =2-3 MeV per particle in the range 1 —2 p„.
The second-order CBF perturbation correction to the
variational energy lowers the variational result by 1 —2
MeV.

Nuclear matter saturation curves are shown in Figs. 4
and 5. The variational curves for AV14, AV14 plus
VVII, UV14, and UV14 plus UVII are shown in Fig. 4.

TABLE I. Energies of light nuclei and saturation properties of nuclear matter from experiment and
various calculations for five Harniltonians as described in the text.

Calculational
method 'H

Light nuclei
{MeV)

4He

Nuclear rnatter
saturation properties

Ep (MeV) pp (frn ) Ep (MeV)

Nature
AV14

AV14 plus UVII

UV14
UV14 plus UVII

UV14 plus TNI

Experiment
Variational

34-channel Faddeev
Estimate (GFMC)
Brueckner-Bethe

Variational
34-channel Faddeev

Estimate (BB)
Variational
Variational

Estimate (CBF)
Variational

CBF

—8.48
—7.1
—7.67

—8.4
—8.99

—7.2
—8.5

—28.3
—22.0

—28.0

—23.0
—28.0

—16.0
—15.6

—17.8
—12.4

—15.2
—17.1
—11.5
—13.3
—16.6
—18.3

0.16
0.319

0.280
0.194

0.194
0.326
0.175
0.183
0.157
0.163

220.0
205.0

247.0
209.0

244.0
243.0
202.0
224.0
261.0
269.0
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FIG. 4. Nuclear matter E(p) from variationa1 calculations is
shown for four Hamiltonians: AV14 (long-dashed line), UV14
(short-dashed line), AV14 plus UVII (solid line), and AV14 plus
UVII (dash-dotted line); the Brueckner-Bethe results for AV14
are shown as points with errors bars.

Also shown are the Brueckner-Bethe results for AV14
obtained by Day. ' The variational curve for UV14 plus
TNI, which is close to the empirical E(p), is shown in

Fig. 5 along with the results obtained by FP. Also shown
in Fig. 5 is an estimate of the AV14 plus UVII saturation
curve, obtained by adding the difference between the
Brueckner-Bethe and variational calculations of AV14 to
the variational result for AV14 pulse UVII, and an esti-
mate of the UV14 plus UVII saturation curve, obtained
by adding the CBF corrections calculated for UV14 pius
TNI to the variational result for UV14 plus UVII. The
saturation properties of these curves are also given in
Table I labeled estimate (BB)" and "estimate (CBF)."

These estimates may give a better representation of the
exact E(p) for these Hamiltonians than the variational
calculations alone.

Qualitatively all the many-body results are consistent.
The quantitative differences between the variational and
more exact results probably reAect inadequacies in the
trial function +„and not errors in taking expectation
values. With the more exact calculations it is clear that
the UVII three-body potential is too attractive when used
with AV14 or UV14 in the light nuclei, and does not give
the correct saturation properties in matter, though it is a
significant improvement over the two-body potentials
alone. In principle a model VIII could be constructed by
readjusting the constants A and U of Eqs. (2.8) and (2.10)
to obtain a best fit to light nuclei binding energies and nu-
clear matter saturation with the more exact calculational
methods. However, significant further development is re-
quired in the four- or more-body problems before a truly
accurate fit can be done. It may also be necessary to con-
sider the effect of more general three-body potentials and
four- or more-body potentials. Despite these inadequa-
cies we believe the UVII model is sufficiently interesting
to use in a first study of three-body potential effects in
dense nucleon matter.

V. RESULTS FOR DENSE NUCLEAR
AND NEUTRON MATTER

The results of our E(p) calculations for nuclear matter
are shown in Table II and Figs. 4, 5, and 7 and for neu-
tron matter in Table III and Figs. 6 and 7. The energies
tabulated are the average of PB and JF kinetic energy
evaluations. More details for the AV14 plus UVII, UV14
plus UVII, and UV14 plus TNI calculations are given in
Appendix B, including the wave functions, PB-JF energy
differences, and the values of the pair-distribution func-
tion integrals of Eq. (3.6).
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FIG. 5. Nuclear matter E(p) is shown for the variational cal-
culation of UV14 plus TNI (dashed line), for the Brueckner-
Bethe corrected estimate of AV14 plus UVII (solid line), and the
CBF corrected estimate of UV14 plus UVII (dash-dotted line);
FP results for UV14 plus TNI are shown by + 's.

FIG. 6. Neutron matter E(p) is shown at low density for
AV14 (long-dashed line), UV14 (short-dashed line), AV14 plus
UVII (solid line), UV14 plus UVII (dash-dotted line), and UV14
plus TNI (dashed line); FP results for UV14 plus TNI are shown
by + 's.
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FIG. 7. High-density E(p) for nuclear matter (lower curves)
and neutron matter (upper curves): AV14 plus UVII (solid

lines), UV14 plus UVII (dash-dotted lines), and UV14 plus TNI
(dashed lines).

Nuclear matter is slightly more bound with the UV14
model than with the AV14 model. This is consistent with
the conventional wisdom that a two-body potential with
smaller deuteron D-state percentage will be more bound.
However, when the UVII three-body potential is added
the order is reversed, and AV14 plus UVII is more bound
than UV14 plus VVII. This is due to the attractive V; k

part of UVII, which can take advantage of the stronger
tensor correlations present in AV14 to lower the energy
more. For example, at p=0. 15 (0.5) fm the expecta-
tion value of V; k is —4.03 ( —52.4) MeV for AV14 plus
UVII, but only —2.90 ( —41.9) MeV for UV14 plus
VVII. The contribution of the V;"I, part of VVII is in-

sensitive to the two-body potential, having an expectation
value at p=0. 15 (0.5) fm of 3.44 (55.4) MeV for AV14
plus UVII and 3.45 (53.2) MeV for UV14 plus UVII.

In neutron matter UV14 is more repulsive than AV14.
This may also be due primarily to differences in the ten-
sor components of the two-body potential, but this ques-
tion has not been systematically studied in neutron
matter as it has in nuclear matter. UV14 is even more
repulsive with the addition of V;;k. AV14 has stronger
tensor correlations, even in isospin triplet states, and
these couple with V;k to provide more attraction. At
p=0. 15 (0.5) fm the neutron matter expectation value
for V, k with AV14 plus UVII is —0.75 ( —26.4) MeV,
but with UV14 plus UVII is +0.45 ( —11.8) MeV.
Again the expectation value of V,"k is insensitive to the
two-body potential, giving 2.47 (53.3) MeV with AV14
plus UVII and 2.63 (52.9) MeV with UV14 plus UVII at
p=0. 15 (0.5) fm

As discussed in the preceding section, the addition of
V; k to the Hamiltonian significantly reduces the satura-
tion density in nuclear matter, making the equation of
state much stiffer. In neutron matter it also stiffens the
equation of state, and it tends to increase the difference
between neutron and nuclear matter, i.e., it increases the
symmetry energy. This latter feature is a consequence of
the cancellation between attractive contributions to the
expectation value of V; k due to tensor correlations and
repulsive contributions from exchange terms. In neutron
matter the tensor correlations are reduced and exchange
terms are twice as large, both effects leading to reduced
attraction.

The results for UV14 plus TNI at low density are in

good agreement with those published by FP. Their tabu-
lated results are shown in Figs. 5 and 6 as + 's. In nu-

clear matter our results are slightly below theirs up to
p=0.4 fm, are somewhat higher from 0.5 to 1 fm
and lower again above 1 fm . Part of this difference is

TABLE II. Energy of nuclear matter in MeV/particle as function of number density for five Hamil-

tonians.

p (fm ) AV14 AV14 plus VVII UV14 UV14 plus UVII UV14 plus TNI

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

—7.34
—8.03
—9.32

—10.76
—11.99
—13.03
—13.88
—14.99
—15.55
—15.52
—14.94
—12.36

—7.73
—8.43
—9.64

—10.85
—11.74
—12.24
—12.37
—11.43
—9.06
—5.68
—1.39
11.11
29.2
53.4
90.2

189.0
366.0
605.0

—7.46
—8.22
—9.64

—11.25
—12.66
—13.87
—14.87
—16.29
—17.01
—17.06
—16.50
—13.72

—7.53
—8.22
—9.42

—10.56
—11.25
—11.49
—11.26
—9.42
—5.70
—0.47

6.04
24.50
50.4
84.2

126.7
244.3
452.0
717.0

—11.23
—12.41
—14.34
—15.88
—16.52
—16.39
—15.61
—12.59
—8.02
—2.41

4.28
22.97
46.5
76.0

114.8
201.7
321.0
452.0
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TABLE III. Energy of neutron matter in MeV/particle as function of number density for five Hamil-
tonians.

p (fm )

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

AV14

8.65
9.19

10.16
11.22
12.17
13.07
13.92
15.55
17.16
18.80
20.47
24.03

AV14 plus UVII

8.49
9.34

10.90
12.80
14.75
16.86
19.14
22.94
26.56
31.31
37.21
52.94
77.4

109.0
148.5
248.7
420.0
637.0

UV14

8.88
9.45

10.50
11.68
12.86
13.94
15.06
17.39
19.92
22.65
25.65
32.50

UV14 plus UVII

9.46
10.26
11.88
14.03
16.41
19.06
21.99
28.71
35.94
44.14
54.44
79.63

112.2
154.5
204.2
328.3
524.0
756.0

UV14 plus TNI

7.93
8.46
9.58

11.21
13.05
15.17
17.57
23.07
29.35
36.34
44. 12
62.42
84.0

108.8
136.0
200.9
294.0
393.0

due to our use of averaged PB and JF energies, whereas
they computed with the PB form only. The JF energies
are lower than PB up to p=0.4 fm, and higher above
that density. The higher-order terms added in the
present calculation (those discussed in Appendix A) are
negative at densities above 0.5 frn and thus cannot ex-
plain why our results are above theirs in the range 0.5 to
1 fm . In neutron matter our results agree very well
with their results up to 0.8 fm, but are significantly
lower at higher densities. This could be partially ex-
plained because the higher-order terms are negative, but
this is counterbalanced by the PB-JF energy difference
being negative. Our lower energies might also be due to a
more complete search in the space of variational trial
functions.

