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The off-shell properties of two-nucleon t matrices are studied for both uncoupled and coupled
channels. Complex t matrices have been obtained using both matrix inversion and continued frac-
tion techniques of solution and predicated upon a standard phenomenological form (Reid}, a
meson exchange model (Paris), and a new phenomenological form that we have developed, of the
two-nucleon interaction. The off-shell t matrices from these interactions are very similar whenever

they give essentially the same phase shifts at all energies. When they do not, the associated off-

shell t matrices diverge so substantially that any data depending upon these off-shell t matrices will

differentiate between the interactions.

I. INTRODUCTION

Knowledge of the off-shell properties of the two nu-
cleon t matrix is necessary whenever a detailed micro-
scopic description of a nuclear system is sought. This
requirement has been realized both in the calculation of
few and of many-nucleon systems. In the last few years,
the importance of the off-shell behavior of the nucleon-
nucleon t matrix has also become apparent in the micro-
scopic description of nucleon scattering from nuclei,
determining the properties of both the nucleon self-
energy and the effective interaction responsible for the
nuclear transitions and nuclear rearrangement processes.

The scattering of nucleon off nuclei provide an in-
teresting situation to probe the t matrix fully off of the
energy shell. ' Indeed, a simple model for calculating the
nucleon-nuc1eus optical potential requires the t matrix
between the projectile and each and every bound nu-
cleon in the target nucleus, the interaction then clearly
taking place well off of the energy shell. However, the
difficulties found in explicitly calculating the off-shell be-
havior of the t matrix, further complicated when medi-
um corrections are accounted for have led many authors
to construct effective forces which reproduce the on-shell
t matrix but neglect its off-shell properties. However
some off-shell components may be simulated by adequate
averages leading to a density and energy dependent
effective force. This is the case, for example, of an en-
ergy and density dependent effective interaction built
upon the Paris internucleon force and which has been
used with reasonable success for distorted wave approxi-
mation studies of inelastic proton scattering.

Our approach to the calculation of the t-matrix off-
shell behavior is a nonrelativistic one, namely we assume
the existence of a well determined nucleon-nucleon po-
tential and then the off-shell properties are given by the
solution of the corresponding Lippman-Schwinger equa-
tion of the t matrix. However, the existence of several
phase-shift equivalent internucleon forces makes uncer-
tain the determination of the off-shell t matrix. It is im-

portant therefore to understand what are the differences
in the off-shell properties of the t matrix as calculated
from different internucleon forces before one can esti-
mate their effects in many-nucleon calculations.

In this paper we address ourselves firstly to the prob-
lem of specifying the two nucleon interaction in order to
evaluate its effects in the off-shell behavior of the t ma-
trix. Secondly we investigate alternative numerical tech-
niques to have a reliable evaluation of the off-shell prop-
erties and finally we analyze the differences we find in
the off-shell behavior of various internucleon forces.

The first of the concerns, the two nucleon problem,
has been studied extensively over the past 30 years both
from a purely phenomenological viewpoint as well as
with theories founded upon meson exchanges. More re-
cently, new schemes which are hybrids of quantum chro-
modynamics (QCD) at short distances with one boson
exchange potentials for the larger separations have been
proposed. The Hamada-Johnston and Reid potentials
are representative of the phenomenological viewpoint
and are interactions still in use. Of the more modern
NN interactions determined from field theoretic or
dispersion relations techniques, the Bonn and Paris are
widely quoted in literature, while the QCD based mod-
els are as yet not so favored.

%hatever be the basis, all such NN interactions are
determined from fits to the elastic NN phase shifts and
the properties of the deuteron, ' such fits varying in quali-
ty between different interactions and for different two-
body channels. The critical features of all interactions,
whether contrived or derived, are the form factors. For
this reason we consider herein the Reid interaction as
being representative of the usual phenomenologically
based interactions, the Paris as being representative of
the derived interactions and a third which we have
developed from a recent, momentum space, phenomeno-
logical model. ' Our model interaction has a form fac-
tor with momentum transfer dependence additional to
the usual one boson exchange potentials (OBEP} and is
defined to obtain the best possible fits to all partial wave
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two nucleon phase shifts up to 400 MeV laboratory ener-

gy as well as to fit the deuteron properties. Coinciden-
tally, the phase shifts to 800 MeV are also well repro-
duced for most channels.

Specifically, our interaction uses three basic Yukmva
factors [q +m; ] ' with ranges, m, , that correspond to
those of the one pion, two pion and p and cg mesons in
meson exchange theory. Additionally, in each two nu-
cleon channel these are modulated by a Gaussian depen-
dence of the momentum transfer and one or more of a
set of three simple scalar functions of momentum.
Thereby we have an interaction that is markedly
difFerent to either the Reid or Paris interactions. Details
are given in the next section (Sec. II).

All three interactions lead to (coupled) integral equa-
tions for their associated t matrices when developed in a
momentum space representation and a standard method
for the solution of such equations is that of matrix inver-
sion. " We have used that method in this study, in addi-
tion, we have also used an alternate method involving
continued fractions' but developed in a different, more
facile way. Details of the two methods are specified in
Sec. III. The two body data predictions (phase shifts to
800 MeV and deuteron properties) that result from the
t-matrix calculations built upon each of the three chosen
interactions are discussed in Sec. IV with the component
attributes of our phenomenological interaction being in-
terpreted as far as possible in terms of more commonly
used operator expectation values.

Off shell characteristics of the t matrices are then dis-
cussed in Secs. V and VI; the former being restricted to
the half-on-shell f ratios with which on-shell differences
between the different t matrices are eliminated. The
complete, off-shell and complex t matrices are displayed,
compared, and their differences discussed, in Sec. VI.

II. EMPIRICAL NUCLEON-NUCLEON INTERACTION

Form factors have always been the crucial elements of
two nucleon interactions. The (vertex) form factors,
which account for the extended structure of the nucleon,
are also required to regularize singularities of interac-
tions derived from meson exchange theory. As yet
these form factors have not been specified by any under-
lying (QCD) formalism. One therefore has some liberty
as to the choice of that form factor. Usually, they are
chosen as the Yukawa form [(A„m)/(A„+q)—]"
where n =—,', 1, —,', and 2 though the Gaussian form,
exp( —tI /A ) is also suitable with A approximating to
A„/&n from small q expansions. The Gaussian form
is also suggested when the connection between strong
and electromagnetic interactions obtained by means of
the eikonal approximation is used to constrain the pa-
rameters of nucleon-nucleon scattering.

