
PHYSICAL REVIE%" C VOLUME 37, NUMBER 2 FEBRUARY 1988

Comment on "Algebraic analysis of physical and spurious states in Dyson boson mapping"
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By stressing the application of boson mapping techniques to the truncated collective branch of
nuclear excitations, the usefulness of two recently developed methods for the treatment of spurious
states are compared. It is shown why the identification proposed by Geyer et al. is superior to the
use of the "Majorana" operator S as proposed by Park.

A recent paper by Park, ' on which we comment here,
begins with the following statement: "The Dyson boson
mapping method has been introduced to study low-lying
collective states. " This important qualification, namely
that one anticipates profitable use of boson methods only
for collective excitations, has been stressed previously by
several authors. (See, e.g. , Refs. 2 and 3.) Nothing is
gained through boson methods if one is not able to iden-
tify a collective subspace which decouples from the
"noncollective" states albeit only in some approximate
way. The required truncation to a collective subspace at
some stage is the central theme of the present Comment.

We feel obliged to react to the paper by Park, ' be-
cause in his conclusion he states that he has found a
method to deal with the spurious eigenstates of boson-
mapped fermion Hamiltonians by introducing his opera-
tor S, and he furthermore maintains that the method of
Geyer et al. dealing with the same problem is not prac-
tical. In this Comment we demonstrate that this view

actually applies the other way around: Park's method is
diScult to employ in conjunction with a truncation to
the collective branch, whereas his criticism that in the
method of Geyer et al. one "requires calculating matrix
elements for many different physical boson operators be-
tween all eigenstates of a given physical boson Hamil-
tonian" does not apply at all.

The origin of the spurious states can be understood by
examining the properties and nature of the boson Fock
space. Consider first the Dyson mapping of bifermion
operators

c c =b P~R P=—B P—B BP~Bc~cp = gp

cpc:—b p~R p=—B p,
c cp —=bp~Ap =—B Bpg .

The boson operators R p, R p, and A p are constructed
in this way to satisfy the bifermion algebra. (See Ref. 4
for the notation used. When indices are not important
we use R, R, A, B, and B as abbreviations for the cor-
responding indexed operators. )

With the repeated application of R 's on the boson
vacuum state one builds up the physical subspace of the

complete boson Fock space, the latter being obtained by
the repeated application of B 's. The physical subspace
is characterized by a one-to-one correspondence with
fermion states, whereas the states of its complement are
termed unphysical. In general a diagonalization in the
complete boson Fock space will produce some eigen-
states which have components in the unphysical sub-
space and are therefore termed spurious. (See Ref. 4 for
a complete discussion. )

In order to introduce a collective subspace, new bo-
SOIls

B"=—,
' gX" B P

ap

are defined, where 7"p is a complete set of transforma-
tion coefficients. One now endeavors to find a set g"p
which contains a subset characterized by only a small
number of the values n and the property that the opera-
tors R", R„, and A„" =B"B„ form a closed algebra un-
der commutation. This is then a subalgebra of the origi-
nal algebra. It is important for the usefulness of the bo-
son method that this new set of boson operators contains
a much smaller number of elements than the original set
which was indexed by aP, etc. Furthermore, it is neces-
sary for the application of the method that the Hamil-
tonian and other physically relevant operators can be ex-
pressed in terms of this subset of operators R", etc. This
may only be possible in some approximation and it is the
objective of microscopic theory to find such approxima-
tions and to determine their validity. Progress along this
road has been limited. One has therefore had to fall
back on carefully constructed models in which the
decoupling of a collective subspace has been built in. '

One of the simplest models in which various facets of
the occurrence of spurious states have been studied has
an Sp(4) symmetry, and its properties in terms of Dyson
boson mappings have been given in some detail.

However, to comment on Park's method it is already
suKcient to consider the SU(2) or quasispin model.
Some discussion centering around the adequacy of the
boson basis in this model was already given in Ref. 2,
but as also pointed out by Gambhir et al., ' the model is
too limited to expose effects which are obtained from
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linear dependencies in the physical basis as found in the
Sp(4) case and in other more realistic applications.

To appreciate various aspects of the problem it is use-
ful first to consider the "Hermitian" and "non-
Hermitian" Dyson images which play a role in Park's
construction of the operator S. Park unfortunately does
not differentiate between the relative merits of the two
possibilities, and we therefore first illustrate this aspect
in the case of a pairing Hamiltonian

H=A, g b 'bp g.
aP&0

(2)

The "non-Hermitian" Dyson image, which here emerges
as the proper one in the context of an anticipated trun-
cation, is obtained by the mapping

ba —a R a —a ga —a gapgv —ag
vp,

bp-p Rp-p=~p-p

and a subsequent introduction of collective bosons. In
the present example it is possible to find a subset of
transformation coefficients, as discussed above, which
contains only one distinct element,

X'p ——sgn(a)5 p/&Q,

Hamiltonian can be obtained from the diagonal boson
Hamiltonian HD above. One can now truncate to the
collective subspace, by simply dropping all P„-boson
terms in R' and A,'. The algebra still closes and the re-
sults obtained are still exact; namely, for the state with n
collective bosons one has

E„=A,Qn [1 (—n —1}/Q] .