The UV14 plus TNI energies are significantly lower
than either AV14 plus UVII or UV14 plus UVII at high
density. This is partially due to the fact that the UV14
plus TNI model attempts to include some higher-order
many-body forces as discussed in Sec. II. A crude esti-
mate of the contribution of higher-order many-body po-
tentials arising from separable diagrams like that in Fig.
2(d) suggests that the UV14 plus UVII energy might be
reduced by 2 MeV at 0.5 fm, 20 MeV at 1 fm, and 80
MeV at 1.5 frn, or roughly —„' of the difference with
UV14 plus TNI.

The UV14 plus TNI energy is also lowered because of
the assumed spin and isospin dependence of its TNR
term, Eq. (2.11), since the noncentral parts of ug are
repulsive. To some extent, this may make up for the fact
that the attractive TNA part, Eq. (2.12), completely van-
ishes at high density, while the attractive V;~k part of
UVII continues to increase in magnitude. In retrospect,
a better choice for the TNA term might have been to
modify the pion part of the two-body potential:

14

u, 4+TNI= g ur„(r, }

+up(r, )exp( "y,p)+—ug(r J ) Of),

with yz =0.5. This would have let the TNA part
influence the wave function and would better reflect the
random-phase approximation (RPA) nature of many-
body pion exchange interactions, e.g. , four-body terms
such as that shown in Fig. 2(e}. This modification would
not work in the limit y~=1, but might be reasonable for
densities &1 fm . However, it might not provide
enough flexibility to fit empirical rnatter properties.

VI. ASYMMETRIC AND BETA-STABLE MATTER

Asymmetric matter is important in many astrophysical
contexts, particularly the iron-core collapse of massive
stars which produces type II supernovae and the struc-
ture of the neutron star remnants. Variational calcula-
tions of asymmetric matter using the correlation operator
method were made by Lagaris and Pandharipande
shortly after the FP work on nuclear and neutron matter.
Using the UV14 plus TNI model they looked for depen-
dence of the energy on the asymmetry P=(p„—p~)/p;
we translate here to the proton fraction x =p /p. They
found that terms quadratic in P=(1—2x) were
significant, but that higher-order terms were very small.
Consequently the energy of asymmetric matter E(p, x) is
well approximated by

E(p,x)=r (p, x)+ V (p)+(1—2x)'V, (p), (6.1)

where
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3
TF(p, x)=— (3m p) [x +(1—x) ]

5 2m
(6.2)

I I I I I 1 l 1 I I ] t ] I I

is the Fermi-gas kinetic energy. The functions Vp(p) and
Vz(p) are simply obtained once the results of symmetric
nuclear matter (x= —,') and pure neutron matter (x =0)
calculations are available. The values of Vo and V2 for
AV14 plus UVII, UV14 plus UVII, and UV14 plus TNI
are given in Table IV.

In this work we have not checked numerically whether
the presence of V;~k alters this result, but simple. analysis
of the contributing diagrams suggest that it will continue
to be valid. The V;".k part of UVII should not have any
effect on the approximation because it is isospin indepen-
dent.

The symmetry energy of nuclear matter is

E,(p)= —
2 9'TF(P~——2)+ Vq(p) .1 8 E(p, x)

x= l/2
(6.3)

Kp(x)pp(x) pP= [ur —1], u =
9y

'
pp(x)

(6 4)

The symmetry energy for the five Hamiltonians is shown
in Fig. 8. The addition of Vjk increases the symmetry
energy by 10% at fixed density. The value obtained from
semiempirical mass fits ranges from 30 to 38 MeV at
p„, and the models with three-nucleon interaction are at
the lower end of this range.

The collapse of the iron core of a massive star takes
place at a proton fraction x = —,

' for which the saturation

properties of matter are significantly altered from their
symmetric values. In computer simulations by Baron,
Cooperstein, and Kahana (BCK) the success of a
prompt shock mechanism for the supernova is very sensi-
tive to this change. They have used the simple parame-
trization for the pressure P of the T =0 EOS:

80- UVI4+UV I I

60-

LU 40-

20-

0 I I I I [ ] I I I il I I I I I

0 0.2 0.4 0.6 0.8 ~,0 I.2 l.4

p (fm )

FIG. 8. Symmetry energy E,(p) is shown for AV14 (long-
dashed line), UV14 (short-dashed line), AV14 plus UVII (solid
line), UV14 plus VVII (dash-dotted line), and UV14 plus TNI
(dashed line).

where y is the high-density adiabatic index and the varia-
tion of the compression modulus and saturation density
with proton fraction is taken as

Kp(x) =Kp[1 —2(1—2x) ),
pp(x)=pp[1 ——', (1—2x) ] .

(6.5)

We have used Eq. (6.1) and Table IV to calculate the
energy for our models at x =—,'. They change from the
values given in Table I to: Ep( —,

'
) = —9. 1 MeV at

pp( —,')=0. 178 fm with Kp( —,')=158 MeV for AV14 plus
UVII, and to Ep( —,')= —8.3 MeV at pp( —,')=0. 156 fm

TABLE IV. CoeScients in MeV for interpolation to arbitrary proton fraction for Hamiltonians with
three-nucleon interaction.

p (fm ')
AV14 plus VVII

Vo Vq

UV14 plus UVII
Vo V2

UV14 plus TNI
Vo V2

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

—20.47
—22.36
—25.80
—29.60
—32.92
—35.71
—38.02
—41.20
—42.68
—42.93
—42.11
—36.14
—24.2
—5.7
25.6

114.0
279.0
507.0

8.74
9.59

11.05
12.64
14.05
15.32
16.44
16.88
15.88
15.10
14.68
14.07
16.9
20.9
20.3
15.6
3.0

—26.0

—20.27
—22.15
—25.58
—29.31
—32.43
—34.96
—36.91
—39.19
—39.32
—37.72
—34.68
—22.75
—3.0
25.1

62.1

169.3
365.0
619.0

9.51
10.30
11.81
13.58
15.22
16.76
18.18
20.64
21.90
22.73
24.48
27.37
30.5
35.6
39.5
39.9
21.0

—19.0

—23.97
—26.34
—30.50
—34.63
—37.70
—39.86
—41.26
—42.36
—41.64
—39.66
—36.44
—24.28
—6.9
16.9
50.2

126.7
234.0
354.0

11.68
12.69
14.43
16.08
17.13
17.78
18.11
18.18
17.62
16.87
15.92
11.69
6.2

—1.9
—16.8
—44.9
—78.0

—117.0
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with Ko( —,')=156 MeV for UV14 plus UVII. These

changes are reasonably well approximated by substituting
the Ko and po from Table I into Eq. (6.5). The UV14 plus
TNI model changes to Eo( —,

'
) = —13.3 MeV at

po( —,
'

) =0.150 fm with Ko( —,
'

) =233 MeV, which is not
well represented by Eq. (6.5). The energy shift does not
appear to be very dramatic, as shown in Fig. 9 for the
AV14 plus UVII model. However, the compression
modulus for the first two models is reduced by 25%, and
it is this sort of feature that BCK find to be helpful in
producing prompt shocks.

In Fig. 10 we show the pressure P( —,
'

) for our models

and for the BCK parametrization for y=2.5 and 3 using
the empirical nuclear matter values I( 0

——220 MeV,

po
——0. 16 fm . Allowing for the fact that our models do

not saturate at quite the right density, they correspond
roughly to a y of 3.5. According to BCK, this is too stiff
for a prompt shock mechanism to succeed. However, the
state of supernova simulations remains in flux; recent
work on the evolution of iron-core progenitors produces
smaller progenitor masses which would make prompt
shocks possible with stiffer EOS. It may also be that a
delayed shock mechanism involving neutrino reheating
contributes to the supernova phenomenon. '

The approximation of Eq. (6.1) also makes it very easy
to calculate the energy and proton fraction for beta-stable
matter as found in the interior of neutron stars. Equilib-
rium for the reaction n p+ e requires that

20
I

I6—

I

/
Ky

/

I2-
I E)

8—
CL

U V I4

0 0.2 0.3
p(fm )

0.4
I

0.5

$2
(3 2 )2/3~( 1 x)2/3 x2/3]

2m

+4(1—2x) V2(p) .

For relativistic degenerate electrons,

(6.7)

FIG. 10. P(x = 3) for AV14 plus UVII (solid line), UV14

plus UVII (dash-dotted line), and UV14 plus TNI (dashed line)
compared to the BCK parametrization for y =3 and y = 1.5
(left and right long-dashed lines).

Pn=Pp+Pe ~ (6.6) ( m 2+g2k 2 )1/2 P( 3+px )1/3
e e e

(6.8)

where lu„=BE/dN„ is the chemical potential. We obtain
from Eq. (6.1)

I20

with x =x, because of charge neutrality. Knowing V2(p)
from our nuclear and neutron matter calculations, it is
easy to find numerically the proton fraction as a function
of density x (p) and the corresponding energy E(p, x ).