The notable feature of our interaction is its form fac-
tor; the choice of which in view of the foregoing was
then predicated upon the known form of the forward
scattering cross sections as functions of t ( = —q ). It is
well known' that p-p scattering data, among others, ex-
hibit the exp(Bt) behavior with B a different constant in
each of three distinctive regimes. Then, as p-p scatter-

ing cross sections scale as the fourth po~er of the proton
form factor, we have the basis for our choice of form
factors in our empirical nucleon-nucleon interaction.

In a momentum space representation the force has the
form

P'(k, k')= g 0, (k', k)F, (q'),

where 0; are general momentum, spin and isospin
dependent operators and F[;] is the "total" form factor
which depends upon the transfer momentum q=k —k',
as

1 fi IF(q )= G exp~2m m;

M exp( —q /2m, . )
(2)

m; q+m,

Eq. (2} m is twice the reduced nucleon mass

(m =Mac), G is an overall constant (20.4 fm ') «r all

the states, and m; define the basic scales and ranges of
the interaction:

m =135.0/Ac fm ', m„'=1.462 fm,

m2 ——279. 1/Ac fm ', m2
' ——0.707 fm,

mz ——774.0/Rc fm ', m „'=0.255 fm,

M =938 9/Pic fm. ', Pic =197.33 MeVfm .

In our approach, we take the eigenvalues of the opera-
tors 0; in Eq. (1} as free parameters which are deter-
mined by Stting the nucleon-nucleon phase shifts and the
binding energy of the deuteron. As will be shown later,
these eigenvalues are simple numbers as a result of the
specific relative mass weighting used in Eq. (2}.

The momentum dependence of the 0; operators re-
quired to fit the data is

0;(k', k)=a;+P; z +y; z2mi mi
(3)

2 Af'(k', k)= — g g 'Pjt s(k')VL.L(k, k'}
em JQ

x Pq~~(k)Pz. , (4)

with

YJLs(k)= g (LSIJv
i
JX ) Yt (k)

i
Sv) (5)

and Pz- is the total isospin projection operator. There-
fore, from Eqs. (1) and (4) we have

where a, , P;, and };are operators with eigenvalues to be
determined.

The nucleon-nucleon interaction may be expanded in
terms of the total angular momentum (J), the total or-
bital angular momentum (L), total spin (S), and total
isospin ( T) channels for the nucleon pair, namely,
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VLsL(k', k)= ~™g f dk' fdk PJt s(k')(TT3
~

0;(k', k)F(q )
~
TT&)P&zs(k) .

i=1

exp( —q /2m; ) = exp
q+m; 2m;

1

2kk'

The explicit expressions for VL I are obtained by consid-
ering that

(k +k' )

2m
= exp

In Eq. (7) the variables x, and z, are (kk'/m; ) and
(k +k' +m; )/(2kk'), respectively. Furthermore it is
simple to prove that

k.k 'exp( q /—m, ) 1

q2 +m 2 2kk'

X g (2L +1)PL(p)It (x;,z, ),
L

(7)

with PL (p, ) being Legendre functions of the first kind,

p =k k ', and IL being the rnultipoles defined by where

X g (2L + 1)PL (p)It. (x;,z; ), (9)
L

IL(x,z)= g (2n+1)(nLOO
~

n'0) i„(x)Q„(z),
n, n'

where the (nLOO
~

n'0) are Clebsch-Gordan coefficients,
the i„(x)are the modified spherical bessel functions of
the first kind, and the Q„(z)are Legendre functions of
the second kind. '

IL (x,z) = g (2n +1)(nLOO
~

n'0)
n, n'

Xi„(x)[zQ„.(z) —5„0]. (10)

Collecting the results of Eqs. (2), (3), (7), and (9) we get
for the diagonal interaction matrix elements [Eq. (4)]

k' k'' kk' kk'
VLL (k', k)= g Q, (k, k') a, It(x, ,z;)+P,', IL(x;,z;) , IL(x—,,z;) +y, 2 IL(x, ,z, ) . ,

2mi

with

0;(k',k)=, G exp
1 M

kk' m, m;

(k +k' }
+exp

2m
(12)

For the off-diagonal matrix elements VtL, L&L',
which are due to tensor operators only, we replace the
IL function in Eq. (11) by IJ and consider only a q
dependence in the 0; operator. Therefore we have, for
L&L',

k k'
V ~ (k, k')= g 0;(k,k')P IJ(x,z )

2mi

kk'
2 IJ(x;,z; )

m, -

(13)

In Table I we have summarized the values obtained
phenomenologically for the a, P, and y coefficients in
each state. By and large they are integer numbers and
the its shown later are those obtained when as many as
possible have been constrained to have integer values.
In view of the similarities to meson exchange potential
effects we shall hereafter refer to the coefficients
(a, ,P, , y,-) corresponding to the range parameter (m,. ) as
the "pion, " "two pion, " and "(p,co)" contributions, re-
spectively.

From Table I we observe that the "one pion" contri-
bution only involves the a, operator (P, =y, =O) while

I

the "two pion" and "(p,co)" contributions are dominant-
ly q dependent (P), with (a2 ——a3 ——0) and with a few
states requiring significant k k' components in the
"(p,co)" contributions. The off-diagonal (tensor cou-
pling) strengths are listed at the bottom of Table I.

III. THE FREE t MATRIX
AND METHODS OF SOLUTION

The n-p scattering phase shifts are determined by the
on-shell expectation values of the free two nucleon t ma-
trix which in turn is derived from the expectation values
of the complete T-matrix operator 1'(z) defined at ener-
gy~ by

1(z)= f + 0lim (z —'ki —12+i rJ) 'F(z),
yI~O

(14)

in which Pis the (m'omentum space} two nucleon in-
teraction and E; is the kinetic energy operator for a free
particle of mass m;. Hereafter the limit will be taken as
assumed whenever appropriate.

