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The heavy-ion energy-dependent optical potentials for the ' 0+ Pb system are deduced from a
dispersion relation. These potentials are used to analyze the elastic scattering, fusion, and spin dis-
tributions of compound nuclei for the system in a unified way based on the direct reaction theory.
It turns out that the energy dependence of the optical potential is essential in explaining the data at
near- and sub-barrier energies. The real part of the energy-dependent optical potential deduced was
also used in calculating the elastic and fusion cross sections by the conventional barrier penetration
model using an incoming wave boundary condition. The predictions of the elastic scattering, fusion
cross sections, and the spin distributions of compound nuclei are not satisfactory compared with
those from the direct reaction approach. It seems to originate from the fact that this model neglects
absorption around the Coulomb barrier region.

I. INTRODUCTION

The sub-barrier fusion reactions of two heavy ions have
attracted much interest recently. The observed fusion
yields are much larger than those predicted by the con-
ventional barrier penetration model (BPM).' Several ap-
proaches have been suggested to interpret this anomalous
behavior.

One method is based on the BPM and considers cou-
plings to nonelastic channels, some of which allow for
lowering an effective potential barrier (sum of nuclear,
Coulomb, and centrifugal potentials) resulting in
enhanced fusion. The Nagarajan and Stachler group
pointed out that these effects can be put into the simple
BPM if the potential used is deduced from a dispersion
relation. Since absorption decreases rapidly as the energy
decreases towards the Coulomb barrier, the correspond-
ing polarization as a function of energy has a peak
around the top of the barrier. Thus the real part of the
potential including the polarization also depends upon
the incident energy, and the effective potential barrier is
lowered at near-barrier energies. In order to calculate
the penetrability through the barrier, the incoming wave
boundary condition ' or a short-ranged imaginary poten-
tial ' ' was used in the BPM so that fusion does not
occur until the barrier has been traversed.

Another approach is founded on the direct reaction
theory, in which fusion is considered to proceed through
the formation of a compound nucleus. "' Absorption
into fusion channels is assumed to be due to the inner
portion of the imaginary part 8' of the usual optical po-
tential, the outer portion being responsible for the direct
reactions. In other words, a fusion potential 8'F is
defined as the inner part of 8', i.e., the part with r &RF,
RF being called the fusion radius. Such an idea was quite
successful' in explaining the experimental fusion cross

sections of a large number of sets of two heavy-ion
partners.

Whether these models can reproduce the fusion data
largely depends on the choice of a potential. Of course
the potential should also reproduce the elastic scattering,
other direct reaction phenomena, and the features of
fusion such as spin distributions of compound nucleus
formation. ' Unfortunately, it is difficult to find a poten-
tial which reproduces all these data at the same time.
The calculated spin distributions in the BPM with poten-
tials deduced from a dispersion relation are generally
smaller than the observed ones and the potentials which
explain the fusion data are to be readjusted to fit the elas-
tic scattering. ' The direct reaction approach usually
employs energy-independent optical potentials because of
a lack of information on the energy-dependence of the
optical potentials for most systems.

The experimental and theoretical works on the energy
dependence of the optical potentials have been recently
reported for some systems, ' ' In this paper, we present
analysis of elastic scattering, fusion, and spin distribu-
tions of the ' 0+ Pb system' in a unified way
within the direct reaction theory by using an energy-
dependent optical potential deduced from a dispersion re-
lation. Similar analyses are done by using the incoming
wave boundary condition and a comparison of the
different results is made.

II. OPTICAL POTENTIAL DEDUCED
FROM A DISPERSION RELATION

The elastic scattering data recently accumulated
show ' ' that the imaginary part of the optical poten-
tial diminishes quite rapidly as the incident energy be-
comes lower than the Coulomb barrier. This can be un-
derstood from the fact that fewer reaction channels are
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open when the beam energy is lower. When the energy-
dependent optical potential at a fixed radius around the
strong absorption radius is plotted as a function of ener-

gy, the real part is shown to be a bell shape, peaked
around the Coulomb barrier. This is because the cou-
pling of the elastic channel to other reaction channels
gives rise to the polarization effects. These phenomena
can be explained by the dispersion relation between the
real and imaginary parts of the optical potential. ' The
sudden increase in the real part of the potential at near-
barrier energies allows for lowering the barrier and
enhances the penetrability of the incident waves through
the barrier. It can account for anomalously large fusion
cross sections recently observed in sub-barrier heavy-ion
fusion reactions. Therefore, near the barrier, the energy
dependence of the optical potential could be crucial in ex-
plaining not only the elastic scattering but also fusion.