Just above nuclear matter density p, exceeds the muon
mass m„and the reaction n p+ p is energetically al-
lowed. This alters the beta-stability condition to

IOO—
, npe

lu„—p =ju, =p„=[m„+Pi (3n px„) ]' (6.9)

80—
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w 40—

20—

-20
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l
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FIG. 9. E(p) for AV14 plus UVII is shown for nuclear
matter (long-dashed line), neutron matter (dash-dotted line),

asymmetric matter with x = —,
' (dashed line), beta-stable matter

with electrons only (short-dashed line), and beta-stable matter
with electrons and muons (solid line).

with x=x, +x„. In Table V we tabulate x(p) and
E(p, x) for matter with neutrons, protons, electrons, and
muons in beta equilibrium for AV14 plus UVII, UV14
plus UVII, and UV14 plus TNI. In Fig. 9 we show
E(p,x) for AV14 plus UVII matter with and without
muons. Numerically the addition of muons does not
significantly alter E(p,x ) from the electrons only case,
but it does significantly increase the proton fraction over
a broad range of density. This is illustrated in Fig. 11,
where we show the proton fraction in both the electrons
only and electrons plus muons cases. The addition of real
m to the beta-stability condition should also be con-
sidered at the same time as muons, but a proper treat-
ment would require a better description of the interaction
energy of pions with the nucleons than we are able to
give in this work.

One of the interesting features of Table V and Fig. 11
is the disappearance of the proton fraction at high densi-
ty: p=l fm for UV14 plus TNI and 1.5 fm for
AV14 plus UVII and UV14 plus UVII. This
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TABLE V. Proton fraction and energy in MeV/nucleon of beta-stable matter (neutrons, protons,
electrons, and muons) for three Hamiltonians.

p (fm )

AV14 plus VVII
x(p) E(p,x)

UV14 plus UVII
x(p) E(p, x)

UV14 plus TNI
x(p) E(p,x)

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

0.017
0.019
0.023
0.027
0.031
0.036
0.044
0.051
0.051
0.052
0.055
0.060
0.077
0.099
0.101
0.094
0.066
0.014

7.35
7.94
8.97

10.18
11.43
12.74
14.12
16.96
20.48
24.98
30.44
45.15
66.4
93.6

132.1
233.0
410.0
635.0

0.019
0.021
0.025
0.030
0.035
0.042
0.052
0.069
0.079
0.087
0.097
0.116
0.132
0.155
0.172
0.177
0.122
0.026

8.13
8.66
9.70

11.06
12.59
14.18
15.92
20.25
25.78
32.60
40.72
61.95
90.2

126.2
170.5
291.1
501.0
753.0

0.026
0.029
0.033
0.037
0.042
0.047
0.051
0.057
0.059
0.060
0.060
0.051
0.039
0.023
0.005
0.0009
0
0

5.95
6.06
6.40
7.17
8.27
9.70

11.55
16.29
22.19
28.94
36.60
56.00
79.2

106.1
135.5
200.9
294.0
393.0

phenomenon is due primarily to the greater short-range
repulsion in isospin singlet nucleon pairs compared to
isospin triplet pairs. At high density this short-range
repulsion must dominate and pure neutron matter is
favored. At intermediate densities the strong isospin
singlet tensor potential and correlations serve to keep the
isospin singlet pairs, and thus symmetric nuclear matter,
more attractive than pure neutron rnatter. The presence
of V;k increases the tensor correlations and the attrac-
tion of the tensor forces, and thus delays the onset of the
pure isospin triplet regime.

VII. NEUTRON STARS

e(p)=p[E(p)+mc ],
p( )

2 Ep (7.2)
Bp

The equation of state P(e) is obtained by eliminating p

(7.1)

Neutron star structure is calculated here using the
equation of state P(e) for beta-stable matter for p) 0.08
fm . The mass density e(p) and pressure P(p) are ob-
tained from the E(p, x ) of Table V:

OI4
1 I I I I I I I I I I I I I I I

O.I2-

O. IO-

0.08-

0.06-

0.04—

I I I I I I I I I I I I I I I

2000-
l000-

& (p)500-

200-
IOO-'E
50-

20-
IO—

0.02-

0 I I I I I I I I ~L I I I I I I I

0 0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6
p(fm )

I I

0 0.2 0.4 0.6 0.8 I.O l.2 l.4
p (fm~)

Cj
IO

FIG. 11. Proton fraction x (p) is shown for beta-stable matter
with electrons and muons (upper curves) and electrons only
(lower curves) for AV14 plus UVII (solid lines), UV14 plus
UVII (dash-dotted lines), and UV14 plus TNI (dashed lines).

FIG. 12. Beta-stable matter (n,p, e,p) mass density c(p), pres-
sure P(p), and sound velocity s(p) (in units of c, right-hand
scale) are shown for AV14 plus UVII (solid lines), UV14 plus
UVII (dash-dotted lines), and UV14 plus TNI (dashed lines).
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TABLE VI. Neutron star properties for beta-stable AV14 plus UVII model (neutrons, protons, elec-
trons, and muons).

&c

1014

gcm

2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0

10.0
12.5
15.0
17.5
20.0
25.0
30.0
35.0
40.0

P,
10'4

dyn cm

0.1781
0.2695
0.3842
0.5416
1.064
1.939
3.263
5.214

11.03
23.25
41.16
61.14
85.36

137.8
200.7
262.3
330.4

MG

(Mo)

0.101
0.114
0.131
0.154
0.229
0.344
0.492
0.672
1.05
1.47
1.77
1.93
2.03
2.11
2.13
2.12
2.10

MA —MG

(Mo)

—0.0003
—0.0002

0.00001
0.0004
0.002
0.007
0.017
0.035
0.093
0.199
0.310
0.386
0.440
0.490
0.502
0.497
0.483

(km)

48.24
28.46
20.74
16.54
12.42
10.94
10.45
10.32
10.37
10.41
10.32
10.18
10.00
9.69
9.40
9.19
9.00

(km)

46.92
25.36
16.74
11.83
6.53
4.09
2.83
2.06
1.26
0.79
0.56
0.45
0.38
0.30
0.27
0.24
0.23

I
1044

gcm

0.546
0.502
0.527
0.595
0.903
1.53
2.51
3.93
7.54

12.4
16.4
18.5
19.6
20.1

19.6
19.0
18.2

0.003
0.006
0.009
0.014
0.028
0.050
0.078
0.113
0.194
0.309
0.423
0.508
0.579
0.673
0.735
0.771
0.795

from Eqs. (7.1) and (7.2). Also of interest is the sound ve-
locity s(e) (in units of c):

(7.3)

The calculated e(p), P(p), and s(p) are shown in Fig. 12
for AV14 plus UVII, UV14 plus UVII, and UV14 plus
TNI. In Tables VI —VIII we tabulate P(e) for the
different models, after having interpolated to a uniform
grid in c.

One difficulty with the present calculations is that, for

AV14 plus UVII and UV14 plus VVII, s(p & 1 fm ) & c.
This violation of causality is due to a combination of fac-
tors, including the =p dependence of V;"k, the L.S
(L g, and L terms in u;, and the nonrelativistic treat-
ment in general. Our results above this density are thus
suspect, and unfortunately this includes the prediction of
the rnaxirnurn supportable neutron star mass. However,
the canonical 1.4 Mo neutron star has a central density

,=0.57 fm for UV14 bolus UVII and 0.66 fm for
both AV14 plus UVII and UV14 plus TNI, where the

TABLE VII. Neutron star properties for beta-stable UV14 plus UVII model (neutrons, protons,
electrons, and muons).

&c

1014

gcm

2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0

10.0
12.5
15.0
17.5
20.0
25.0
30.0
35.0
40.0

P,
10'4

dyn cm

0.2159
0.3352
0.5259
0.8006
1.614
2.841
4.619
7.033

13.92
26.49
43.92
65.15
90.44

144.9
203.8
264.6
325.5

MG

(Mo)

0.113
0.138
0.177
0.233
0.377
0.552
0.749
0.953
1.33
1.68
1.91
2.05
2.12
2.18
2.19
2.18
2.15

M„—Mg

(Mo)

—0.0002
0.00001
0.0006
0.002
0.008
0.020
0.040
0.068
0.144
0.247
0.338
0.404
0.447
0.485
0.488
0.478
0.463

(km)

31.43
20.72
15.77
13.41
11.71
11.26
11.15
11.15
11.15
11.05
10.84
10.61
10.38
10.01
9.72
9.50
9.32

(km)

29.92
17.20
10.98
7.63
4.51
3.09
2.27
1.75
1.15
0.78
0.59
0.48
0.41
0.33
0.29
0.27
0.26

I
10"

gcm

0.547
0.609
0.772
1.06
2.01
3.40
5.24
7.40

11.9
16.6
19.7
21.3
22.0
22.0
21.3
20.5
19.7

0.005
0.010
0.017
0.027
0.051
0.081
0.117
0.157
0.243
0.348
0 AAA

0.524
0.589
0.677
0.728
0.759
0.777
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TABLE VIII. Neutron star properties for beta-stable UV14 plus TNI model (neutrons, protons, elec-
trons, and muons).