Transformed to relative and center of mass variables,
(k, —kz)/2 and (k, +k2), respectively, for equal mass
particles, we get

(k', k2
~

V
~
k, k2) = (k'

~

V
~

k)5(K' —K),
and with

(15)

(k'K'
~

T(z)
~
kK) =5(K' —K)(k'

~

t(to)
~
k), (16)

wherein with p being the reduced mass (m/2), and M,
the total mass of the scattering pair
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State a&

TABLE I. Interaction strength coeScients.

V3

'S,
'D
16
ll

1p
'F
'H,
'It

p

S)
3D

3D

3G

36
36

I
'po
3p
3p

F3
F4
H4
'H,

3E,
3',

E'2

64

E5

—0.7
—0.7
—0.7

—6
4

—2
0.4
1

—2
0
1

—2

—1.7
0.7
0
0
0.7
0
0
0.7
0
0
0.7

2
—1.5

5.6
—2

6
—2

—1

0.8
0.6
0.5

1.4
—0.6

0
0

—2
—3

5.5
1.2

—2.5
5

—0.5
—1.8

6

2
—1.5

0.5
1.4

—1.8
0.8
1.2

—2
0.7
1

—2

0
—1.6

4
—1.3

3.6
—2

0.3
0
0
0

0.4
0
0
0

0.5
0.1

0
0
0
0
0
0
0

54
16
25
42

—6
—30
—90

—168

4
—34

30
10

—30
20

3
—20

15

30
—8

7.4
—8
20
18

—10
20
15

—8
15

4
4

22
—7
25

—10

5.4
4
5

5

0
—10

0
0

—1

0
5

3
0
1

0
0
0

30
8

0
0

10
4
0
0
0
0
0

to=z —(R K /2M),

so that t(co) satisfies the integral equation

+fdq(k'
~

P
~
q)[co—(fi q /2p)

(17) 1 A(k
i
J

i
k) = g 'PL sg(k')XLt (k', O'Co)

P JgT
LL'N

X Pt.st(k)PT (20)

+ii)] '(q
~

t(co)
~
k&.

The elastic scattering amplitude then relates to the on
shell (

(
k'( =

[
k ); co=Pi k /2p, =E&,b/2) antisyin-

metrized matrix elements of t(co) by

in which PT are the two body isospin (T) projection
operators, and L' and L are two particle orbital angular
momentum quantum numbers, each of which combine
with the two body spin (S) to give the angular momen-
tum (J) of the two body system. Consequently we seek
solutions of the (coupled) two body channels equations

t (k' k co)= V (k' k)

f (k', k) = — ( k'
~

t (a) )
~

k )„. (19)
+ —g f VL,( (k', q)[qo q+ir)]—2

7T

Solutions of the t-matrix equation are facilitated by us-
ing partial wave expansions Xt&P (q, k;co)q dq, (21)
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in which

co =A q o /2P (22)

the complex elements of the t matrix corresponding to
outgoing boundary conditions can be shown to be,

A. Matrix inversion method

The standard method used herein follows the pro-
cedure that was used by Haftel and Tabakin. " Instead
of solving directly for the complex t-matrix elements, an
intermediate purely real reaction matrix corresponding
to standing wave boundary conditions is defined. Fol-
lowing the same steps leading to Eq. (21) yields

Rt,L (k', k;to)= Vt, t (k', k)

+ —QP f V ., (k', q}[q —q ]
7T

XR&z (q, k;co)q dq, (23)

where P is the principal value operator.
By defining a suitable grid of (N —1) integration

points (Gauss-Legendre or Gauss-Laguerre) in momen-
tum space to span the interval contributing to the in-

tegral, subtracting a suitable pole term, and solving Eq.
(23) for a column vector or matrix of Rz.L(k', k;co)
values, the problem is reduced to an inversion of an
N XN matrix for uncoupled channels and a 2N X 2N ma-
trix for coupled channels.

From the identity

lim fdx f (x)(x xo+ig)—
g~O

Two quite distinctive methods of solution have been
used to determine the results we present herein. The
first method is that of matrix inversion as used previous-
ly, for example, by Haftel and Tabakin" in their studies
of the two nucleon problem. A brief review of this
method is given in the next section. The second method
is that of continued fractions; a detailed discussion of
which (with respect to solutions of the above, specific,
integral equations} is also given in the next section of
this paper.

By using two methods of solution and comparing t
matrices that result not only can we gauge the accuracy
of the first used (matrix inversion) calculations but also
can we be confident that the solutions have converged.
Furthermore, mindful of the repetitive use of these cal-
culations to provide the elemental t matrices required in
analyses of the many body problem (e.g., specification of
the nuclear optical potential} it is worthwhile to investi-
gate the relative computation times of the different
methods.

tt. .z (k', k;co) =Rt. z (k', k;co)

i—qo g RLJ'I (k qo'to)
1

X IL (qo~k;Qj) (25)

Thus the half-on-shell solutions of Eq. (25) which are
found by simple inversion can be substituted back to
specify the complete off-shell behavior of the t matrices.

In their recent study of the two nucleon E (R ) matrix,
Redish and Stricker-Bauer' obtained solutions to Eq.
(23) to accuracies of 1:1000 or better. They used
different integration techniques from which they assessed
that the Haftel-Tabakin procedure may give problems in
maintaining accuracy. Any such problem we observe is
primarily due to the choice of matrix inversion algo-
rithm. Our results converged quickly with Gauss-
Laguerre quadratures of 24 to 32 points when the Inter-
national Mathematical and Statistical Libraries, Inc.
(IMSL) library matrix routine that features iterative
refinement was used.

B. Method of continued fractions

t(c0)= [1—k(co)] (26)

wherein, with 0 being the free particles* Green's func-
tion,

IV(to)= O'G(to) . (27)

The method of continued fractions (MCF) has been
used by Horacek and Sasakawa' to study problems in
atomic physics and, more recently, to investigate t ma-
trices from local and nonlocal potentials in the two nu-
cleon problem. However, this formalism is rather
cumbersome and so we propose an alternative scheme
for use of this method to specify t matrices. Further-
more a recent comparison' of the continued fractions,
Fade approximant, and iterative-subtractive' methods
of solution starting with the Reid soft core interaction
demonstrated that all such methods converged, albeit
that the continued fractions methods of Horacek and
Sasakawa did so slowly. The use of a successive substi-
tution process' was deemed to be the cause of that slow
convergence. We do not use that process.