We now generate a local, energy-dependent optical po-
tential based on the dispersion relation. The real poten-
tial can be obtained from a dispersion relation ' as

V(r, E)=V(r,E, }+ 'P f"E E, —
fV (r, E' )dE'

S

where P denotes the principal value. The first term on
the right hand side, V (r,E,} is the bare potential and the
second one the polarization potential due to couplings.
The bare potential is chosen to be of Woods-Saxon type
and E, in the bare potential is the energy where the nor-
Inalization is done to give a correct magnitude of the
depth parameter, Vp of the Woods-Saxon potential.

We assume a factorization of the imaginary potential
into the radial and energy parts as

W(r, E)= 8'„(r)X W, (E)

and further assume W„(r) to be of the Woods-Saxon
form,

III ANALYSIS OF THE & 0+zosPb SYSTEM

A lot of experimental data of the elastic scattering and
fusion reaction for the ' 0 + Pb system in a wide range
of the incident energy have been accumulated. ' In
Fig. 1, the real and imaginary potential strengths at
R =12.4 fm deduced from the optical model analysis of
the observed elastic scattering are plotted. It is clearly
seen that the imaginary part becomes weaker as the in-
cident energy approaches the Coulomb barrier, while the
real part increases rapidly. It thus implies the existence
of the dispersion relation between the real and imaginary
parts of the optical potential.

We generate the real and imaginary parts of the optical
potential for the ' 0+ Pb system by a method dis-
cussed in Sec. II. The Coulomb barrier energy parameter
Eb and the energy diffuseness parameter a, were chosen
to be 80 and 6 MeV, respectively. The normalization of
the potential was taken at E, =102 MeV. The potential
parameters for the radial dependence are Vp =110 MeV,
8'p ——70 MeV, ap ——0.50 fm, and rp ——1.23 fm. rp is relat-
ed to Rp by Rp=rp(A I + A2 ) where 3, and A2 are
mass numbers of the colliding partners. The solid curves
in Fig. 1 are the results of calculations evaluated at
R =12.4 fm. These parameters reproduce well both the
real and imaginary parts.

We also generated potentials by using the parameters
suggested by Mahaux et a/. Because of the smaller a,
value chosen (4.55 MeV instead of our value of 6 MeV),
V(R =12.4 fm, E) has a sharper peak around E„b=80
MeV. Otherwise they looked the same, and the calculat-
ed results of elastic scattering and fusion cross sections
did not show many differences. Throughout this paper,
we present the results with potentials shown in Fig. 1.

A. Direct reaction approach

Recently, Udagawa, Kim, and Tamura"' proposed a
fusion model based on the direct reaction approach.

and

$V„(r)=

W, (E)=

r —Rp
1+exp

ap

1

E —E
1+exp

Qe

(4)
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16p + 208R

where Eb is the energy of the Coulomb barrier and a, the
diffuseness parameter of the energy dependence.

The radial dependence of the bare and imaginary po-
tential is assumed to have the same geometry. It means
that at a given energy, the radial dependence of both real
and imaginary potential is again of a Woods-Saxon type
and the potential depth depends only on the incident en-
ergy. We also performed calculations with potentials
with a constant depth parameter and energy-dependent
radius parameters. We did not obtain any significant
differences in the results between the two methods.
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FIG. 1. The real and imaginary strengths evaluated at
R =12.4 fm of the optical potential as a function of the bom-
barding energy for the ' 0+ Pb system. The solid curves
represent a calculated dispersion relation. The data are em-
ployed from Ref. 15.
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Their basic idea is that the imaginary part of the optical
potential can be dissected into two parts; one of them,
WF(r), is responsible for fusion and the other, WD(r), ac-
counts for the direct reactions. Then the fusion cross sec-
tion is expressed as

10-

010—

I I I I I I

g 80 208pI

oF ——
2 g (21 g 1)TF (. .