&c

10'4

gcm

2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0

10.0
12.5
15.0
17.5
20.0
25.0
30.0
35.0
40.0

P,
1P34

dyn cm

0.1739
0.3375
0.5742
0.8755
1.685
2.777
4.352
6.362

11.60
19.99
29.88
41.05
53.94
80.94

109.8
139.2
169.0

Mg

(Mo)

0.079
0.116
0.176
0.245
0.398
0.551
0.720
0.886
1.18
1.43
1.59
1.69
1.76
1.82
1.84
1.84
1.83

M~ —MG

(Mo)

—0.0003
0.0001
0.001
0.003
0.011
0.022
0.039
0.062
0.114
0.178
0.228
0.265
0.292
0.320
0.328
0.327
0.321

(km)

160.4
20.57
13.90
12.20
11.27
11.06
11.01
11.00
10.96
10.84
10.65
10.45
10.24
9.88
9.59
9.35
9.15

(km)

158.7
16.50
8.47
5.84
3.66
2.68
2.05
1.63
1.15
0.84
0.68
0.58
0.51
0.43
0.38
0.35
0.33

I
1P44

gcm

0.833
0.401
0.683
1.08
2.16
3.42
4.97
6.62
9.77

12.6
14.3
15.2
15.6
15.5
15.0
14.4
13.8

0.0007
0.008
0.019
0.031
0.057
0.083
0.113
0.146
0.210
0.281
0.338
0.385
0.425
0.481
0.519
0.544
0.561

m(r)= f 4nr' e(r')dr' .
0

(7.5)

Starting with a central mass density e(0)=e„we in-
tegrate out until P(r) &10 dyncm, corresponding to
the density of Fe. This gives the stellar radius R and
the gravitational mass is then MG ——m (R }. We also com-
pute the amu mass M~ defined by

[1—2m (r)Glrc ]'
where m z is taken as one atomic mass unit (1.66 X 10
g). The difference M~ —MG is effectively the binding en-

ergy liberated when the neutron star is formed. The mo-
ment of inertia I is computed as in Arnett and Bowers.
Our numerical method was checked by reproducing the
results of their Table 2 within 0.1%%uo. We also report the
thickness hc of the stellar crust using 2.4)(10' gem
as the mass density boundary between crust and core. Fi-
nally, we calculate the surface redshift,

calculations are still quite reasonable. Our UV14 plus
TNI results show no problem up to 1.5 fm, in contrast
to the calculation by FP, where they find causality viola-
tion at 1 fm

For the low-density (p&0.001 fm } equation of state
we use the results of Feynman, Metropolis, and Teller
and Baym, Pethick, and Sutherland, and for the mid-
density regime (0.001 fm &p&0.08 fm 3) we use the
results of Negele and Vautherin. To match the seg-
ments we take running averages at the boundaries.

The calculation of neutron star structure proceeds by
numerically integrating the Tolman-Oppenheimer-
Volkoff equation:

dP (r) G [e(r)+P (r) lc ][m (r)+4m r P (r) lc ]
dE' r [1—2Gm (r)lrc ]

(7.4)

z =[1—2MGG/Rc ] ' —1 . (7.7)

Results of our neutron star calculations are shown in
Figs. 13-17 and Tables VI—IX. Because the results of
our models are rather closely grouped, we include in the
figures results from Ref. 37 for two additional EOS: the
Pandharipande hyperon (PA) model as a representative
very soft EOS, and the tensor interaction (TI) model of
Pandharipande and Smith as a representative very stiff
EOS. These give an idea of the range of models that have
been considered in past work.

The gravitational mass as a function of central density
MG(s, } is shown in Fig. 13. The AV14 plus UVII and
UV14 plus UVII models both give maximum neutron
star masses above 2.1 Mo, while the UV14 plus TNI
model gives 1.8 Mo. This is somewhat less than the
value reported by FP, due to the lower neutron matter
energies found here and the use of beta-stable matter in-
stead of pure neutron matter. These models are
moderately stiff, and are consistent with current data.
Observationally, neutron star masses are best determined
from studies of pulsars in binary systems, where Doppler
delays of the pulsed radiation together with observations
of the companion combine to give information on the or-
bital parameters. The best determined neutron star
mass is 1.42+0.03 Mo for the binary radio pulsar PSR
1913+ 16, where extra information is available due to
general relativistic effects. Six other masses have been
determined ' for binary x-ray pulsars, but with much
larger error bars. All are consistent with a mass of
1.4+0.2 Mo, which may represent more of a dynamical
constraint from formation in supernova events rather
than a structural constraint from the EOS. The largest
minimum mass is for 4U0900-40, at 1.85+030 Mo, the
lower limit of 1.55 Mo is shown in Fig. 13. At present,
only rather soft EOS are ruled out by these mass deter-
minations.
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FIG. 13. Neutron star mass (in solar mass units,

MO =1.99X 10' g) as a function of central mass density c, for
AV14 plus UVII (solid line), UV14 plus VVII (dash-dotted line),
and UV14 plus TNI (dashed line). Also shown are the TI model
(short-dashed line) and Pandharipande hyperon PA (long-
dashed line). The solid line at 1.55 Mo represents the lower
mass limit from x-ray pulsar 4U0900-40.

The gravitational mass as a function of stellar radius
MG{R) is shown in Fig. 14. Constraints on the mass-
radius relation have been obtained from the study of x-
ray burst sources. These are neutron stars in binary sys-
tems with weak magnetic fields that accrete matter from
their companions. The accreted matter can burn in a
thermonuclear flash, producing a burst of x rays.
Theoretical models of the process reproduce observed

processes fairly well, and give a Inass-radius relation for
the star. In the case of the source MXB 1636-536, a
second mass-radius relation is obtained by observing a
gravitational and transverse Doppler red-shifted spectral
feature, leading to a unique solution for the mass and ra-
dius: 1.45 M& and 10.3 km with errors of +10%. The
error box for this value is shown in Fig. 14. The three
models studied here all pass through the box, but some
very stiff and some very soft EOS pass outside and are po-
tentially ruled out.

Another source of information on neutron star struc-
ture is the observation of red-shifted pair annihilation
lines in gamma-ray bursts. " Some 39 gamma-ray burst
events with emission features have been recorded, with
most clustered in the redshift range z=0.25-0.35. As-
suming the sources are neutron stars in the mass range
indicated for x-ray pulsars, we get the box shown in Fig.
15, where MG{z) is plotted. Again, the present models
pass through the box, while very stiff and very soft EOS
are potentially ruled out.

One feature of young radio pulsars, such as the Crab
and Vela pulsars, is the occurrence of glitches {sudden in-
creases in the rotation rate) followed by a comparatively
long relaxation process. A detailed theory based on the
superfluid properties of nucleons in the star has been con-
structed to fit these observations. This vortex creep
theory describes the motion of pinned vortex lines in the
crustal superfluid and fits to the observational data pro-
vide constraints on the proportion of the star that is
crust. The data argue for a relatively large crust and cor-
respondingly stiff EOS, probably stiffer than the models
studied here. The identification of a 35-d periodicity in
the x-ray source Her X-1 as a large amplitude free preces-
sion of the magnetic dipole axis of the neutron star has
also been used as an argument for a relatively large crust
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FIG. 14. Neutron star mass as a function of star radius for
AV14 plus UVII (solid line), AV14 plus UVII (dash-dotted line),
and UV14 plus TNI (dashed line). Also shown are the TI model
(short-dashed line) and PA model (long-dashed line). The box
brackets a determination of the mass and radius for the x-ray
source MXB 1636-536.

FIG. 15. Neutron star mass as a function of redshift for
AV14 plus UVII (solid line), UV14 plus UVII (dash-dotted line),
and UV14 plus TNI (dashed line). Also shown are the TI model
(short-dashed line) and PA model (long-dashed line). The box
brackets observed mass limits from x-ray pulsars and redshift
limits from gamma-ray burst sources.
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AV14 plus UVII
(n, p, e,p)

UV14 plus UVII
(n,p, e,p) (n,p, e) (n)

UV14 plus TNI
(n,p, e,p)

E (10' g cm )C —2P (10 dyn cm )C

M. rMo
(M„—Mg ) /Mo
R (km)

5, (km)
I (10 gcm )

12.07
20.65

1.4
0.179

10.41
0.85

11.6
0.288

10.42
15.74
1.4
0.162

11.15
1.06

12.8
0.261

10.17
15.01
1.4
0.158

11.31
1.12

13.08
0.256

9.53
13.33

1.4
0.144

11.82
1.48

13.74
0.240

12.12
18.58
1.4
0.169

10.86
0.88

12.3
0.271
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ters for lower densities, and the other is consistent with
those at higher densities. The evolution of the correla-
tions f', f, and f ' from p=0. 175 to 0.25 fm is shown
in Fig. 18. The changes in the spin and tensor correla-
tions for AV14 plus UVII are much greater than for
UV14 plus UVII over the corresponding density range.

The expectation value for v;"+ V,- k grows very rapidly
while passing through this density regime. The expecta-
tion values of v;"+ V; k in nuclear and neutron matter are
shown in Fig. 19 for AV14 plus UVII and UV14 plus
UVII. Also shown is the expectation value of v; for
AV14 and UV14 alone. The UV14 plus UVII pion po-
tential expectation values show a structure similar to
AV14 plus UVII at slightly higher density in neutron
matter, but there is no corresponding kink in the total en-

ergy or dramatic change in the variational parameters.
We identify the unusual behavior on AV14 plus UVII
neutron matter as evidence for a phase transition to a
neutral pion condensate.

The pion condensation phenomena has been studied
extensively by many authors. Two types of pion
condensate have been identified: a charged or pionic
mode that corresponds to the appearance of physical
pions in the medium, and a neutral or sound mode that
corresponds to long-range NN correlations with pion
quantum numbers. The presence of a pole in the pion
Green's function or the lower energy of a state with free
pions is the usual signature for pion condensation. The
density at which condensation takes place, if it takes
place at all, is critically dependent on the attractive DNA
coupling and the repulsive short-range correlations be-
tween nucleons.

In this work we do not have explicit pion degrees of
freedom in our Hamiltonian, so we must rely on secon-
dary signatures, like the kink in the energy, the sharp rise
in the v,j+ Vjk expectation values, and the rapid change
in the spin and tensor correlations of the wave function.

0, I I

UV I4

-20-

CP

-40—
C4)

+

-60—

-80-

-l00
0 O. l 0.2 0.3

p(fm)
0.4 0.5

However, the fact that these occur in AV14 plus UVII
neutron matter and not for AV14 alone, or UV14 plus
UVII, or for any model in nuclear matter, is exactly due
to the same physical reasons considered in conventional
studies. The V;k effectively provides the crucial m.Nh
coupling mechanism. It enhances the tensor correlations
produced by v;, particularly in neutron matter where
they would otherwise be very weak. Whether pion con-
densation takes place is then dependent on the correla-
tions induced by the short-range part of v; .