Consider a formal solution of the t matrix equation
(14) which has the form

=P ff (x}(x—xo} 'dx ivrf (xo), —(24) In partial wave expansion we then get the solutions of

tL t (k k'to)=
2 f dk fdltPL sj(k )( TT& i (k

i [1 'k(ct))] 0
i
k)

i
TT& )%Lsd(k)

=[N o(k', JL'ST)No(k; JLST)] '(Do(k', JL'ST)
( [1—@'(c0)] '

( Do(k; JLST)), (28)
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in which
I Do), I

Do) are members of a biorthogonal
basis for each set of quantum numbers (JST) and which
satisfy

tt.t (k', k;to)=[N o(k', L')No(k;L)]If„,
where

(34)

D, &&8

J

(D, ID, )=S,,
when other elements are defined by

I
D;(k,L)) =N, (k,L) W(to)

I D;,(k;L))

(29)

(30)

and

i —1

I
DJ(k;L)) WJ, i, (31)

j=0

i —1

—y ID, (k', L'))W,'
„

(32)

I D, (k', L')) =N;(k', L') @' (t0)
I D;,(k';L'))

f =~o Itti~[b& ~z~(bz ' )]1 (35)

and

b; =1—W;;(k', k;L'L),

a; = W, „(k',k;L'L)W. . .(k', k;L'L) .

(36)

(37)

In principle, one would make an explicit construction of
the basis, determining the normalization coefficients, and
thus evaluate matrix elements of 8'(co). But there is an
alternative and more practical procedure to determine
the tridiagonal matrices and thus the continued fractions
to specify the t matrices. This procedure is independent
of the explicit state normalizations.

Consider the state vectors

I
do(k'LJST) ~ =

I
Do(k'JLST) ~/No(k'JLST)

f dk O'
I
k)

I
TT )PLsJ(k)

fi

The elements, 8';, form a tridiagonal matrix since

W; =(D;(k', L')
I

$V(t0)
I
D (k;L)) and

(38)

=0 if Ii —jI&l, (33)

and, as a consequence, we obtain the continued fraction
specification of the t matrices (for each JST combina-
tion}, viz. ,

I
do(k', JL'ST) ~ =

I
Do(k 'JL ST) }/No(k 'JL ST)

= fdk'
I

k')
I

TT& }PL'sj(k') & (39)

in terms of which the diagonal matrix elements, 8'
can be expressed as

W~~=(d (ok', L') IFpkP~ Id (ok; L))l(d (oO', L') IPpFp I
do(k;L)),

and the required product of off-diagonal elements becomes

IV~ »Wp~ i=(do(k', L')
I FpFp I

do(k;L))l(do(k';L')
I Fp i' i I

do(k;L)),

(40)

(41)

with operators defined by

p+1
P~= g a„(p)(W) +'

n=1

involving coefficients that are obtained by a recursion

a„(p)= a„(p—1)—( ~~ », )a„,(p —1)

—( W~ 2~,8', 2)a„,(p —2),
with starting values

a,(p)=a, (p —1)=1, a~ 2(p)—:0 .

(42)

(43)

(44)

I

formula' for its mth convergent. Given that the limit
m ~ oo exists, convergence to that value is very rapid in
the calculations we have made. This procedure has the
added advantage that one need only evaluate an addi-
tional set of basic elements, IL L' to incorporate the next
term in the continued fraction sum since. (for each JST)

(46)

The t matrices expressed as per Eq. (28) are thus in-
dependent of all normalization products,
[N;(k', L')N;(k;L)], and the entries in the continued
fraction require evaluation of matrix elements of the
form (N =1,2, . . . )

It'.~(k', k)=(do(k', L')
I
(W)

I
d (k;oL)) . (45)

The continued fraction is easily summed via a recursion

with

and

IL.L(k', k) =—VL,t (k', k), (47)

(d (ko', L')
I
F WI'

I
do(k;L)}'
p+1

a„(p)a„(p)ILL'(k', k), (48)
n, n'=1
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with

N =2p+3 —n —n' . (49)

IV. THE ON-SHELL t MATRIX

A. Phase shifts and deuteron properties

The nuclear bar phase shifts as determined by the sin-
gle energy analysis of Amdt et al. '" of elastic n-p
scattering are shown as the error bar data in Figs. 1 and
2 for each two body channel or coupling parameter as
designated in each panel. These phase shifts are com-
pared with the results obtained using the Reid, Paris and
our interactions and identified by the dot-dash, broken,
and continuous curves, respectively. The results are

displayed up to a laboratory energy of 800 MeV to stress
some of the strong efFects of the "(p,co)" contributions
even though, in some channels, the imaginary parts of
the phase shifts become significant for energies in excess
of 400 MeV. Thus, to determine the parameters of our
interaction the phase shift values to 400 MeV were used.
It transpired that for most channels a good fit was then
obtained up to 800 MeV. Adjustments were then al-
lowed to ascertain the final parametrization with which
the fits to phase shifts as displayed in the diagrams were
obtained. By and large those adjustments were minor
and to the "(p,co)" contributions.

In each of the figures the very recent data of Amdt
et al. ' are displayed by the open circles or triangles
whenever there is significant variation upon the earlier
published values. Error bars have not been shown for

I
'

I i
'

1

40

a ( ~
)

~

1

S0
100

F 10-
3

F]

&0

a a ~ a ~ a a a i' J

0'0

I
II

I

10
~ g, II

0

3

10 ~

II

20 3

Vl -20a
CL

20-

-20

-40

4

LLI

CL

10- G

-5-

10

-10

w4 ~ ~

30 ~

20

/ I
«1

/ I 0I

-30

-40
I ~ I a I ~ I r

a,
0 2(X) 4 600 IS

0 I «/Ig» 0

E i!I&z y

z t z

E) b{MeV)

FIG. 1. The phase shifts from each two nucleon scattering
state (as speci6ed) and the predictions of them found using the
Reid, Paris, and our interactions. These results are designated
by the dot-dash, broken, and continuous curves, respectively.
The more recent phase shift values of Amdt et al. (Ref. 14) are
shown, without error bars, by the open circles or triangles.