1

The transmission coefficients TF i in Eq. (5) can be writ-
ten as

-110—

TF;i i
Xi(r)

i
~F(r)dr

fiv 0
(6)

where v is the relative velocity. The X&(r) is the partial
scattering wave function calculated with the full optical
potential, U = V +i W, as a solution of

b~o—

iii d Xl(r) I(I +1)fi+ U(r)+
2 XI(r)=EX((r) .

2p dr 2pr

(7)

w310-

For simplicity, they introduced a fusion potential WF
defined as the inner part of W,

W, r (RF
WF ——'0

and treated RF as a parameter to be determined by fitting
the calculated fusion cross sections to the experimental
data.

Our energy-dependent optical potentials generated
from a dispersion relation are plugged into Eq. (7) to cal-
culate XI. The phase shifts of XI give us the elastic
scattering cross sections, since the full optical potential is
used in Eq. (7). We present the results of calculated
differential elastic scattering cross sections at E&,b

——80,
90, and 102 MeV as solid curves in Fig. 2. It can be seen
that the solid curves fit the experimental data well, which
means that our energy-dependent potentials seem to be a
good choice as far as the elastic scattering is concerned.

The transmission coefficients of Eq. (6) are then calcu-
lated by choosing rF ——1.44 fm. The calculated fusion
cross sections as a function of the incident beam energy
are displayed as a solid curve in Fig. 3. The fits to the
fusion data in the energy range considered here are very
good, except at very low energies. The imaginary part
used in this region seems to be still too large. Unfor-
tunately there is not much information of the elastic
scattering below E&,b ——80 MeV, and the dispersion rela-
tion between the real and imaginary parts is not clearly
settled at these very low energies yet.

Spin distributions of compound nuclei formed by
heavy-ion fusion reactions became recently available '

and provided an opportunity for more stringent tests of
our understanding of the fusion reaction mechanism.
The direct reaction approach for fusion has indeed been
successful in reproducing the measured spin distributions
for some systems. ' We calculated mean square spin
values for the ' 0+ Pb system by using our optical po-
tentials, and compared them with the data. ' ' ' The
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FIG. 3. The fusion excitation function of the ' 0+ Pb sys-
tem. The solid and dashed curves are the fusion cross sections
calculated with energy-dependent and energy-independent opti-
cal potentials, respectively. The data are taken from Refs.
17-20.
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FIG. 2. The elastic scatterings of the ' 0+ 'Pb system at
EI,b ——80, 90, and 102 MeV. The solid and dashed curves are
the differential elastic scattering cross sections calculated with
energy-dependent and energy-independent optical potentials, re-
spectively. The data are taken from Ref. 17.
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solid curve in Fig. 4 shows the results of the calculations.
Again our model reproduces the data well, although it
still underestimates at around the Coulomb barrier ener-
gies.

We also made a calculation with an energy indepen-
dent optical potential. The potential chosen was from the
elastic scattering analysis at E),b ——80 MeV. ' The

FIG. 4. Mean square spin values as a function of the bom-

barding energy for the ' 0+ Pb system. The solid and
dashed curves are based on the direct reaction approach and the
BPM with the incoming wave boundary conditions, respective-
ly. The dotted curve represents the BPM results with renormal-
ized potentials of N =0.675.

dashed curves in Fig. 2 represent the differential elastic
scattering cross sections at E),b ——80, 90, and 102 MeV.
It is immediately seen that the fits become poorer as the
energy increases, and the energy dependence of the opti-
cal potential is shown to be essential. The dashed curve
in Fig. 3 shows the calculated fusion cross sections with
this potential It overestimates the data, as well as the
cross sections with energy-dependent potentials in both
the above- and sub-barrier region.

B. BPM with the incoming wave boundary condition

10
4

I I

16O ~ 208 pb

As one way of calculating the transmission coefficient
of Eq. (5) quantum mechanically, the BPM uses the in-
coming wave boundary condition. ' It consists of
defining a boundary radius in an effective potential pock-
et and assuming that only the incoming waves exist inside
the boundary radius. The waves which penetrate the bar-
rier and pass this boundary radius are all transmitted and
never reflected, and thus contribute to fusion. This
boundary condition gives us the transmission and
reflection coefficients and, in turn, the fusion and elastic
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FIG. 5. Same as Fig. 2, but a comparison of results from the
direct reaction approach (solid curves) with those from the
BPM with an incoming wave boundary condition (dashed
curves) is made. The dotted curves show the BPM results with
renormalized potentials of N =0.675.