The relevant parts of the AV14 and UV14 potentials
are shown in Fig. 20. For nuclear matter, this is the
spin-isospin (o; o )(r; r )core of the . interaction. It is

FIG. , 19. Expectation values (v;, + V;,I, ) in neutron matter
(upper curves) and nuclear matter (lower curves) for AV14 plus
UVII (solid lines) and UV14 plus UVII (dash-dotted lines), and

(v;, ) for AV14 (long-dashed lines) and UV14 (short-dashed
lines).
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FIG. 18. Correlation functions f', f, and f' in AV14 plus
UVII neutron matter in the vicinity of the phase transition:

p =0.175 (long-dashed lines), 0.20—(dash-dotted lines), 0.20 +
(short-dashed line), and 0.25 (solid lines) fm

FIG. 20. Cores of the o+o.7. (short-dashed line) and o.~
(solid line) AV14 potential and o+a.r (long-dashed line) and o.~
(dash-dotted line) UV14 potential.
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A' ke(k)= +U(k),
2m

(8.1)

for momenta just above and below the Fermi surface, and
then differentiating the real part of the optical potential
U(e):

m *(e) BU(e)=1-
m Be

(8.2)

after eliminating k from Eq. (8.1). The single-particle en-

ergy is calculated using the procedure of Friedman and
Pandharipande, which is slightly different from the
temperature-related method reported in their dense
matter paper. ' This procedure assumes that the dynami-
cal correlations in the wave function do not change when
small changes are made to the unperturbed Fermi-gas
wave function, such as the creation of single-particle or
single-hole states.

The effective mass is shown in Fig. 21 as a function of
density for AV14 plus UVII, UV14 plus UVII, and UV14
plus TNI for both nuclear and neutron matter. It is also
tabulated with the wave functions in Appendix B. The
UV14 plus TNI nuclear matter results are in good agree-

the source for the Landau-Migdal parameter g' which is
often used to parametrize the short-range effects. For nu-
clear matter this core is strong enough to prevent pion
condensation at any density in our calculations. Howev-
er, in neutron matter the relevant interaction is the sum
of the spin and spin-isospin (cr; 0 )+(c.r; cr )(r; r. j ) cores
or equivalently g+g' in the Landau-Migdal language, be-
cause ((r; rj)) =1. This core is much less repulsive in

UV14 and actually attractive for AV14. This allows the
V,-.& to drive AV14 plus UVII into a neutral pion conden-
sate. It probably also explains the jump in pion expecta-
tion values observed in neutron matter for UV14 plus
UVII, even though this is not enough to cause condensa-
tion.

The much softer g+g' core in neutron matter, corn-
pared to the g' core in nuclear matter, is probably a gen-
eral feature of NN potentials fit to phase-shift data. Thus
pion condensation should generally be much more likely
in neutron matter than nuclear matter. However, the de-
tails of this softening of the core is dependent on the
specific U," used and may not always be sufficient to allow
pion condensation. We should also caution that the
UVII model for V;k used here is too attractive, and a
more realistic model may not provide enough strength to
cause condensation either.

The consequences of this neutral pion condensation for
the EOS are relatively minor. The EOS is softened in the
0.2—0.4 fm density range, but is still moderately stiff at
high densities, due to the Vjk part of the interaction.
Further, the admixture of the small proton fraction re-
quired for beta-stability completely washes out the kink
in the energy, as seen Fig. 9. There is a noticeable bite re-
moved from the proton fraction as seen in Fig. 11.
Perhaps the most important consequence of the phase
transition is a significant jump in the neutron effective
mass m *.

We calculate the effective mass here by first coupling
the single-particle energy e(k),

I.O

0.9-
NEUTRON

AYI4+ U

0.8—
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FIG. 21. Effective nucleon mass m*/m in neutron matter
(upper curves) and nuclear matter (lower curves) for AV14 plus
UVII (solid lines), UV14 plus UVII (dash-dotted lines), and
UV14 plus TNI (dashed lines).

IX. DISCUSSION AND CONCLUSIONS

Observations of neutron stars, the spectacular oc-
currence of supernova 1987a, simulations of type II su-

ment with FP up to p =0.6 fm where the present
values go Rat, while the neutron matter results agree up
to 1 fm . The UV14 plus UVII curves start out slightly
lower, but decrease less rapidly. AV14 plus UVII shows
a clear minimum in nuclear matter around 0.25 fm and
a gradual rise at higher densities. But in AV14 plus UVII
neutron matter (m */m ) =0.8 up to the transition density
0.2 fm and then jumps to 0.95 before gradually declin-
ing.

The nucleon effective mass plays an important role in

the cooling of neutron stars. ' The specific heat for nu-

cleons in the interior is proportional to m ', which makes
the heat content greater. However, neutrino emissitivi-
ties due to the Urea, nn and np bremsstrahlung processes
are proportional to (m'), which makes cooling much
more efficient. The density of states at the Fermi surface
is also proportional to m*, thus affecting the size of the
superAuid gap energy for core nucleons. The net effect is
that moderately larger effective masses lead to
significantly greater cooling rates. The stiffness of the
EOS also affects the cooling rate, with softer models cool-
ing faster. Consequently a neutron star based on AV14
plus UVII will cool the fastest and one based on UV14
plus TNI will cool the slowest, of the models studied
here. The best cooling studies currently available sug-

gest that the UV14 plus TNI model can account for the
observed temperature of the point sources in the Crab,
3C 58, and RCW 103 supernova remnants, but that the
Vela source is marginally cooler than should be expected
for its age. Charged pion condensates can potentially
provide far more rapid cooling than the simple enhance-
ment of m * considered here, but there is no clear need
for such a mechanism from the observational data.
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pernovae, and the many recent experiments with high-
energy heavy-ions have provoked a great deal of discus-
sion and theoretical work on the equation of state for
dense matter. Current data on neutron stars is generally
compatible with the moderately stiff models studied here.
The supernovae simulations have been used to argue for a
softer EOS, but the recent calculations of supernovae
progenitors suggest that prompt explosions may also be
possible with models comparable in stiffness to the
present ones. The high-energy heavy-ion reactions have
been interpreted as indicating a very stiff EOS, but the
present models may also be satisfactory when the
momentum dependence of the interactions is considered.
Recent theoretical efforts, including conventional Bethe-
Brueckner calculations, relativistic Dirac-Brueckner and
mean-field calculations, tend to give EOS that are compa-
rable to the present models or somewhat stiffer.

High-energy heavy-ion experiments attempt to probe
the EOS by various means, such as measuring pion pro-
duction or observing collective Aow. If the difference
between observed pion multiplicities and those expected
on the basis of an intranuclear cascade simulation is in-
terpreted as due solely to the zero-temperature bulk
compressional energy, a very stiff EOS is required to fit
the data. Microscopic calculations in the Vlasov-
Uehling-Uhlenbeck (VUU) theory can reproduce the ob-
served data using a single-particle potential U(p) corre-
sponding to a hard equation of state. However, the
single-particle potential should have a significant momen-
tum dependence and when this factor is taken into ac-
count softer zero-temperature EOS are able to reproduce
the data. We are currently computing U(p, p) for
the models reported here for possible use as input to
VUU calculations; these results will be reported else-
where.

Of the many ongoing theoretical studies, Bruekner-
Bethe methods are the closest in practice to the variation-
al calculations described here. They are based on nonre-
lativistic Hamiltonians containing NN potentials fit to
scattering data. The best nuclear matter calculations are
those of Day which include explicit three-hole-line con-
tributions and estimates of higher-order terms. ' ' ' The
Liege group has recently studied both nuclear and neu-
tron matter in lowest-order Brueckner theory, using the
Paris potential and a density-dependent term that
represents the effect of an averaged three-body poten-
tial. The results are generally similar to FP. Although
the Brueckner method is not as reliable at high density as
the variational method, it is probably more accurate at
normal densities when calculated at the three-hole-line
level. It would be a great benefit if the Brueckner method
could be extended to include three-body potentials at that
level.

Considerable recent effort has gone into the relativistic
Dirac-Brueckner approach ' which treats the nucleon
as a positive-energy Dirac particle with one-boson-
exchange interactions fit to scattering data. The results
of ter Haar and MalAiet are representative; they obtain
the correct saturation density for nuclear matter, but
with not quite enough binding. The EOS for both nu-
clear and neutron matter is slightly stiffer than FP.

Relativistic mean-field theories provide an alternative
description for dense matter. Starting from local, re-
normalizable Lagrangian densities with baryon and
meson degrees of freedom, a mean-field approximation is
made and coupling constants and masses are adjusted to
give nuclear saturation properties. These models sacrifice
the connection to NN scattering data, but rigorously
satisfy causality. They tend to be much stiffer than the
models considered here, with maximum neutron star
masses up to 2.5 M~. Attempts to go beyond the mean-
field approximation involve the calculation of correlation
effects and vacuum Auctuation contributions. Horowitz
and Serot find that correlation effects are significant for
calculating the saturation properties, but have little effect
on the high-density EOS which is still quite stiff. Howev-
er, Ainsworth et QI. have speculated that higher-order
loop corrections, important at normal density, will satu-
rate at high density and lead to a significantly softer nu-
clear matter EOS in the range of 2 —4 p„. In neutron
matter these higher-order corrections as well as the beta-
stability condition bring about a significant reduction in
the maximum neutron star mass.

The properties of the EOS studied in the present work
are determined primarily by the requirement that the
Hamiltonian fit NN scattering data, the binding energies
of light nuclei, and the saturation properties of nuclear
matter. For neutron matter at 4 p„, the central density
for a 1.4 Mc) neutron star, the average kinetic energy is
90 MeV. Collisions between most nucleons are therefore
within the range corresponding to laboratory scattering
data, and hence the scattering data represent a significant
constraint on the EOS. Similar remarks apply for the
densities encountered in many high-energy heavy-ion col-
lisions.