2($400 600 800

E) b(MeV)

FIG. 2. The phase shifts from higher partial waves and the
energy variations of the coupling parameters {e) compared
with the predictions obtained using the Reid, Paris, and our in-

teractions as designated in Fig. 1.
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TABLE II. Low energy results and deuteron properties.

Quantity

a, (np) (fm)

a, (fm)
's

rr

E, (MeV)

Expt.

—23.7 +0. 1

5.42+0.03
2.8

1.75
2.2246

Theory

—24.7
5.50

3.4
1.72

2.222

these recent data. Neither were they used in our deter. -

mination of the interaction.
Figure 1 displays the two nucleon S-, P-, and D-state

results. It is quite evident that the three interactions
give very similar and good fits to the data for the 'So,
S&, Po, and P, channels. The most noticeable

disagreements are in the results for the 'P, channel and
at all energies. The D-state comparisons are quite
reasonable save for the Dz channel.

The coupling parameters and F, G, and 8 phase shifts
are displayed in Fig. 2. In all cases and for all energies
our interaction gives results in best agreement with the
data of Amdt et al.

In view of the coupling in the S, - D, channel, overall
comparisons of the S~, D, phase shifts and of the e&

coupling parameter are very important tests of an in-
teraction. Our force, by such a test, is quite clearly a
very good one which it should be since it is defined to
give good fits to such data.

To add to the credibility of our interaction, we stress
that, with its simple form and with the constraints that
phase shift data to 400 MeV be well reproduced, it gives
good low energy n-p predictions. Those results are
displayed in Table II for the scattering lengths, effective
ranges, and the deuteron binding energy. There is obvi-
ously a good comparison with the empirical values when
the interaction strengths are primarily determined by fits
to the S, , D&, and e, energy variations.

Our deuteron S-state wave function is very similar to
that obtained from either the Reid or the Paris potential
but our D-state wave function is very small, giving a D-
state probability of but 0.1%. Neither the use of
enhanced e, interaction channel strengths nor the addi-
tion of tensor functional forms (as in the Reid or Paris
interactions) to our interaction in lieu of the multipoles
IJ(x;,z; ) of Eq. (13) gave any significant increase in this
D-state probability. As a consequence our interaction
gives a ratio (An/As) of about one-half of the experi-
mental value, and even though the value of e~ (0.2') at 1

MeV appears to be in accord with the quadrupole mo-
ment, ' our calculated value (of QD ) is only 20% of the
empirical number.

Notwithstanding that our interaction has been
developed in a channel by channel basis and so could be
nonlocal in the extreme, the resulting force is remark-
ably simple. With but three ranges, the component scal-
ing and the form factor we have chosen has led to fitting
coefficients (a,P, y) that do not vary widely and are
characteristic of simple operator expectation values.

B. Component contributions

As with the OPEP the "one pion" components of our
interaction are the dominating terms in the calculations
of the low energy phase shifts ( & 50 MeV). The interac-
tion strengths (L &0) in singlet states scale as expecta-
tion values of an operator of the form ~, .~2 and, in our
interaction, their absolute strengths are very similar to
the central part of the OPEP. Our S-state strengths (for
both the 'So and S, channels) are larger than the corre-
sponding OPEP values, as is necessary to fit the low en-

ergy phase shift data. For the other triplet states the
"one pion" strengths of our interaction appear to scale
as a quadratic spin-orbit force. '

The "two pion" components of our interaction are
very significant in the fits to phase shifts above 50 MeV.
For most of the triplet states, it dominates fits to the
data in the region between 100 and 200 MeV. Therein a
consequence of the multipole identity, Eq. (10), becomes
evident with the (positive) q dependence being repulsive
in effect for S states but attractive at low energies for
other partial waves. With increasing energy these con-
tributions become repulsive changing sign in the vicinity
of 150, 350, and 600 MeV for the P, D, and F states, re-
spectively. As with the "one pion" component there is
no apparent need for diagonal tensor contributions as
the triplet interaction strengths scale quite well with the
expectations of ~& ~z and quadratic spin-orbit operators.

The "(p,co)" contributions in our interaction are very
important for the S states, but for all higher partial wave
states become important only above 200 MeV, dominat-
ing phase shift evaluations by and above 400 MeV. The
component interaction strengths may no longer scale in
accordance with the expectation values of simple scalar
operators. And in any event, above 400 MeV the prob-
lem of absorption will have to be addressed before any of
the data may be used to delineate interactions.

V. THK HALF-ON-SHELL t MATRIX

Before presentation and discussion of the off-shell
variation of the t matrix, it is useful to seek a measure
by which the fully-on-shell variations between the three
interactions are eliminated from consideration, and from
which off-shell trends may then be estimated. Such a
measure is provided by the half-on-shell f ratio defined
by

fL'L(k vo, ~)=tL'L(k 'VO ~)~rL'L(qo eo ~»JST . JST . JST

and which it is appropriate to specify as Kowalski-Noyes
functions. For an uncoupled channel, it is easy to
show that these Kowalski-Noyes functions are purely
real. Furthermore they relate, via unitarity to the imagi-
nary part of the complete off-shell t matrix itself. This
relationship and its consequence will be described in the
next section of this paper.

For the coupled channels, however, these quantities
remain complex and are not suitable for the simple as-
sessments we seek at this stage. In those cases, it is con-
venient to consider instead the ratio of R-matrix ele-
ments,
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fJsT(k ~ pI) —gL L(k, qp pl) J L'L
JsT g JsT(
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FIG. 6. The f ratios for the off-diagonal elements relating to

the coupling parameter e&.

suits. In this channel, it is to be remembered, all three
interactions give very good fits to the phase shift data.
Such is not the case for the 'P, channel, particularly at
low energies, and that disparity is rejected in the
relevant f ratios shown in Fig. 3. At 0.5 and 50 MeV
the f ratio of our (phase shift fit) interaction differs from
both the Reid and Paris f ratios (which are distinctly
different to each other as well}. At low energy and mo-
menta the Paris f ratio is an approximation to ours-
but the Reid interaction gives better phase shift predic-
tions than the Paris interaction at low energies. The re-
verse is true at the highest energy (200 MeV). We note
that our interaction 'P, f ratio at all energies has a zero
value at k of 4 fm ', a feature that is distinctively
different from either the Reid or Paris results, and one
which has a consequence in the full-off-shell t matrix.