FIG. 6. Same as Fig. 3, but a comparison of results from the
direct reaction approach (solid curve) with those from the BPM
with an incoming wave boundary condition (dashed curve) is
made. The dotted curve shows the BPM results with renormal-
ized potentials of N =0.675.
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scattering cross sections. ' '

It is worth noting that the potential used is purely real
and all the Aux penetrated contribute to fusion. There is
no room to consider the direct reactions other than the
elastic scattering in this method unless coupled-channels
calculations are done. However, very recently Nagarajan
and Satchler reported that the BPM can be justified, if
the energy dependent potentials deduced from a disper-
sion relation are used, i.e., couplings to nonelastic chan-
nels are taken into account. Nevertheless, a simple re-
norrnalization procedure in determining the potential
strength was still needed to reproduce the measured
fusion cross sections, and spin distributions were not well
reproduced.

We now present the results of calculations by imposing
the incoming wave boundary condition, in the framework
of the BPM, and by employing the real potentials de-
duced from a dispersion relation discussed previously.
The calculations were performed following Park
et al. ' ' The results of elastic scattering and fusion
cross sections are displayed as dashed curves in Figs. 5
and 6, respectively, and are compared with those ob-
tained from the direct reaction approach as solid curves.
Neither the elastic scattering data nor the fusion cross
sections are well reproduced. Because of a lack of ab-
sorption due to direct reaction channels in the grazing re-
gion, the elastic cross sections near the grazing angle are
greatly overestimated. At the backward angles, the ab-
sorption caused by only imposing the incoming wave
boundary condition could not account for the data either.

The calculated fusion cross sections overestimate the
data in the whole energy region considered here. It im-

plies that the real potentials are quite deep and thus make
the Coulomb barrier lower, resulting in large fusion cross
sections. We simply renormalized the well depth of the
real potential so that the fusion data can be reproduced.
The dotted curve in Fig. 6 represents such results with a
normalization factor of N =0.675. As far as the fits to
the fusion data are concerned, the results are very good.
However, the fits to the elastic scattering become poorer
than those without normalization as seen in Fig. 5.

Spin distributions are also calculated with and without
normalization, and displayed as dotted and dashed
curves, respectively, in Fig. 4. Both of them underesti-
mate the observed spin distributions.

IV. CONCLUSION

We deduced heavy-ion optical potentials for the
' 0+ Pb system from a dispersion relation. These lo-
cal, energy-dependent optical potentials are employed to
analyze the measured differential elastic cross sections,
fusion excitation functions, and spin distributions of com-
pound nuclei on one footing of the direct reaction theory.
All three reaction phenomena are well reproduced at the
same time.

The real part of the optical potential is also substituted
into the conventional barrier penetration model with an
incoming wave boundary condition. This method pre-
dicts spin distributions poorly and the potentials, which
are renormalized in order to fit the observed fusion cross
sections, fail to explain the elastic scattering data.

Instead of imposing an incoming wave boundary con-
dition, the use of the short-ranged imaginary optical po-
tential has been suggested. ' ' They obtained very simi-
lar results to those obtained with an incoming wave
boundary condition here. What they claim is that no
imaginary potential in the surface region is necessary as
long as the polarization effects, which arise from the cou-
pling of the elastic channel to all nonelastic channels, are
correctly taken into account in the one-channel calcula-
tions, i.e., the potentials deduced from a dispersion rela-
tion are used. Our analyses, which use the energy-
dependent optical potential based on a dispersion rela-
tion, show that this simple argument is not valid, and ab-
sorption must take place in the surface region in order to
explain the elastic scattering, fusion, and spin distribu-
tions at the same time. Whether the range of the imagi-
nary part, which is sole1y responsible for fusion, is short,
say r0=1.0 fm, as claimed in the BPM or long, say
r0=1.4 fm, is a current issue in understanding the fusion
mechanism. Currently, Hong et aI. are investigating
this issue in a phenomenological way.
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