The chief purpose of this work was to examine the
consequences for the equation of state of dense nucleon
matter of adding an explicit three-body potential to the
nuclear Hamiltonian. The three-body potential con-
sidered here includes long-range two-pion exchange and
short-range repulsive parts that are adjusted to give light
nuclei binding energies and nuclear matter saturation
properties in variational calculations. The repulsive part
guarantees a moderately stiff EOS at high densities.
However, the long-range attraction has the consequence
in one case of inducing a phase transition to a neutral
pion condensate. The more realistic treatment of this at-
tractive term is the chief improvement of the present
work over the calculation of Friedman and Pandhari-
pande. We have provided the necessary information for
generating the EOS for matter of arbitrary asymmetry,
and we have calculated the properties of beta-stable neu-
tron stars. We are now studying the single-particle po-
tential for application to heavy-ion reactions. Future
progress will require the development of better many-
body potentials tuned to more accurate many-body calcu-
lations.
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APPENDIX A: ADDITIONAL TERMS
IN CLUSTER EXPANSION

This appendix details the additional terms calculated in
the present work compared to Ref. 14, some of which
were originally examined in Ref. 18. (Hereafter these
references are referred to as I and II, respectively. ) All
the added terms are modifications for expectation values
involving the first six operators Oj' of Eq. (2.1). A larger
number of terms is included than in II, but only leading
orders in noncentral functions are calculated. The rela-
tively simple operator algebra matrices A ', K'J, and L'J
of I are suScient to evaluate these terms, whereas II re-
quired several significantly more complicated matrices.
The additional computation required for these added
terms is modest. In the following we assume familiarity
with the notation of I and II; the only change here is a
change of sign in the definition of the generalized Slater
function to the more logical X =1—sg,'„and the explicit
use of the degeneracy factor s in exchange terms.

Diagrams having two SOC in parallel connecting an in-
teracting pair were neglected in I and only one example,

I

FIG. 22. Generalized Mayer diagrams for the additional
terms in the cluster expansion discussed in Appendix A.

with two Gd,
' chains, was computed in II. In this work

we compute for several combinations of two SOC, as il-
lustrated by some four-body diagrams in Figs. 22(a) —(e),
but with the restriction that for direct terms only the po-
tential or one correlation between the interacting parti-
cles can be noncentral, and for exchange terms both the
potential and the correlations must be central. With this
restriction we calculate the double SOC contribution to
Was

j I m&1
'p f d r—f cHjf ch c 1 (+jjm g m+ 1,jjm )

+ [ 2 gdd gdd [( 1 + gde )'+ ge'e ]+ gdd gde ( 1 + gde ) + gde gde + gdd gee I

+ g g ,'p f d —r[fjH'f'+f'H'f j]h'
j&11,m&1

i
( lc', j™Q m +L j!m

) p gd!d gdmd [( 1 + gdc )2+ g c ]+ 2 gdjd gdm ( 1 + gdc )
~

+ & (It!'!my m+2L j!m)g! gm+ t (2~ jjmg m+L jjm)g! gm

+ g ]
p f d 3r f cH cfch c y !

( g n!m g m +L n !m
)g n 1 g ! g m +4g ! g m

I, m &1 n

2 g lyly mgmgl (gm gm )~ (A 1)

where summations start from one unless otherwise specified. The double SOC contribution to WF is

pr y d3 fcfc Ih c y 1 (~'nlmg m+Lnlmgn ~ g! gm 2g! gm
f2

m 2
l, m &1 n

+ ~ lgl~ mgmgl (gm gm ) (A2)

Analogous contributions for the JF terms Wz and 8'& are also calculated. Approximate separable corrections are also
computed in the same manner as the 8'„ term of I.
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The contribution of multiple operator chains (MOC) was also neglected in I while two three-body examples were cal-
culated in II. In this work we calculate the contributions of five three-body diagrams, as illustrated in Figs. 22(f) —(j},
but again with the restriction that there be only one noncentral operator, either from the potential or from a correla-
tion, between the interacting pair. The MOC contribution to 8'is written as

= g p fd r f'HJf'h'IG Jdd[(1+Gd', ) +6;c]+(G Jdc+G Jcd)(1+Gdc)+6 Icc/}
j&1

+ g p fd3r(f JH'f'+f'H'f J)h'[6 Jdd[(1+6~;) 2+6;,]+(6Jd, +6',„)(1+Gd;)+GJXI

+2
d3~ C~C C$C C QJ J

j&l

while the contribution to O'F is

Q2
W = pf d g(f'f')'6„—+2(f' )'b, 0 —I'h'.

J j&1

The MOC functions 6 „' and G „' are defined as

I y f d3 1(Lijn+KijnA nglmn(f ifjh c) (Fmh c)
i j,m, n&1

(A3)

(A4}

i,j, m, n &1
p f d 3

& L ijn
g

Im n
(fif jh c

) gmf c h c

23
(A5)

i jm n&1
p f d 3r 1 (L'J" + 3KIJ« A «)g'mn EIFJh (Fmh C)

13

0,', = y pfd3r,
ij &1

(KpiqLqin+KjpqLqI«) gpfifihc
m, n, p, q 13

Qmf c h c (Imn' . 23

—gK""A "A'6' b,"f'fjh'—
n 13,23

+ g g ,',pf d—r[(2L +K '
A )(K"' g'fg+K" Qg, )

i,j&1 m, n, p, q
+(K JPAP+L )K"'qg)'f3+(2K 'PAP+L 'P)K "Jqgg,

+(K ' A +L ' )K"'g'fj'+(2K A +L JP)K"'qQ'(]

i, j, m, n &1

X 6 b, " F'h' — FJh'—
13 23

f d3 1 (5Lijn+ 7Kijn A n)glmn(f ifjh c) (Fmh c)

6 I gp f d3@ 1(Lijn+ KijnAng lmn(f ifjhc)gmf chc
i,j,m, n&1 S 23

(A6)

6 I g g p d3r 1 (L ijn+2KiJnA nglmn giFjh c (Fmh c)
ed 3 3 5i j m, n&1 13

6 „= g p f d r3 g '[KP'qLqJ" +KJPqLq'"+—Kqq(LqP"+KqP" A")]
m, n, p, q

T

gpfifjh c gmf c h c glmn y Kijn A nA lgl gnf ifjh c

13 ' . 23 n 13 23

'pf d r —[(K pAp+L p)(K"'qg'p'+K"Jqgg )

i,j&1 m, n, p, q

+(K mipA p+L mip}(K njqglg +Knlqgjg }+(K mjpA p+L mjp}(K«iqglp +Knlqg~iy]

X 5 b, " F'h' — FJh'—
13 23
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In practice, approximate vertex corrections are also added, both at the integrated vertex r3 in the MOC Eqs. (A5) —(A6)
and also for the interacting vertices in Eqs. (A3) and (A4). Corresponding contributions to the JF energy are also calcu-
lated.

Two significant additions have been made to the treatment of the separable diagram contributions 8', . In I some
twice-separable diagrams were calculated exactly by the use of vertex corrections in the passive single operator rings
(SOR), as shown in Fig. 22(k) while others, such as Fig. 22(1), were approximated by adding products like MdM, (see
below) to Mdd. In II these and the additional twice-separable diagrams, illustrated in Fig. 22(m), were calculated exact-
ly and tabulated as JY,2 and higher-order terms were approximated as 8',3+. In this work we now approximate twice-
separable and higher-order terms like Fig. 22(m) by exponentiating direct vertex corrections and adding exchange ver-
tex corrections where appropriate, both in the separable corrections to the two-body energy, M„», and in the vertex
corrections for nodal points in SOC, M (t,x„x ). Diagrams like Fig. 22(1) are again approximated by products of the
vertex corrections at different points, while the usual vertex corrections to separable pieces as shown in Fig. 22(k) con-
tinue as before.

We have also added a multiple-operator ring (MOR) to the class of passive separable diagrams, as shown in Fig.
22(n). This term was calculated in II as W, ; in this work we make an approximation by computing the contribution
only when no more than two noncentral operators act between the interacting particles and when the passive correla-
tions to the third particle are of the same type.

The contribution of all separable diagrams to the two-body energy is now given by

W, = g ,'p 1 d—rf'Hjf"h'E'j"3 "[Mdd+26d, M«+(6,', +Gd, )M«]
l,j,k

where

g2
p Jd rf iHJf'"hc

P(K«mKj~m+En"mKiJm)Amain]M

i,j,k, m, n

(A7)

Mdd ——(1+M, ) exp(2Md ) —1,
M« ——(1+M, )exp(M~+M, ) —1,
M„=exp(2M ) —1,
M„=exp(2M, ) —1,

with

Md ——g [ ,'(D;i+Dji+—Dki)J'(d,d,f )+ ,', (5D;i+3Dji+—5Dki)J'(d,d, P)],
1&1

Mz ——g [—„'(Dii+Dji+Dki)J'(e, d,f )+ ,', (5Di+3D—ii+5Dki)J'(e,d, P)],
1&1

M, = g ,'(D i+Dki)J'(d—,e, P)+ g (K""3"b "/N')
i&1 n

(A8)

(A9)

X [—,'5j&(2D i+2Dki+D;„+Dk„)+ ,'5;, (Dii+D—ki)+45k&(D i+Dii) ]J'(d, e,f ) . ,

y [ i (~ num~ jkm +lt n km g ij m
) g my n yNij k ]

1&1 m, n

X[4(Dii+2D i+D„i)J'(e,d,f )+ —,', (2Di+3D i+2Dki+6D i+3D„i)J'(e,d, P)] .