The Po and P, f ratios are shown in Fig. 4. Therein
the energy sequence and curve identification is as used in
the discussion of Fig. 3. For both of these states, all in-
teractions give excellent fits to the phase shift data over
the 0 to 400 MeV (lab) energy range as is evident from
Fig. 1, and in these cases the f ratios for all interactions
are also very similar. The Po ratios, like 'So ratios
given in Fig. 3 and like the S, ratios to be discussed
next, have a "repulsive" low momentum (&2 fm ') and
an "attractive" higher momentum ratio at 0.5 and 50
MeV. For the 200 MeV case, however, the "repulsion"
has spread to 6 fm ' or even reversed roles with the "at-
tractive" part. Major variation in the complete off-shell
t matrices with energy may be anticipated in these chan-
nels. That is not likely to be the case for the P& state

given the structural similarity of the f ratios and at all
energies. Other channels such as the D2 show behavior
like the P, state variation and will not be shown.

The S, and D, state f ratios are shown in Fig. 5 and

it is clear that at all energies the Reid and Paris results
are very similar. That is also the case for the off-
diagonal f ratios shown in Fig. 6. It is also clear that
our interaction, by comparison, has quite different varia-
tions. The S, f ratios of our interaction are not as
sharply varying with momenta as the others at 0.5 and
50 MeV, but there is complete change in the 200 MeV
results. However, at this energy our phase shift value is
very small and the associated on-shell R-matrix element
is thus very small as well. At the low energies our in-
teraction f ratios cross the axis at around 2.8 fm ', but
for the 200 MeV case this crossover occurs much closer
to the 2.0 fm ' value at which the Paris and Reid f ra-
tios have their zeroes. But the major difference occurs
in the DI (and off-diagonal cases) at 0.5 MeV. The
Paris (Reid) D, f ratios vary by a factor of 30 away
from the on-shell point. Our result is far less severe. At
the higher energies, the Paris and Reid variations are no
longer so severe but yet are quite different to our result
which changes sign at 5 fm '. The off-diagonal results
show even more pronounced size variation in the f ra-
tios determined from the Reid and Paris interactions
whereas our force is far smoother. Large scale varia-
tions in the complete off-shell t matrices will not be
unexpected therefore.

Clearly then data that is sensitive to the off-shell be-
havior (of a tensor force) will distinguish between our in-
teraction and either the Reid or Paris interaction t ma-
trices. Indeed very large differences would result if such
data stressed the low energy off-diagonal channel charac-
ter.

VI. OFF-SHELL CHARACTER OF THK t MATRIX

The off-shell properties of the two nucleon t matrix,
tL.L(k', k) as defined by Eq. (21), have been calculated
for the Paris, Reid, and our interaction forms at center
of mass energies, co, of —50 MeV (for which one obtains
the, purely real, G matrix}, and 0.5, 50, and 200 MeV.
The real and imaginary parts of those t matrices have
been separated and their variations found in graphical
forms for the range of momenta (k, k') from 0 to 9
fm . The results are depicted in Figs. 7—18, in which,
except when specified to the contrary, the t-matrix ele-
ments as shown by our interaction are given in the left-
hand panel from top to bottom in increasing energy (co).
The right (of two) or center (of three) panels in the dia-
grams give the results we obtained by using the Paris in-
teraction while the right (of three) panels give the results
found starting with the Reid interaction.

In making these plots, different scales have been
chosen to ensure that the t-matrix structure can easily be
observed. The same scale is used for all energies in any
channel, however. But the imaginary parts of the t ma-
trices have quite different energy variation between
channels, whence plots will be given of qolm(t) with n

being 0, +1 as is relevant. All scales for the channels to
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k'~ '-2

'~k

FIG. 7. The real parts of the Paris (right panel) and our (left

panel) interaction t matrices in the 'So channel. From top to
bottom are shown the results found using a center of mass en-

ergy (co) of —50.0, 0.5, 50.0, and 200.0 MeV.

be presented are given in Table III. Clearly the S chan-
nels dominate by as much as an order of magnitude in
the energy regime (to 200 MeV in the center of mass. )

Unitarity leads to the interesting result for the imagi-
nary parts of the off-shell t matrix, namely

Im[tL L(k', k;co)]= qo XtL't '(k', qo;to)ttL (qo, k;to) .
I

(52)

Thus, for uncoupled states at least, if the real part of
the t matrix is zero at some half-on-shell value of k
[tt.t (qo, k;to)=0] then for all k' at that value of k we
will get a nodal line in the imaginary part of that t ma-
trix. Further, in such cases the imaginary part of the t
matrix is separable. Such symmetry provides a check
upon our evaluations of the t matrices the results of
which are now discussed.

The off-shell variation of the t-matrix elements for the
'So channel are displayed in Fig. 7 (the real part) and

FIG. 9. The real parts of the Reid (right panel), Paris
(center panel), and our interaction (left panel) t matrices in the
P& channel for the sequence of center of mass energies used in

Fig. 7.

Fig. 8 (the imaginary part of n =1 type. ) As with the
S, channel matrix elements, these matrix elements have

on-shell values that are significant in two nucleon
scattering at all energies as is evident by the phase shifts
shown in Fig. 1. On the other hand, the half-on-shell f
ratios (Fig. 3) revealed differences between our interac-
tion and those of Reid or the Paris group; both of which
interactions gave very similar f ratios. It is no surprise
therefore to find that the full-off-shell variations of the
Paris and Reid 'So t matrices are also very similar; so
similar in fact that the Reid results are not displayed in
Figs. 7 and 8. But the Paris and our interactions have
quite different form and so the similarity of the off-shell
behavior of their t matrices as shown in figures may not
have been expected.

The real part of the 'So t matrices have a deep attrac-
tion at small momenta (&2 fm ') which is weakly
dependent upon the center of mass energy co. The imag-
inary parts of the 'So t matrices are more obviously en-

ergy dependent with the most marked change occurring
in the Paris results for co between 50 and 200 MeV.
Nevertheless a similar variation occurs in the t matrices
obtained with our interaction reflecting the change in
sign of the (on-shell) 'So phase shifts at co-125 MeV.