If one were now to repeat the above procedure with
what Park terms the Hermitian image of the pairing
Hamiltonian, namely first map, then transform to collec-
tive bosons, and finally simply truncate to the (single)
collective boson, one finds that the first step leads to

H=A. g blab p
aP&0

—+A. g 8 "Bp„B B„p .
aP& O, pv

Depending on whether one now first rewrites the boson
Hamiltonian in normal ordered form before truncating
to the collective branch, or first truncates followed by
normal ordering, one obtains the following two truncat-
ed boson Hamiltonians, respectively (see also Ref. 2 for a
further discussion of this aspect),

where Q is the number of positive a values. [This is just
the collective Tamm-Dancoff approximation (TDA}
wave function. ] We therefore obtain one collective bo-
son

H„„„,=A,Q(8'8, +8'8'B,B,/Q2),

H,',„„,=A.(B'8, +8'8'8, 8, ) /Q .

(10a}

(lob)

Bc y Xc ~a—a

a&0
The corresponding n boson collective energies are given
by

and the corresponding collective operator

R'=&0 8' 8' 8'8, +—2+P"P„Q and

E„=AQn[1+, (n —1)/Q ] (1 la)

Here the P" create noncollective bosons which are ob-
tained from the set of all 7„" orthogonal to the collective
X' . Furthermore, R, =&QB, . One also introduces
the one-body operators

b"„~A"„=g X+X"„rB
mny

and a corresponding boson number operator

A;=2 8'8, +gP"P„

The collective operators R', R„and A,' form a closed
algebra which is essentially SU(2).

Using the expressions above one now maps the pairing
Hamiltonian (2) onto

r

HD ——A,R 'R, =A, QB'8, —8' 8'8, +2 g p"p„B,

(Actually R ' contains additional terms of the type

P 'P '8, and 13 'P 'P„. In HD, however, these termsn3

have no inAuence on the spectrum; neither do they affect
the closure of the collective algebra, and have therefore
been omitted. ) The complete spectrum of the pairing

E„'=An/Q . , (1 lb)

It is clear that the procedure fails in both cases. In the
second instance not even the leading term comes out
correctly, while in the first both the sign and magnitude
of the interactionlike term are wrong.

This same feature was pointed out in the propagator
approach to elementary excitations" some time ago
where a graphical explanation was indicated. In the bo-
son approach, it can be understood by observing that the
first mapping was in terms of generators of SU(2) while
the second was not. Truncation in the first case amounts
to selecting the collective realization of the algebra and
there is no approximation involved, while in the second
case it amounts to discarding terms about the impor-
tance of which one has neither a priori knowledge nor
control. It will probably always fail as in this example.

Turning now to the operator S in Park's paper, we
realize that it is defined in terms of the difference be-
tween two expressions which in the fermion space are
rearrangements of one another. Park makes use of the
fact that S is zero in the physical subspace of the boson
space because there is a one-to-one relation with the fer-
mion space. On the other hand, it is different from zero
in the rest of the boson space where the relation to the
fermion space is absent. By way of the SU(2) example,
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we now show that S is also nonzero if one truncates to
the collective subspace, the reason being that S does not
leave the collective subspace invariant, or, stated
differently, it cannot be written in terms of the genera-
tors which form the collective subalgebra only.

Following Park S is written as

S=N —N —E,
where

(12)

S=4n 4n +2—n (n —1)IQ . (14)

This expression is generally di8'erent from zero, except
for n =1. This example therefore illustrates that in the
collective subspace S cannot be used as proposed by
Park.

The same problems occur if one tries to apply the
method to the Sp(4) model or other more complicated
cases. One has dif6culties in obtaining a unique
prescription for calculating S in the collective subspace
in those cases.

We do not imply that Park has in fact proposed that S
should be calculated by the methods which are shown
here to lead to erroneous results. We also agree with
Park that it would be very valuable to have an operator
available which could be used to remove the spurious
states from the physically interesting part of a spectrum,
as is common procedure for other kinds of spurious
states. What we do expose here are the typical
difhculties encountered with Park's operator S within
the framework in which one would want to work.

(13)

Transforming these expressions to the collective repre-
sentation and truncating to the truly collective boson,
one finds for our SU(2) case (independently of whether
one first truncates or first imposes normal ordering)

Turning to Park's criticism of our method —namely
that it is not practical because one has to calculate too
many matrix elements for many states —we wish to refer
back to our explicit application to the Sp(4) model.
There we constructed an operator Q from the collective
generators and found that our results hold independently
of our choice of x and y. We also stated that individual
parts of the Hamiltonian may serve as a test operator Q.
Whatever one does, there are very few operators which
one has to calculate to obtain confidence in the result.
On the second point made by Park that one would have
to do the calculation for all eigenstates, we again refer
back to the Sp(4) example where we showed that one ob-
tains zeros which are needed for the identification of
spurious states, for any pair of physical and unphysical
states. Normally, when most states are physical, one
simply continues with confidence by obtaining one ma-
trix element which is nonzero. When one finds a zero
one only has to check whether it is accidental, as dis-
cussed in our paper, or whether it is due to some sym-
metry. In the latter case Q tt and Qtt will both be zero.
When one finds that most states obtained are unphysical,
one is clearly not working with the correct formalism.

In summary, we state that the method proposed by
Park is not applicable to calculations which are truncat-
ed to collective subspace because the operator S does not
leave this subspace invariant, and, secondly, that the
method of Geyer et al. is particularly useful in the col-
lective subspace ~here the calculation of very few matrix
elements —which could even be parts of the
Hamiltonian —have to be calculated to obtain
confidence in the physical nature of the eigenstates. The
question as to what extent this method can be used when
one only has an approximate decoupling of a collective
subspace, remains open.
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