Here N'= gE""2"b,", and

Nijk ~ i (It nimJtj km+it nkmJt ijm) g mgn
2

m, n

These expressions replace Eqs. (7.11)—(7.13) of I. The corresponding expression for Wz is
S

W = y p Jd r(f'f")'1' h'K'i"3 "lVM—
i,j,k

(A 10)
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The MOR function J'(d, e,f ), which is added to the list of SOR functions of Eqs. (6.29)—(6.33) of I, is given by

2 g2
J'(d, e,f )= —p f d r N'f h' M(l,f,e) .

s
(A 1 1)

The vertex corrections for SOC and SOR, M(t, t,y), are also exponentiated where appropriate, so Eq. (6.28) is now re-

placed by

M(l, I,d)= 1+ g Dki[ ,'J"(d—,e,f )+ ,'J"(d—,e,P)] exp $ Dki[ ,'J"(—d,d f )+ —,'J"(d,d, P)]
k&1 k&1

M(l, I,e)=exp g DId[J"(e,d,f )+ ,'J"(e,—d,P)]
k&1

M(/, I, e )=exp g Dki[ ,'J"(e,d—,f )+ ,'J"(e,—d,P)]
k&1

M(l, P, d)= 1+ g Dki[ ,', J"(d, e—,f )+ ,'J"(d, e—,P)]+ g ,'D„I(K—"""A"6"/N")J"(d, e,f2)
k&1 n

Xexp g Dki[ ,', J"(d,d—,f')+ ,'J"(d, d,—P)]
k&1

(A12)

M(l, P, e)=exp g D„I[,'J"(e,d,f—)+,'J"(e,d, P—)]
k&1

M ( 1,P, e ) =exp g Dki [ ,', J"(e,d,f )—+,' J"(e,d, P)—)

k&1

P

M(l,f,d)= 1+ g Dki[ ,'J"(d, e,f )—+,'J"(d, e, P)]—+g ,'D„I(K"""A—"6"/N")J"(d,e,f )
k&1 n

Xexp g D„,[ ,'J"(d, d,f )—+—,', J"(d,d, P)]
k&1

M(l,f,e)=exp g DII[ ,' J"(e,d,f —)+5,J"(e,d, P)]+ g Dk„(K""A"6"/N')[ ,'J"(e,d,f )+—,' J"(e,d, P))—
k&1 n

M(l, f,e )=exp g Dk~[ ,'J"(e,d,f )—+,
', J"(e,d, P—)]

k&1

This set includes the new vertex correction M(1,f,e ) for the MOR of Eq. (Al 1). The MOR is also added to Eq. (6.36)
of I for the X,, used in FHNC chains:

2 g2
X,', =I;,—g N~f~ h' M(p, f,e)

p&1 s
(A13)

and to the Y„and Y„ functions of Eq. (7.18) of I which are used in the calculation of U and UF.

2 +2
Y„=Y„—g N~f I' h ' M (p,f,e )

p&1

1;,= Y„—g N~f~ h' M(p, f,e)—
p&1 s

(A14)

In I an approximation was made in the FHNC equations to count diagrams like those shown in Figs. 22(o) and 22(p).
This approximation, detailed in Eqs. (6.34)—(6.37) of I, will miscount some terms at three-body level, such as Figs.
22(q) —(s), because it does not take into account the noncommuting nature of the correlation operators. In II this ap-
proximation was removed and an additional set of four integral equations was added to the FHNC-SOC scheme to
count four- or more-body diagrams like Fig. 22(o), while several chain-ring diagrams were added to count terms like
Figs. 22(p) —(r). In this work we return to the old approximation of I and simply add correction terms of a chain-ring
(CR) type to correct for the miscounting of diagrams like Figs. 22(q) and 22(r), while digrams like Figs. 22(s) will still be
miscounted. The contribution of these terms to 8'is given by
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W,„=g g p Jd r f'Hjf"h'K'j" A"
ij,k 1) 1

e Dll+Djl+Dkl)IG dd[ +Gde +Gee]+6 dp( +Gde)+6 pp I

+ —,', (5Dl+3Djl+5Dkl)IGdd[(1+Gd, ) +6;,]+6dp(1+Gd, )+6 p I

+ ,'(Di—l+Dkl )[G,'d(1+ Gd, )+6,', ]

+ g K""A"5"[—,'5j (t2D; i+2Dkl+D;„+Dk„)

+ ,'5;, (D—,i+Dkl )+ ,'5k, (—Dil+D,i )][6 ',d(1+ Gd, )+6,', ]
2

Id3r f iHjf kh c p(KnimKjkm+K nkmK ijm) A mQn]
S

i j,k, m, n l & 1

X[,'(Dli+—2Dml+Dni)6 dd+ 2'e(2Dil+3Dji+2Dkl

+6Dm(+ 3D„l )6 dd ],
while the corresponding correction to WF is

Here the CR functions are

6 dd p f——d r3 A'[(f' h')t3[f' h'(1+Gd, ) —1]23+(f' h'Gde)t3(f' h' —1)23I

6 dp=p J d'r, A'((f' h')»[f' h'(Gd;+G„;+6;, )]23+(f' h'Gd;)„[f' h'(1+26d;) —1]2,

+[f' h'(Gd, +Gee )]l3(f' h' —l)231

c c c C C6
pp =Pfd'r3 A 't(f' h'Gde) l3[f' h'(Gde+Gd'+6 e )]23+ [f ' h'«d'. +6:.)]»(f' h'Gd')23]

6,'d ——p Jd r3 f' h'—2

(f' h' —1)23,
S 13

2

6,', =p J d r3 f ' h'—
13

(f' h'Gd )23

WP ——g g P Jd r(f'f")'I' h'K' "—A "b [e(Dil+Djl+Dkl)6dd+&'~(5Dil+3Djl+5Dkl)6 dd] .
Cr . . kl 1

m S

(A15)

(A16)

(A17)

TABLE X. Wave functions and binding energies in nuclear matter for AV14 plus UVII. E is the average of PB and JF energies,
while 5E is the difference PB-JF. Also given are the integrals of Eq. (3.6) and the effective mass.

p (fm ') d (fm) d' (fm) E (MeV) 5E (MeV)

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

2.62
2.52
2.42
2.14
2.07
2.04
1.98
1.94
1.92
1.87
1.92
2.09
1.94
1.78
1.89
1.86
2.01
1.85

5.24
5.03
4.83
4.90
4.72
4.66
4.51
4.44
5.13
4.99
5.11
4.78
4.42
4.07
3.78
3.71
3.22
2.96

0.81
0.78
0.72
0.70
0.66
0.62
0.60
0.53
0.46
0.42
0.41
0.41
0.46
0.55
0.58
0.58
0.51
0.55

0.87
0.91
1.00
1.03
1.05
1.10
1.13
1.21
1.34
1.46
1.50
1.44
1.45
1.33
1.15
1.16
1.07
1.06

1.04
1.07
1.12
1.12
1.16
1.21
1.25
1.36
1.44
1.57
1.62
1.59
1.43
1.29
1.27
1.11
1.32
1.25

—7.73
—8.43
—9.64

—10.85
—11.74
—12.24
—12.37
—11.43
—9.06
—5.68
—1.39
11.11
29.2
53.4
90.2

189.0
366.0
605.0

0.60
0.66
0.83
1.06
1.31
1.54
1.80
2.36
3.26
4.21
5.50
6.44
7.5
8.6
8.8
8.0
3.0
0.0

—1.07
—1.07
—1.07
—1.03
—1.01
—1.00
—0.99
—0.97
—0.92
—0.94
—0.99
—1.02
—1.04
—1.08
—1.06
—1.08
—1.08
—1.10

—0.90
—0.91
—0.92
—0.96
—0.97
—0.98
—0.98
—1.00
—1.02
—1.01
—0.99
—0.98
—0.96
—0.95
—0.95
—0.94
—0.94
—0.93

0.776
0.759
0.739
0.712
0.690
0.668
0.656
0.653
0.661
0.693
0.704
0.732
0.782
0.822
0.870
1.010
1.380
1.445
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TABLE XI. %'ave functions and binding energies in nuclear matter for UV14 plus UVII.

p (fm ') d (fm) d' (fm) E (MeV) 5E (MeV)

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

2.53
2.38
2.20
1.97
1.91
1.92
1.90
1.86
2.13
2.31
2.48
2.42
2.24
2.09
2.02
1.90
1.79
1.70

5.05
4.75
4.41
4.51
4.35
4.39
4.35
4.26
4.26
4.62
4.41
4.30
3.99
3.71
3.58
3.37
3.19
3.02

0.83
0.83
0.82
0.80
0.77
0.69
0.65
O.S7
0.40
0.34
0.30
0.34
0.37
0.39
0.41
0.46
0.47
0.50

0.93
0.95
0.95
1.03
1.06
1.10
1.11
1.22
1.46
1.54
1.62
1.48
1.53
1.53
1.47
1.28
1.25
1.18

1.03
1.04
1.08
1.06
1.10
1.17
1.20
1.33
1.70
1.88
2.16
1.97
1.92
1.94
1.88
1.69
1.57
1.51

—7.53
—8.22
—9.42

—10.57
—11.27
—11.49
—11.26
—9.42
—5.73
—0.47

6.04
24.50
50.4
84.2

126.7
244.3
452.0
717.0

0.50
0.55
0.68
0.87
1.08
1.30
1.52
1.91
1.94
2.40
2.56
3.89
4.3
4.3
4.4
3.5
0.0

—4.0

—1.08
—1.07
—1.06
—1.03
—1.02
—1.00
—0.99
—0.96
—0.95
—0.95
—1.01
—1.03
—1.04
—1.06
—1.08
—1.07
—1.07
—1.08

—0.92
—0.93
—0.94
—0.97
—0.98
—0.99
—1.00
—1.02
—1.03
—1.04
—1.04
—1.01
—0.98
—0.97
—0.95
—0.94
—0.94
—0.93