The relationships between the nodal lines in the imagi-
nary t matrix and the half-on-shell, real part of the t ma-

'. 0.05

k

FIG. 8. The n =1 type imaginary parts of the 'So t matrices
relevant to the positive energy parts of Fig. 7.

FIG. 10. The imaginary (type n = —1) 'PI channel t ma-
trices from our, Paris and Reid interactions (left to right) and
at energies of 50 and 200 MeV (top to bottom).
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FIG. 13. As for Fig. 8 but for the type n =0, imaginary
parts of the S& t matrices.

FIG. 11. The Po t matrices obtained using our interaction.
The real parts are for energies —50, 0.5, 50, and 200 MeV are
shown from top to bottom in the left-hand panel. The imagi-
nary (type n = —1) parts for the positive energy sequence are
shown on the right.

trix as a consequence of unitarity are evident in these
figures but are more visible in other channel results.

The t matrices for the 'P, channel are displayed in

Fig. 9 (real) and Fig. 10 (imaginary for n = —1). The
magnitude variations are moderate in comparison to
those of the S states (see Table III) but are of particular
interest since their on-shell (phase shift) results are quite
different as are the f ratios for each of the interactions
as displayed in Figs. 1 and 3 respectively. The ofF-shell

structure reflects the variations in the on-shell and half-
on-shell results. All interactions display an initial, low
momentum, peak followed by a ridge along the diagonal
in the real part. The low momentum peak is more pro-
nounced in the Reid and our t matrices than in the Paris

interaction results. With our interaction the ridge has
more sharply defined structure on a surrounding
depressed (and negative) valley arising from the q
dependence of our interaction. Such is not the case with
either the Reid or the Paris t matrices as the former is
but a sum of Yukawa functions whilst the latter has an
energy dependent term which produces the growing
k =k' ridge.

The 0.5 MeV imaginary terms are not shown in Fig.
10 as for all interactions the values, even with n = —1,
are very small. At 50 and 200 MeV the imaginary 'P& t
matrix basically has the form of a well with the Paris
values remaining relatively unchanged with energy. The
Reid and our t matrices have deeper wells in the struc-
ture of the imaginary parts as energy is increased but, in
addition, our t matrix also gains a stronger positive vari-
ation in the higher momenta. From this the nodal line
relationship associated with unitarity is quite evident
and cross correlates with the P, f ratios given in Fig. 3.
The nodal line in the imaginary t matrix from our in-
teraction occurs at 3.8 fm ' at which momentum our
'P~ f ratio changes sign.

1 e2

FIG. 12. As for Fig. 7 but for the real parts of the Sl t ma-
trices.

k'~0.5

FIG. 14. As for Fig. 7 but for the real parts of the 'Dl t ma-

trices.
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FIG. 15. As for Fig. 8 but for the type n =0, imaginary
parts of the 'D, t matrices.

FIG. 17. As for Fig. 9 but for the real parts of the 'D, t ma-
trices.

Such unitarity nodal line character is even more evi-
dent in the Po t matrix shown in Fig. 11 which contains
the real and imaginary parts of our t matrix. The Paris
and Reid results are very similar to our t matrix in this
case and are not shown although the Reid values tend to
be softer at high momenta. Such similarity follows those
of the fits to the phase shifts (Fig. 1) and those of the
half-on-shell f ratios (Fig. 4). The real part of our t ma-
trix in this case has a small attractive well at small mo-
menta and a repulsive ridge along the diagonal k =k'.
The real part of the Po t matrix is quite energy indepen-
dent. That is not the case with the imaginary part
which varies from a mere depression at 0.5 MeV, to the
diagonal symmetric well and peak form at 50 MeV and
to a large well at 200 MeV. At the intermediate energy,
the nodal line result of the unitarity condition is most
evident at about 1.6 fm ' at which value the half-on-
shell f ratios of all three forces have their zero value.

We consider next the t matrices for the S&, D„and
the off-diagonal S&- D& channels. Thereby we antici-
pate some reAection of a tensor force in each interaction
case. This should be most evident in the diagonal D,
and off-diagonal S,- D, cases since the 'S, results
(phase shifts) have very strong contributions from cen-
tral forces and to Grst approximation the tensor coupling
effects are masked. The D, (and e, ) phase shifts are not
so dominated by other interaction component effects.
The f ratios for these channels vary markedly with the
interactions and that has already been interpreted as evi-
dence of a much weaker (off-shell) tensor force attribute
of our interaction in comparison to either the Paris or
the Reid cases.

The S& t matrices from our and the Paris interactions
(the Reid is very similar) are shown in Figs. 12 and 13
for the real and imaginary parts (type n =0), respective-
ly. The real parts of this t matrix show a marked varia-
tion with energy having a low momentum repulsive
structure for co at 0.5 MeV. This variation coincides
with the (on-shell) phase shift passing through 90', the
only channel in which this occurs. Our interaction gives
a sharper variation with momenta in the real part of
these t matrices than is the case of the Paris interaction
and this is particularly noticeable at the higher energies.
The imaginary terms on the other hand vary simply with
energy and the Paris interaction results vary more sharp-
ly with momentum at all energies, co. At 200 MeV (400
MeV in the lab frame) the t matrix from our interaction
is essentially purely real. This rejects the fact that at

I

k

FIG. 16. The off-diagonal, 'Sl-'D& t matrices (real parts in
the left-hand panel, imaginary parts in the right-hand panel)
for the common energy sequence.

~ ~F05

FIG. 18. As for Fig. 10 but for the type n = —1, imaginary
parts of the D2 t matrices.
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TABLE III. The off-shell t matrix scalings.

State Low
Real

High
Imag.

Low High

lg
lp
3p

's,
Dl

S,-D,
D

—4.40
—0.17
—0.4
—5.00
—0.37
—1.30
—0.37

1.70
0.34
0.5
4.20
1.32
1.90
0.30

1

—1

—I

0
0
0

—1

—0.70
—0.12
—0.07
—2.70
—0.53
—1.20
—0.10

0.30
0.03
0.04
0.90
0.04
0.40
0.02

this energy our calculated phase shift in this channel is
zero. The null phase shift value occurs with the Paris
interaction at a lower energy.