0.771
0.747
0.712
0.690
0.671
0.654
0.630
0.599
0.598
0.586
0.575
0.575
0.564
0.562
0.557
0.588
0.668
0.779

dd=~f ~ ~3 ~ I[(F +-,'f' G'. )G'dh']„[f' h'(1+G, , ) —1]„
+[ F +f' Gdd )Gd, h'+(F + —,

' f'
Gdd )Gddh'Gd;]„(f' h' —1)23j,

~=~f" "3" I[ +2f' dd dd ']i3[f' '( d, +gd, +G;, ))„
+[(F +f' Gdd)gd, h'+2(F'+ ,'f' Gdd)gdd-h'G;, ]»(f' h'G;, )„

2+[(F'+ ,'f' Gdd)gddh—'(g. d +gd +g )+(F +f 'g )g h G ] (f 'h 1)

~~=~f "3 " I[( +f' gdd)gd. h'Gd. ]i3[f' h'(Gd, +G' +G' )]

+[( '+ ,'f' Gdd)Gddh-'(Gd, +G;, )+(F'+f' Gdd)gd, h'Gd', ]~3(f' hg d) 2]3, (A18)

TABLE XII. Wave functions and binding energies in nuclear matter for UV14 plus TNI.

p (fm ') d (fm) d' {fm) E (MeV) 5E (MeV) fg'

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50
1.75

2.57
2.47
2.31
2.17
2.08
2.00
1.95
2.02
1.96
2.19
2.30
1.75
1.66
1.61
1.48
1.99
2.23
2.39
1.97

4.57
4.38
4.10
3.86
3.69
3.56
3.47
3.22
3.14
2.92
2.83
2.55
2.41
2.58
2.63
3.54
3.25
2.94
2.62

0.83
0.83
0.82
0.80
0.79
0.77
0.76
0.72
0.69
0.66
0.62
0.78
0.77
0.72
0.74
0.63
0.64
0.64
0.66

—11.23
—12.41
—14.34
—15.88
—16.52
—16.39
—15.61
—12.59
—8.02
—2.41

4.28
22.97
46.5
76.0

114.8
201.7
321.0
452.0
595.0

0.40
0.43
0.50
0.57
0.63
0.68
0.72
0.62
0.51
0.04

—0.60
—0.50
—1.6
—2.9
—3.1

—4.2
—10.0
—19.0
—23.0

—1.09
—1.09
—1.08
—1.07
—1.06
—1.06
—1.05
—1.04
—1.02
—1.01
—0.98
—0.96
—0.94
—0.94
—0.94
—1.01
—1.02
—1.02
—1.07

—0.92
—0.93
—0.94
—0.96
—0.98
—0.99
—1.00
—1.01
—1.03
—1.04
—1.06
—1.08
—1.10
—1.12
—1.11
—1.06
—1.03
—1.04
—1.06

0.797
0.775
0.738
0.698
0.664
0.636
0.611
0.572
0.541
0.510
0.484
0.457
0.432
0.446
0.440
0 AHA

0.464
0.490
0.544
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TABLE XIII. Wave functions and binding energies in neutron matter for AV14 plus UVII.

p (fm )

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

d (fm)

3.02
3.06
3.09
3.06
2.99
2.95
2.95
2.82
2.35
2.74
3.06
3.17
2.73
2.56
2.29
1.99
1.88
1.63
1.63

d' (fm)

3.02
3.06
3.09
3.06
2.99
2.95
2.95
3.48
4.17
3.98
3.76
3.62
3.36
3.15
3.06
2.90
2.73
2.61
2.61

0.91
0.87
0.75
0.67
0.59
0.51
0.45
0.35
0.26
0.26
0.28
0.28
0.29
0.30
0.30
0.31
0.32
0.34
0.34

1.36
1.26
1.30
1.31
1.37
1.51
1.60
1.83
2.24
2.23
2.20
2.20
2.37
2.46
2.68
3.00
2.83
3.41
3.34

4.20
3.84
4.00
4.00
4.27
5.01
5.74
6.26
7.53
7.56
7.70
7.63
7.39
7.36
7.21
7.22
7.25
6.86
6.85

E (MeV)

8.49
9.34

10.90
12.80
14.75
16.83
19.14
19.16
22.94
26.56
31.31
37.21
52.94
77.4

109.0
148.5
248.7
420.0
637.0

5E (MeV)

—0.36
—0.26
—0.20
—0.12
—0.10
—0.12
—0.08

0.67
3.38
4.03
4.32
4.41
4.17
2.9
2.3
2.0

—1.6
—3.0
—9.0

—0.99
—0.99
—1.00
—1.02
—1.05
—1.05
—1.05
—1.00
—1.05
—1.04
—1.04
—1.05
—1.07
—1.06
—1.06
—1.06
—1.08
—1.08
—1.09

0.763
0.803
0.813
0.818
0.813
0.808
0.819
0.886
0.945
0.943
0.924
0.905
0.869
0.836
0.806
0.712
0.689
0.503
0.488

6 ,'~=p J. d'r, 2' [(F'+f' G~d)gd, h']»[f' h'(1+Gd;) —1]»

2(F'+f' G~d) 6,', +Gd, Gd, —6'
S

h'+ f' [Gd, +5'(6,', +6,'q)X]h' (f' h' —1)»
13

6 ee p fd P3 3 [(F +f'
Gdd )Gd, h ')i3[f ' h '(Gd, +Gd, +6,', )]~3

2

(F/+f c~g I
) g~l + g~l g gl

S
h'+f' [Gd, +5'(6,', +6,'q)X]h' (f' h'Gg, )23

13

Again we also compute the corresponding JF corrections to 8'~ and 8'4, .

TABLE XIV. Wave functions and binding energies in neutron matter for UV14 plus UVII.

p (fm ) d (fm) d' (fm) E (MeV) 5E (MeV)

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

2.37
2.32
2.20
2.24
2.33
2.31
2.43
2.41
2.68
2.66
2.57
2.63
2.48
2.17
1.92
1.75
1.60
1.58

3.79
3.70
3.52
3.26
3.11
3.08
3.54
3.50
3.90
3.87
3.73
3.83
3.60
3.48
3.40
3.11
2.85
2.81

0.88
0.84
0.84
0.78
0.70
0.65
0.54
0.43
0.34
0.37
0.40
0.43
0.46
0.51
0.61
0.69
0.88
1.02

1.03
1.07
1.04
1.08
1.14
1.18
1.30
1.50
1.82
1.66
1.62
1.56
1.56
1.59
1.47
1.53
1.47
1.38

1.65
1.68
1.74
2.00
2.46
2.68
2.76
3.82
4.50
3.92
3.61
2.96
2.84
2.46
1.96
1.85
1.64
1.46

9.46
10.26
11.88
14.03
16.41
19.06
21.99
28.71
35.94
44.14
54.35
79.63

112.2
154.5
204.2
328.3
524.0
756.0

0.13
0.14
0.18
0.20
0.19
0.21
0.45
0.75
2.29
2.64
2.74
3.33
3.3
3.7
5.6
7.3

14.0
17.0

—1.05
—1.05
—1.06
—1.06
—1.07
—1.06
—1.02
—1.01
—1.05
—1.05
—1.05
—1.06
—1.08
—1.07
—1.07
—1.07
—1.07
—1.06

0.900
0.885
0.857
0.830
0.805
0.793
0.787
0.768
0.759
0.744
0.734
0.706
0.661
0.615
0.571
0.478
0.356
0.262
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TABLE XV. Wave functions and binding energies in neutron matter for UV14 plus TNI.

p (fm )

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50
1.75

d (fm)

2.24
2.17
2.07
2.10
2.18
2.13
2.08
2.32
2.26
2.31
2.42
2.81
2.72
2.64
2.81
2.33
2.18
2.24
2.15

d' (fm)

3.98
3.86
3.68
3.35
3.88
3.78
3.70
4.13
4.02
3.70
3.52
4.49
4.36
4.23
4.50
3.73
3.49
3.26
3.13

0.94
0.94
0.94
0.91
0.84
0.83
0.82
0.71
0.71
0.72
0.69
0.58
0.60
0.60
0.55
0.60
0.55
0.5 1

0.48

F (MeV)

7.93
8.46
9.58

11.17
13.05
15.17
17.57
23.07
29.35
36.34
44.12
62.42
84.0

108.8
136.0
200.9
294.0
393.0
493.0

SE (MeV)

0.10
0.11
0.14
0.15
0.24
0.26
0.26
0.09

—0.10
—0.42
—1.12
—3.17
—4.8
—6.9

—10.4
—16.0
—28.0
—45.0
—61.0

fg'
—1.05
—1.05
—1.06
—1.07
—1.06
—1.06
—1.06
—1.04
—1.02
—1.02
—1.01
—0.96
—0.95
—0.96
—1.02
—1.02
—1.05
—1.06
—1.07

0.909
0.895
0.873
0.844
0.828
0.797
0.773
0.737
0.698
0.662
0.628
0.586
0.544
0.518
0.479
0.449
0.443
0.5 16
0.684

APPENDIX B: WAVE FUNCTIONS

The wave functions for the AV14 plus UVII, UV14
plus UVII, and UV14 plus TNI Hamiltonians in nuclear
rnatter are given in Tables X-XII, and for neutron
rnatter in Tables XIII-XV. The variafional parameters
d, d', a, g, and P' discussed in Sec. III are given as a

function of density. When used in Eqs. (2.14)—(2.17) of
Ref. 2 they uniquely specify the wave function. Also tab-
ulated is the total energy (average of PB and JF evalua-
tions), the PB-JF energy difference, the value of the pair
distribution function integrals of Eq. (3.6), and the
effective mass for each wave function.
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