The D& results are shown in Figs. 1, 4, and 15 for the
real and imaginary (type n =0) parts. The Reid and
Paris interaction are again very similar as one may anti-
cipate from their comparable on-shell (phase shift) varia-
tion (to 400 MeV} and f ratios. The t matrix in this
channel is small in magnitude in all cases. Our interac-
tion t-matrix values vary little with energy and have very
small imaginary values at all energies. The Paris in-

teraction t matrix has a behavior at 50 and 200 MeV
that is similar to our interaction results although the
imaginary values are more pronounced. But the biggest
variation occurs in the t matrix at low energies. For co

at 0.5 MeV the Paris interaction produces a t matrix
that has a prominent peak (well) in the real (imaginary)
part of the t matrix.

An even more dramatic variation of the Paris t matrix
with energy and in comparison to that obtained using
our interaction, is found in the off-diagonal S, - D& re-
sults. The real and imaginary parts of the t matrix we
have obtained by using the Paris interaction are
displayed in Fig. 16. The t matrix obtained using our in-
teraction is so small in comparison that it is not depict-
ed. Being off diagonal the t matrix is not symmetric
about the k =k' diagonal. However, there is a symme-
try with the D&- S& off-diagonal matrix which is a
reflection across the diagonal of the results displayed in
Fig. 16. The strong variation at low energies as ob-
served in the (diagonal) iD

&
results is again present.

In this coupled channel, there were sizable differences
(on shell) in predictions of e, found using our interaction
and the Paris interaction. Such differences are even
more dramatic in the off-shell behavior of the respective
t matrices.

The D2 phase shifts as shown in Fig. 1 given by the
three interactions are quite different at the higher energy
region and so we consider the off-shell properties of this
channel to complete this study. The real and imaginary
parts (type n = —1) of the D2 t matrices are displayed
in Figs. 17 and 18, respectively, with the low energy
(co=0.5) imaginary values omitted since they are very
small at all momenta. The real parts of the Reid t rna-
trix appear as a sequence of wens along the diagonal at
all energies while those of our and the Paris interaction
have a developed ridge at higher momenta. The imagi-

nary parts have similar single well form with a similar
energy variation but our interaction gives higher
momentum rises that are even more accentuated in the
Paris interaction results. The nodal lines due to unitari-
ty are again evident and particularly so for the Paris re-
sults.

Our results are confirmed by the recent study of the
K (R )-matrix structures obtained from the Reid and
Paris interactions' and which was confined to the ener-

gy range 50 to 350 MeV (lab). That study revealed a
number of distinctive features of the associated t ma-
trices, all of which we have observed in our study. In
particular the marked variation of the 'I', channel re-
sults has been reproduced.

But by our analysis of lower energy cases we have also
found aspects of the t matrix that could not be anticipat-
ed from the previous work. ' We have also portrayed
properties of the t matrix at higher momentum values;
albeit that such may be a regime in which the very con-
cept of a t matrix may be inappropriate.

VII. COMPUTATIONAL ASPECTS
OF t-MATRIX SOLUTION

As stated previously, we have calculated the off-shell
t-matrix elements using two distinctly different methods,
namely matrix inversion and the method of continued
fractions. For the matrix inversion calculation one must
use a high accuracy matrix inversion routine, even to ob-
tain the on-shell elements (phase shifts). The subroutine
we used in our computation was taken from the IMSL
library, and featured iterative refinement. The time tak-
en to calculate the off-shell matrix elements by matrix
inversion scales uniformly as N, the square of the num-
ber of grid points (4N for the coupled states). Typical-
ly, each uncoupled state can be solved in 1 sec if one
uses 15 Gauss-Laguerre points on a VAX 8650 (VMS
4.4} system. But to attain an accuracy of one part in 103

for all k, k' of interest, this matrix inversion scheme
should use at least 25 Gauss-Legendre points. We note
that for the sane scheme and accuracy, 15 Gauss-
Laguerre points suffice for most channels. But we also
note that the low energy properties of the t matrix from
which scattering lengths and the deuteron properties can
be deduced need at least 32 Gauss-Laguerre point evalu-
ations to obtain convergence with the necessary accura-
cy.

Using the continued fraction method required similar
operation times to achieve the same overall accuracy of
one part in 10. For uncoupled channels the computa-
tional times with this method give little or no saving
upon those required by the matrix inversion method.
However, for the coupled channels, and if larger X is to
be used, then considerable saving is possible using this
method.

VIII. SUMMARY

The primary purpose of our study has been to del-
ineate essential features of the (complex) t matrix of the
free two nucleon problem. To achieve this we have com-
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pared the t matrices found using model interactions that
give reasonable to good fits to on-shell phase shift data
but which are rather different in their functional form.
Specifically we have used the phenomenological interac-
tion of Reid, the derived interaction of the Paris group,
and a new phenomenological interaction that we have
specified by obtaining good fits to the elastic scattering
phase shifts up to a laboratory energy of 400 MeV and
the properties of the deuteron. Our interaction has the
twin advantages of a simple form factor prescription in-

volving but three ranges and of a form that facilitates
calculations. With our chosen mass scalings the com-
ponent interaction strengths required to fit data in all
channels are very simple, often integer, numbers and are
ones which are quite characteristic of expectation values
of simple operators.

The properties of our interaction have been compared
with those of the standard interaction models of Reid
and of the Paris group. All gave good to excellent fits to
the on-shell phase shift data below 400 MeV for the 'So,
S

& Pp and P
~

states in particular. They were also
notable for their quite diverse predictions of phase shifts

in the 'P& and D2 states and the coupling parameter e, ,
especially. Such behavior is reflected even more strongly
in the off-shell t matrices.

The close similarity of all interactions off-shell proper-
ties in those channels in which they all agree on shell, in
view of their disparate interaction form factors, suggests
that the actual t matrix in those channels are insensitive
to exactly which model form of interaction is chosen
provided that the interaction gives a good on-shell
(phase shift) fit over a reasonable energy range. Accept-
ing that suggestion, and as our interaction was chosen
specifically to provide good fits to the on-shell data, then
our off-shell t matrix so deduced for channels such as the
'P, and D2, etc. would be suitable for use in relevant
calculations. So different are they from the Paris and
Reid values that the nuclear reaction data whose analy-
ses would sample those t-matrix properties would
confirm or deny our suggestions.
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